blob: 953ab7c2565bfab9a1eafce0c6668d5156b38d33 [file] [log] [blame]
//! The Rust AST Visitor. Extracts useful information and massages it into a form
//! usable for `clean`.
use rustc::hir::{self, Node};
use rustc::hir::def::Def;
use rustc::hir::def_id::{DefId, LOCAL_CRATE};
use rustc::middle::privacy::AccessLevel;
use rustc::util::nodemap::{FxHashSet, FxHashMap};
use syntax::ast;
use syntax::attr;
use syntax::ext::base::MacroKind;
use syntax::source_map::Spanned;
use syntax_pos::{self, Span};
use std::mem;
use core;
use clean::{self, AttributesExt, NestedAttributesExt, def_id_to_path};
use doctree::*;
// Looks to me like the first two of these are actually
// output parameters, maybe only mutated once; perhaps
// better simply to have the visit method return a tuple
// containing them?
// Also, is there some reason that this doesn't use the 'visit'
// framework from syntax?.
pub struct RustdocVisitor<'a, 'tcx: 'a, 'rcx: 'a> {
pub module: Module,
pub attrs: hir::HirVec<ast::Attribute>,
pub cx: &'a core::DocContext<'a, 'tcx, 'rcx>,
view_item_stack: FxHashSet<ast::NodeId>,
inlining: bool,
/// Are the current module and all of its parents public?
inside_public_path: bool,
exact_paths: Option<FxHashMap<DefId, Vec<String>>>,
}
impl<'a, 'tcx, 'rcx> RustdocVisitor<'a, 'tcx, 'rcx> {
pub fn new(
cx: &'a core::DocContext<'a, 'tcx, 'rcx>
) -> RustdocVisitor<'a, 'tcx, 'rcx> {
// If the root is re-exported, terminate all recursion.
let mut stack = FxHashSet::default();
stack.insert(ast::CRATE_NODE_ID);
RustdocVisitor {
module: Module::new(None),
attrs: hir::HirVec::new(),
cx,
view_item_stack: stack,
inlining: false,
inside_public_path: true,
exact_paths: Some(FxHashMap::default()),
}
}
fn store_path(&mut self, did: DefId) {
// We can't use the entry API, as that keeps the mutable borrow of `self` active
// when we try to use `cx`.
let exact_paths = self.exact_paths.as_mut().unwrap();
if exact_paths.get(&did).is_none() {
let path = def_id_to_path(self.cx, did, self.cx.crate_name.clone());
exact_paths.insert(did, path);
}
}
fn stability(&self, id: ast::NodeId) -> Option<attr::Stability> {
self.cx.tcx.hir().opt_local_def_id(id)
.and_then(|def_id| self.cx.tcx.lookup_stability(def_id)).cloned()
}
fn deprecation(&self, id: ast::NodeId) -> Option<attr::Deprecation> {
self.cx.tcx.hir().opt_local_def_id(id)
.and_then(|def_id| self.cx.tcx.lookup_deprecation(def_id))
}
pub fn visit(&mut self, krate: &hir::Crate) {
self.attrs = krate.attrs.clone();
self.module = self.visit_mod_contents(krate.span,
krate.attrs.clone(),
Spanned { span: syntax_pos::DUMMY_SP,
node: hir::VisibilityKind::Public },
ast::CRATE_NODE_ID,
&krate.module,
None);
// Attach the crate's exported macros to the top-level module:
let macro_exports: Vec<_> =
krate.exported_macros.iter().map(|def| self.visit_local_macro(def, None)).collect();
self.module.macros.extend(macro_exports);
self.module.is_crate = true;
self.cx.renderinfo.borrow_mut().exact_paths = self.exact_paths.take().unwrap();
}
pub fn visit_variant_data(&mut self, item: &hir::Item,
name: ast::Name, sd: &hir::VariantData,
generics: &hir::Generics) -> Struct {
debug!("Visiting struct");
let struct_type = struct_type_from_def(&*sd);
Struct {
id: item.id,
struct_type,
name,
vis: item.vis.clone(),
stab: self.stability(item.id),
depr: self.deprecation(item.id),
attrs: item.attrs.clone(),
generics: generics.clone(),
fields: sd.fields().iter().cloned().collect(),
whence: item.span
}
}
pub fn visit_union_data(&mut self, item: &hir::Item,
name: ast::Name, sd: &hir::VariantData,
generics: &hir::Generics) -> Union {
debug!("Visiting union");
let struct_type = struct_type_from_def(&*sd);
Union {
id: item.id,
struct_type,
name,
vis: item.vis.clone(),
stab: self.stability(item.id),
depr: self.deprecation(item.id),
attrs: item.attrs.clone(),
generics: generics.clone(),
fields: sd.fields().iter().cloned().collect(),
whence: item.span
}
}
pub fn visit_enum_def(&mut self, it: &hir::Item,
name: ast::Name, def: &hir::EnumDef,
params: &hir::Generics) -> Enum {
debug!("Visiting enum");
Enum {
name,
variants: def.variants.iter().map(|v| Variant {
name: v.node.ident.name,
attrs: v.node.attrs.clone(),
stab: self.stability(v.node.data.id()),
depr: self.deprecation(v.node.data.id()),
def: v.node.data.clone(),
whence: v.span,
}).collect(),
vis: it.vis.clone(),
stab: self.stability(it.id),
depr: self.deprecation(it.id),
generics: params.clone(),
attrs: it.attrs.clone(),
id: it.id,
whence: it.span,
}
}
pub fn visit_fn(&mut self, om: &mut Module, item: &hir::Item,
name: ast::Name, fd: &hir::FnDecl,
header: hir::FnHeader,
gen: &hir::Generics,
body: hir::BodyId) {
debug!("Visiting fn");
let macro_kind = item.attrs.iter().filter_map(|a| {
if a.check_name("proc_macro") {
Some(MacroKind::Bang)
} else if a.check_name("proc_macro_derive") {
Some(MacroKind::Derive)
} else if a.check_name("proc_macro_attribute") {
Some(MacroKind::Attr)
} else {
None
}
}).next();
match macro_kind {
Some(kind) => {
let name = if kind == MacroKind::Derive {
item.attrs.lists("proc_macro_derive")
.filter_map(|mi| mi.name())
.next()
.expect("proc-macro derives require a name")
} else {
name
};
let mut helpers = Vec::new();
for mi in item.attrs.lists("proc_macro_derive") {
if !mi.check_name("attributes") {
continue;
}
if let Some(list) = mi.meta_item_list() {
for inner_mi in list {
if let Some(name) = inner_mi.name() {
helpers.push(name);
}
}
}
}
om.proc_macros.push(ProcMacro {
name,
id: item.id,
kind,
helpers,
attrs: item.attrs.clone(),
whence: item.span,
stab: self.stability(item.id),
depr: self.deprecation(item.id),
});
}
None => {
om.fns.push(Function {
id: item.id,
vis: item.vis.clone(),
stab: self.stability(item.id),
depr: self.deprecation(item.id),
attrs: item.attrs.clone(),
decl: fd.clone(),
name,
whence: item.span,
generics: gen.clone(),
header,
body,
});
}
}
}
pub fn visit_mod_contents(&mut self, span: Span, attrs: hir::HirVec<ast::Attribute>,
vis: hir::Visibility, id: ast::NodeId,
m: &hir::Mod,
name: Option<ast::Name>) -> Module {
let mut om = Module::new(name);
om.where_outer = span;
om.where_inner = m.inner;
om.attrs = attrs;
om.vis = vis.clone();
om.stab = self.stability(id);
om.depr = self.deprecation(id);
om.id = id;
// Keep track of if there were any private modules in the path.
let orig_inside_public_path = self.inside_public_path;
self.inside_public_path &= vis.node.is_pub();
for i in &m.item_ids {
let item = self.cx.tcx.hir().expect_item(i.id);
self.visit_item(item, None, &mut om);
}
self.inside_public_path = orig_inside_public_path;
om
}
/// Tries to resolve the target of a `pub use` statement and inlines the
/// target if it is defined locally and would not be documented otherwise,
/// or when it is specifically requested with `please_inline`.
/// (the latter is the case when the import is marked `doc(inline)`)
///
/// Cross-crate inlining occurs later on during crate cleaning
/// and follows different rules.
///
/// Returns true if the target has been inlined.
fn maybe_inline_local(&mut self,
id: ast::NodeId,
def: Def,
renamed: Option<ast::Ident>,
glob: bool,
om: &mut Module,
please_inline: bool) -> bool {
fn inherits_doc_hidden(cx: &core::DocContext, mut node: ast::NodeId) -> bool {
while let Some(id) = cx.tcx.hir().get_enclosing_scope(node) {
node = id;
if cx.tcx.hir().attrs(node).lists("doc").has_word("hidden") {
return true;
}
if node == ast::CRATE_NODE_ID {
break;
}
}
false
}
debug!("maybe_inline_local def: {:?}", def);
let tcx = self.cx.tcx;
if def == Def::Err {
return false;
}
let def_did = def.def_id();
let use_attrs = tcx.hir().attrs(id);
// Don't inline `doc(hidden)` imports so they can be stripped at a later stage.
let is_no_inline = use_attrs.lists("doc").has_word("no_inline") ||
use_attrs.lists("doc").has_word("hidden");
// For cross-crate impl inlining we need to know whether items are
// reachable in documentation -- a previously nonreachable item can be
// made reachable by cross-crate inlining which we're checking here.
// (this is done here because we need to know this upfront).
if !def_did.is_local() && !is_no_inline {
let attrs = clean::inline::load_attrs(self.cx, def_did);
let self_is_hidden = attrs.lists("doc").has_word("hidden");
match def {
Def::Trait(did) |
Def::Struct(did) |
Def::Union(did) |
Def::Enum(did) |
Def::ForeignTy(did) |
Def::TyAlias(did) if !self_is_hidden => {
self.cx.renderinfo
.borrow_mut()
.access_levels.map
.insert(did, AccessLevel::Public);
},
Def::Mod(did) => if !self_is_hidden {
::visit_lib::LibEmbargoVisitor::new(self.cx).visit_mod(did);
},
_ => {},
}
return false
}
let def_node_id = match tcx.hir().as_local_node_id(def_did) {
Some(n) => n, None => return false
};
let is_private = !self.cx.renderinfo.borrow().access_levels.is_public(def_did);
let is_hidden = inherits_doc_hidden(self.cx, def_node_id);
// Only inline if requested or if the item would otherwise be stripped.
if (!please_inline && !is_private && !is_hidden) || is_no_inline {
return false
}
if !self.view_item_stack.insert(def_node_id) { return false }
let ret = match tcx.hir().get(def_node_id) {
Node::Item(&hir::Item { node: hir::ItemKind::Mod(ref m), .. }) if glob => {
let prev = mem::replace(&mut self.inlining, true);
for i in &m.item_ids {
let i = self.cx.tcx.hir().expect_item(i.id);
self.visit_item(i, None, om);
}
self.inlining = prev;
true
}
Node::Item(it) if !glob => {
let prev = mem::replace(&mut self.inlining, true);
self.visit_item(it, renamed, om);
self.inlining = prev;
true
}
Node::ForeignItem(it) if !glob => {
// Generate a fresh `extern {}` block if we want to inline a foreign item.
om.foreigns.push(hir::ForeignMod {
abi: tcx.hir().get_foreign_abi(it.id),
items: vec![hir::ForeignItem {
ident: renamed.unwrap_or(it.ident),
.. it.clone()
}].into(),
});
true
}
Node::MacroDef(def) if !glob => {
om.macros.push(self.visit_local_macro(def, renamed.map(|i| i.name)));
true
}
_ => false,
};
self.view_item_stack.remove(&def_node_id);
ret
}
pub fn visit_item(&mut self, item: &hir::Item,
renamed: Option<ast::Ident>, om: &mut Module) {
debug!("Visiting item {:?}", item);
let ident = renamed.unwrap_or(item.ident);
if item.vis.node.is_pub() {
let def_id = self.cx.tcx.hir().local_def_id(item.id);
self.store_path(def_id);
}
match item.node {
hir::ItemKind::ForeignMod(ref fm) => {
// If inlining we only want to include public functions.
om.foreigns.push(if self.inlining {
hir::ForeignMod {
abi: fm.abi,
items: fm.items.iter().filter(|i| i.vis.node.is_pub()).cloned().collect(),
}
} else {
fm.clone()
});
}
// If we're inlining, skip private items.
_ if self.inlining && !item.vis.node.is_pub() => {}
hir::ItemKind::GlobalAsm(..) => {}
hir::ItemKind::ExternCrate(orig_name) => {
let def_id = self.cx.tcx.hir().local_def_id(item.id);
om.extern_crates.push(ExternCrate {
cnum: self.cx.tcx.extern_mod_stmt_cnum(def_id)
.unwrap_or(LOCAL_CRATE),
name: ident.name,
path: orig_name.map(|x|x.to_string()),
vis: item.vis.clone(),
attrs: item.attrs.clone(),
whence: item.span,
})
}
hir::ItemKind::Use(_, hir::UseKind::ListStem) => {}
hir::ItemKind::Use(ref path, kind) => {
let is_glob = kind == hir::UseKind::Glob;
// Struct and variant constructors and proc macro stubs always show up alongside
// their definitions, we've already processed them so just discard these.
match path.def {
Def::StructCtor(..) | Def::VariantCtor(..) | Def::SelfCtor(..) |
Def::Macro(_, MacroKind::ProcMacroStub) => return,
_ => {}
}
// If there was a private module in the current path then don't bother inlining
// anything as it will probably be stripped anyway.
if item.vis.node.is_pub() && self.inside_public_path {
let please_inline = item.attrs.iter().any(|item| {
match item.meta_item_list() {
Some(ref list) if item.check_name("doc") => {
list.iter().any(|i| i.check_name("inline"))
}
_ => false,
}
});
let ident = if is_glob { None } else { Some(ident) };
if self.maybe_inline_local(item.id,
path.def,
ident,
is_glob,
om,
please_inline) {
return;
}
}
om.imports.push(Import {
name: ident.name,
id: item.id,
vis: item.vis.clone(),
attrs: item.attrs.clone(),
path: (**path).clone(),
glob: is_glob,
whence: item.span,
});
}
hir::ItemKind::Mod(ref m) => {
om.mods.push(self.visit_mod_contents(item.span,
item.attrs.clone(),
item.vis.clone(),
item.id,
m,
Some(ident.name)));
},
hir::ItemKind::Enum(ref ed, ref gen) =>
om.enums.push(self.visit_enum_def(item, ident.name, ed, gen)),
hir::ItemKind::Struct(ref sd, ref gen) =>
om.structs.push(self.visit_variant_data(item, ident.name, sd, gen)),
hir::ItemKind::Union(ref sd, ref gen) =>
om.unions.push(self.visit_union_data(item, ident.name, sd, gen)),
hir::ItemKind::Fn(ref fd, header, ref gen, body) =>
self.visit_fn(om, item, ident.name, &**fd, header, gen, body),
hir::ItemKind::Ty(ref ty, ref gen) => {
let t = Typedef {
ty: ty.clone(),
gen: gen.clone(),
name: ident.name,
id: item.id,
attrs: item.attrs.clone(),
whence: item.span,
vis: item.vis.clone(),
stab: self.stability(item.id),
depr: self.deprecation(item.id),
};
om.typedefs.push(t);
},
hir::ItemKind::Existential(ref exist_ty) => {
let t = Existential {
exist_ty: exist_ty.clone(),
name: ident.name,
id: item.id,
attrs: item.attrs.clone(),
whence: item.span,
vis: item.vis.clone(),
stab: self.stability(item.id),
depr: self.deprecation(item.id),
};
om.existentials.push(t);
},
hir::ItemKind::Static(ref ty, ref mut_, ref exp) => {
let s = Static {
type_: ty.clone(),
mutability: mut_.clone(),
expr: exp.clone(),
id: item.id,
name: ident.name,
attrs: item.attrs.clone(),
whence: item.span,
vis: item.vis.clone(),
stab: self.stability(item.id),
depr: self.deprecation(item.id),
};
om.statics.push(s);
},
hir::ItemKind::Const(ref ty, ref exp) => {
let s = Constant {
type_: ty.clone(),
expr: exp.clone(),
id: item.id,
name: ident.name,
attrs: item.attrs.clone(),
whence: item.span,
vis: item.vis.clone(),
stab: self.stability(item.id),
depr: self.deprecation(item.id),
};
om.constants.push(s);
},
hir::ItemKind::Trait(is_auto, unsafety, ref gen, ref b, ref item_ids) => {
let items = item_ids.iter()
.map(|ti| self.cx.tcx.hir().trait_item(ti.id).clone())
.collect();
let t = Trait {
is_auto,
unsafety,
name: ident.name,
items,
generics: gen.clone(),
bounds: b.iter().cloned().collect(),
id: item.id,
attrs: item.attrs.clone(),
whence: item.span,
vis: item.vis.clone(),
stab: self.stability(item.id),
depr: self.deprecation(item.id),
};
om.traits.push(t);
},
hir::ItemKind::TraitAlias(..) => {
unimplemented!("trait objects are not yet implemented")
},
hir::ItemKind::Impl(unsafety,
polarity,
defaultness,
ref gen,
ref tr,
ref ty,
ref item_ids) => {
// Don't duplicate impls when inlining or if it's implementing a trait, we'll pick
// them up regardless of where they're located.
if !self.inlining && tr.is_none() {
let items = item_ids.iter()
.map(|ii| self.cx.tcx.hir().impl_item(ii.id).clone())
.collect();
let i = Impl {
unsafety,
polarity,
defaultness,
generics: gen.clone(),
trait_: tr.clone(),
for_: ty.clone(),
items,
attrs: item.attrs.clone(),
id: item.id,
whence: item.span,
vis: item.vis.clone(),
stab: self.stability(item.id),
depr: self.deprecation(item.id),
};
om.impls.push(i);
}
},
}
}
// Convert each `exported_macro` into a doc item.
fn visit_local_macro(
&self,
def: &hir::MacroDef,
renamed: Option<ast::Name>
) -> Macro {
debug!("visit_local_macro: {}", def.name);
let tts = def.body.trees().collect::<Vec<_>>();
// Extract the spans of all matchers. They represent the "interface" of the macro.
let matchers = tts.chunks(4).map(|arm| arm[0].span()).collect();
Macro {
def_id: self.cx.tcx.hir().local_def_id(def.id),
attrs: def.attrs.clone(),
name: renamed.unwrap_or(def.name),
whence: def.span,
matchers,
stab: self.stability(def.id),
depr: self.deprecation(def.id),
imported_from: None,
}
}
}