blob: 3d0e46d998622e2791e6f8ba093b2843b3bc91de [file] [log] [blame]
// Validate AST before lowering it to HIR
//
// This pass is supposed to catch things that fit into AST data structures,
// but not permitted by the language. It runs after expansion when AST is frozen,
// so it can check for erroneous constructions produced by syntax extensions.
// This pass is supposed to perform only simple checks not requiring name resolution
// or type checking or some other kind of complex analysis.
use rustc::lint;
use rustc::session::Session;
use syntax::ast::*;
use syntax::attr;
use syntax::source_map::Spanned;
use syntax::symbol::keywords;
use syntax::ptr::P;
use syntax::visit::{self, Visitor};
use syntax_pos::Span;
use errors;
use errors::Applicability;
struct AstValidator<'a> {
session: &'a Session,
}
impl<'a> AstValidator<'a> {
fn err_handler(&self) -> &errors::Handler {
&self.session.diagnostic()
}
fn check_lifetime(&self, ident: Ident) {
let valid_names = [keywords::UnderscoreLifetime.name(),
keywords::StaticLifetime.name(),
keywords::Invalid.name()];
if !valid_names.contains(&ident.name) && ident.without_first_quote().is_reserved() {
self.err_handler().span_err(ident.span, "lifetimes cannot use keyword names");
}
}
fn check_label(&self, ident: Ident) {
if ident.without_first_quote().is_reserved() {
self.err_handler()
.span_err(ident.span, &format!("invalid label name `{}`", ident.name));
}
}
fn invalid_non_exhaustive_attribute(&self, variant: &Variant) {
let has_non_exhaustive = attr::contains_name(&variant.node.attrs, "non_exhaustive");
if has_non_exhaustive {
self.err_handler().span_err(variant.span,
"#[non_exhaustive] is not yet supported on variants");
}
}
fn invalid_visibility(&self, vis: &Visibility, note: Option<&str>) {
if let VisibilityKind::Inherited = vis.node {
return
}
let mut err = struct_span_err!(self.session,
vis.span,
E0449,
"unnecessary visibility qualifier");
if vis.node.is_pub() {
err.span_label(vis.span, "`pub` not permitted here because it's implied");
}
if let Some(note) = note {
err.note(note);
}
err.emit();
}
fn check_decl_no_pat<ReportFn: Fn(Span, bool)>(&self, decl: &FnDecl, report_err: ReportFn) {
for arg in &decl.inputs {
match arg.pat.node {
PatKind::Ident(BindingMode::ByValue(Mutability::Immutable), _, None) |
PatKind::Wild => {}
PatKind::Ident(BindingMode::ByValue(Mutability::Mutable), _, None) =>
report_err(arg.pat.span, true),
_ => report_err(arg.pat.span, false),
}
}
}
fn check_trait_fn_not_async(&self, span: Span, asyncness: IsAsync) {
if asyncness.is_async() {
struct_span_err!(self.session, span, E0706,
"trait fns cannot be declared `async`").emit()
}
}
fn check_trait_fn_not_const(&self, constness: Spanned<Constness>) {
if constness.node == Constness::Const {
struct_span_err!(self.session, constness.span, E0379,
"trait fns cannot be declared const")
.span_label(constness.span, "trait fns cannot be const")
.emit();
}
}
fn no_questions_in_bounds(&self, bounds: &GenericBounds, where_: &str, is_trait: bool) {
for bound in bounds {
if let GenericBound::Trait(ref poly, TraitBoundModifier::Maybe) = *bound {
let mut err = self.err_handler().struct_span_err(poly.span,
&format!("`?Trait` is not permitted in {}", where_));
if is_trait {
err.note(&format!("traits are `?{}` by default", poly.trait_ref.path));
}
err.emit();
}
}
}
/// matches '-' lit | lit (cf. parser::Parser::parse_literal_maybe_minus),
/// or path for ranges.
///
/// FIXME: do we want to allow expr -> pattern conversion to create path expressions?
/// That means making this work:
///
/// ```rust,ignore (FIXME)
/// struct S;
/// macro_rules! m {
/// ($a:expr) => {
/// let $a = S;
/// }
/// }
/// m!(S);
/// ```
fn check_expr_within_pat(&self, expr: &Expr, allow_paths: bool) {
match expr.node {
ExprKind::Lit(..) => {}
ExprKind::Path(..) if allow_paths => {}
ExprKind::Unary(UnOp::Neg, ref inner)
if match inner.node { ExprKind::Lit(_) => true, _ => false } => {}
_ => self.err_handler().span_err(expr.span, "arbitrary expressions aren't allowed \
in patterns")
}
}
fn check_late_bound_lifetime_defs(&self, params: &[GenericParam]) {
// Check only lifetime parameters are present and that the lifetime
// parameters that are present have no bounds.
let non_lt_param_spans: Vec<_> = params.iter().filter_map(|param| match param.kind {
GenericParamKind::Lifetime { .. } => {
if !param.bounds.is_empty() {
let spans: Vec<_> = param.bounds.iter().map(|b| b.span()).collect();
self.err_handler()
.span_err(spans, "lifetime bounds cannot be used in this context");
}
None
}
_ => Some(param.ident.span),
}).collect();
if !non_lt_param_spans.is_empty() {
self.err_handler().span_err(non_lt_param_spans,
"only lifetime parameters can be used in this context");
}
}
/// With eRFC 2497, we need to check whether an expression is ambiguous and warn or error
/// depending on the edition, this function handles that.
fn while_if_let_ambiguity(&self, expr: &P<Expr>) {
if let Some((span, op_kind)) = self.while_if_let_expr_ambiguity(&expr) {
let mut err = self.err_handler().struct_span_err(
span, &format!("ambiguous use of `{}`", op_kind.to_string())
);
err.note(
"this will be a error until the `let_chains` feature is stabilized"
);
err.note(
"see rust-lang/rust#53668 for more information"
);
if let Ok(snippet) = self.session.source_map().span_to_snippet(span) {
err.span_suggestion_with_applicability(
span, "consider adding parentheses", format!("({})", snippet),
Applicability::MachineApplicable,
);
}
err.emit();
}
}
/// With eRFC 2497 adding if-let chains, there is a requirement that the parsing of
/// `&&` and `||` in a if-let statement be unambiguous. This function returns a span and
/// a `BinOpKind` (either `&&` or `||` depending on what was ambiguous) if it is determined
/// that the current expression parsed is ambiguous and will break in future.
fn while_if_let_expr_ambiguity(&self, expr: &P<Expr>) -> Option<(Span, BinOpKind)> {
debug!("while_if_let_expr_ambiguity: expr.node: {:?}", expr.node);
match &expr.node {
ExprKind::Binary(op, _, _) if op.node == BinOpKind::And || op.node == BinOpKind::Or => {
Some((expr.span, op.node))
},
ExprKind::Range(ref lhs, ref rhs, _) => {
let lhs_ambiguous = lhs.as_ref()
.and_then(|lhs| self.while_if_let_expr_ambiguity(lhs));
let rhs_ambiguous = rhs.as_ref()
.and_then(|rhs| self.while_if_let_expr_ambiguity(rhs));
lhs_ambiguous.or(rhs_ambiguous)
}
_ => None,
}
}
}
impl<'a> Visitor<'a> for AstValidator<'a> {
fn visit_expr(&mut self, expr: &'a Expr) {
match expr.node {
ExprKind::IfLet(_, ref expr, _, _) | ExprKind::WhileLet(_, ref expr, _, _) =>
self.while_if_let_ambiguity(&expr),
ExprKind::InlineAsm(..) if !self.session.target.target.options.allow_asm => {
span_err!(self.session, expr.span, E0472, "asm! is unsupported on this target");
}
ExprKind::ObsoleteInPlace(ref place, ref val) => {
let mut err = self.err_handler().struct_span_err(
expr.span,
"emplacement syntax is obsolete (for now, anyway)",
);
err.note(
"for more information, see \
<https://github.com/rust-lang/rust/issues/27779#issuecomment-378416911>"
);
match val.node {
ExprKind::Lit(ref v) if v.node.is_numeric() => {
err.span_suggestion_with_applicability(
place.span.between(val.span),
"if you meant to write a comparison against a negative value, add a \
space in between `<` and `-`",
"< -".to_string(),
Applicability::MaybeIncorrect
);
}
_ => {}
}
err.emit();
}
_ => {}
}
visit::walk_expr(self, expr)
}
fn visit_ty(&mut self, ty: &'a Ty) {
match ty.node {
TyKind::BareFn(ref bfty) => {
self.check_decl_no_pat(&bfty.decl, |span, _| {
struct_span_err!(self.session, span, E0561,
"patterns aren't allowed in function pointer types").emit();
});
self.check_late_bound_lifetime_defs(&bfty.generic_params);
}
TyKind::TraitObject(ref bounds, ..) => {
let mut any_lifetime_bounds = false;
for bound in bounds {
if let GenericBound::Outlives(ref lifetime) = *bound {
if any_lifetime_bounds {
span_err!(self.session, lifetime.ident.span, E0226,
"only a single explicit lifetime bound is permitted");
break;
}
any_lifetime_bounds = true;
}
}
self.no_questions_in_bounds(bounds, "trait object types", false);
}
TyKind::ImplTrait(_, ref bounds) => {
if !bounds.iter()
.any(|b| if let GenericBound::Trait(..) = *b { true } else { false }) {
self.err_handler().span_err(ty.span, "at least one trait must be specified");
}
}
_ => {}
}
visit::walk_ty(self, ty)
}
fn visit_label(&mut self, label: &'a Label) {
self.check_label(label.ident);
visit::walk_label(self, label);
}
fn visit_lifetime(&mut self, lifetime: &'a Lifetime) {
self.check_lifetime(lifetime.ident);
visit::walk_lifetime(self, lifetime);
}
fn visit_item(&mut self, item: &'a Item) {
match item.node {
ItemKind::Impl(unsafety, polarity, _, _, Some(..), ref ty, ref impl_items) => {
self.invalid_visibility(&item.vis, None);
if let TyKind::Err = ty.node {
self.err_handler()
.struct_span_err(item.span, "`impl Trait for .. {}` is an obsolete syntax")
.help("use `auto trait Trait {}` instead").emit();
}
if unsafety == Unsafety::Unsafe && polarity == ImplPolarity::Negative {
span_err!(self.session, item.span, E0198, "negative impls cannot be unsafe");
}
for impl_item in impl_items {
self.invalid_visibility(&impl_item.vis, None);
if let ImplItemKind::Method(ref sig, _) = impl_item.node {
self.check_trait_fn_not_const(sig.header.constness);
self.check_trait_fn_not_async(impl_item.span, sig.header.asyncness);
}
}
}
ItemKind::Impl(unsafety, polarity, defaultness, _, None, _, _) => {
self.invalid_visibility(&item.vis,
Some("place qualifiers on individual impl items instead"));
if unsafety == Unsafety::Unsafe {
span_err!(self.session, item.span, E0197, "inherent impls cannot be unsafe");
}
if polarity == ImplPolarity::Negative {
self.err_handler().span_err(item.span, "inherent impls cannot be negative");
}
if defaultness == Defaultness::Default {
self.err_handler()
.struct_span_err(item.span, "inherent impls cannot be default")
.note("only trait implementations may be annotated with default").emit();
}
}
ItemKind::ForeignMod(..) => {
self.invalid_visibility(
&item.vis,
Some("place qualifiers on individual foreign items instead"),
);
}
ItemKind::Enum(ref def, _) => {
for variant in &def.variants {
self.invalid_non_exhaustive_attribute(variant);
for field in variant.node.data.fields() {
self.invalid_visibility(&field.vis, None);
}
}
}
ItemKind::Trait(is_auto, _, ref generics, ref bounds, ref trait_items) => {
if is_auto == IsAuto::Yes {
// Auto traits cannot have generics, super traits nor contain items.
if !generics.params.is_empty() {
struct_span_err!(self.session, item.span, E0567,
"auto traits cannot have generic parameters").emit();
}
if !bounds.is_empty() {
struct_span_err!(self.session, item.span, E0568,
"auto traits cannot have super traits").emit();
}
if !trait_items.is_empty() {
struct_span_err!(self.session, item.span, E0380,
"auto traits cannot have methods or associated items").emit();
}
}
self.no_questions_in_bounds(bounds, "supertraits", true);
for trait_item in trait_items {
if let TraitItemKind::Method(ref sig, ref block) = trait_item.node {
self.check_trait_fn_not_async(trait_item.span, sig.header.asyncness);
self.check_trait_fn_not_const(sig.header.constness);
if block.is_none() {
self.check_decl_no_pat(&sig.decl, |span, mut_ident| {
if mut_ident {
self.session.buffer_lint(
lint::builtin::PATTERNS_IN_FNS_WITHOUT_BODY,
trait_item.id, span,
"patterns aren't allowed in methods without bodies");
} else {
struct_span_err!(self.session, span, E0642,
"patterns aren't allowed in methods without bodies").emit();
}
});
}
}
}
}
ItemKind::Mod(_) => {
// Ensure that `path` attributes on modules are recorded as used (cf. issue #35584).
attr::first_attr_value_str_by_name(&item.attrs, "path");
if attr::contains_name(&item.attrs, "warn_directory_ownership") {
let lint = lint::builtin::LEGACY_DIRECTORY_OWNERSHIP;
let msg = "cannot declare a new module at this location";
self.session.buffer_lint(lint, item.id, item.span, msg);
}
}
ItemKind::Union(ref vdata, _) => {
if !vdata.is_struct() {
self.err_handler().span_err(item.span,
"tuple and unit unions are not permitted");
}
if vdata.fields().is_empty() {
self.err_handler().span_err(item.span,
"unions cannot have zero fields");
}
}
_ => {}
}
visit::walk_item(self, item)
}
fn visit_foreign_item(&mut self, fi: &'a ForeignItem) {
match fi.node {
ForeignItemKind::Fn(ref decl, _) => {
self.check_decl_no_pat(decl, |span, _| {
struct_span_err!(self.session, span, E0130,
"patterns aren't allowed in foreign function declarations")
.span_label(span, "pattern not allowed in foreign function").emit();
});
}
ForeignItemKind::Static(..) | ForeignItemKind::Ty | ForeignItemKind::Macro(..) => {}
}
visit::walk_foreign_item(self, fi)
}
fn visit_generics(&mut self, generics: &'a Generics) {
let mut seen_non_lifetime_param = false;
let mut seen_default = None;
for param in &generics.params {
match (&param.kind, seen_non_lifetime_param) {
(GenericParamKind::Lifetime { .. }, true) => {
self.err_handler()
.span_err(param.ident.span, "lifetime parameters must be leading");
},
(GenericParamKind::Lifetime { .. }, false) => {}
(GenericParamKind::Type { ref default, .. }, _) => {
seen_non_lifetime_param = true;
if default.is_some() {
seen_default = Some(param.ident.span);
} else if let Some(span) = seen_default {
self.err_handler()
.span_err(span, "type parameters with a default must be trailing");
break;
}
}
}
}
for predicate in &generics.where_clause.predicates {
if let WherePredicate::EqPredicate(ref predicate) = *predicate {
self.err_handler()
.span_err(predicate.span, "equality constraints are not yet \
supported in where clauses (see #20041)");
}
}
visit::walk_generics(self, generics)
}
fn visit_generic_param(&mut self, param: &'a GenericParam) {
if let GenericParamKind::Lifetime { .. } = param.kind {
self.check_lifetime(param.ident);
}
visit::walk_generic_param(self, param);
}
fn visit_pat(&mut self, pat: &'a Pat) {
match pat.node {
PatKind::Lit(ref expr) => {
self.check_expr_within_pat(expr, false);
}
PatKind::Range(ref start, ref end, _) => {
self.check_expr_within_pat(start, true);
self.check_expr_within_pat(end, true);
}
_ => {}
}
visit::walk_pat(self, pat)
}
fn visit_where_predicate(&mut self, p: &'a WherePredicate) {
if let &WherePredicate::BoundPredicate(ref bound_predicate) = p {
// A type binding, eg `for<'c> Foo: Send+Clone+'c`
self.check_late_bound_lifetime_defs(&bound_predicate.bound_generic_params);
}
visit::walk_where_predicate(self, p);
}
fn visit_poly_trait_ref(&mut self, t: &'a PolyTraitRef, m: &'a TraitBoundModifier) {
self.check_late_bound_lifetime_defs(&t.bound_generic_params);
visit::walk_poly_trait_ref(self, t, m);
}
fn visit_mac(&mut self, mac: &Spanned<Mac_>) {
// when a new macro kind is added but the author forgets to set it up for expansion
// because that's the only part that won't cause a compiler error
self.session.diagnostic()
.span_bug(mac.span, "macro invocation missed in expansion; did you forget to override \
the relevant `fold_*()` method in `PlaceholderExpander`?");
}
}
// Bans nested `impl Trait`, e.g., `impl Into<impl Debug>`.
// Nested `impl Trait` _is_ allowed in associated type position,
// e.g `impl Iterator<Item=impl Debug>`
struct NestedImplTraitVisitor<'a> {
session: &'a Session,
outer_impl_trait: Option<Span>,
}
impl<'a> NestedImplTraitVisitor<'a> {
fn with_impl_trait<F>(&mut self, outer_impl_trait: Option<Span>, f: F)
where F: FnOnce(&mut NestedImplTraitVisitor<'a>)
{
let old_outer_impl_trait = self.outer_impl_trait;
self.outer_impl_trait = outer_impl_trait;
f(self);
self.outer_impl_trait = old_outer_impl_trait;
}
}
impl<'a> Visitor<'a> for NestedImplTraitVisitor<'a> {
fn visit_ty(&mut self, t: &'a Ty) {
if let TyKind::ImplTrait(..) = t.node {
if let Some(outer_impl_trait) = self.outer_impl_trait {
struct_span_err!(self.session, t.span, E0666,
"nested `impl Trait` is not allowed")
.span_label(outer_impl_trait, "outer `impl Trait`")
.span_label(t.span, "nested `impl Trait` here")
.emit();
}
self.with_impl_trait(Some(t.span), |this| visit::walk_ty(this, t));
} else {
visit::walk_ty(self, t);
}
}
fn visit_generic_args(&mut self, _: Span, generic_args: &'a GenericArgs) {
match *generic_args {
GenericArgs::AngleBracketed(ref data) => {
for arg in &data.args {
self.visit_generic_arg(arg)
}
for type_binding in &data.bindings {
// Type bindings such as `Item=impl Debug` in `Iterator<Item=Debug>`
// are allowed to contain nested `impl Trait`.
self.with_impl_trait(None, |this| visit::walk_ty(this, &type_binding.ty));
}
}
GenericArgs::Parenthesized(ref data) => {
for type_ in &data.inputs {
self.visit_ty(type_);
}
if let Some(ref type_) = data.output {
// `-> Foo` syntax is essentially an associated type binding,
// so it is also allowed to contain nested `impl Trait`.
self.with_impl_trait(None, |this| visit::walk_ty(this, type_));
}
}
}
}
fn visit_mac(&mut self, _mac: &Spanned<Mac_>) {
// covered in AstValidator
}
}
// Bans `impl Trait` in path projections like `<impl Iterator>::Item` or `Foo::Bar<impl Trait>`.
struct ImplTraitProjectionVisitor<'a> {
session: &'a Session,
is_banned: bool,
}
impl<'a> ImplTraitProjectionVisitor<'a> {
fn with_ban<F>(&mut self, f: F)
where F: FnOnce(&mut ImplTraitProjectionVisitor<'a>)
{
let old_is_banned = self.is_banned;
self.is_banned = true;
f(self);
self.is_banned = old_is_banned;
}
}
impl<'a> Visitor<'a> for ImplTraitProjectionVisitor<'a> {
fn visit_ty(&mut self, t: &'a Ty) {
match t.node {
TyKind::ImplTrait(..) => {
if self.is_banned {
struct_span_err!(self.session, t.span, E0667,
"`impl Trait` is not allowed in path parameters").emit();
}
}
TyKind::Path(ref qself, ref path) => {
// We allow these:
// - `Option<impl Trait>`
// - `option::Option<impl Trait>`
// - `option::Option<T>::Foo<impl Trait>
//
// But not these:
// - `<impl Trait>::Foo`
// - `option::Option<impl Trait>::Foo`.
//
// To implement this, we disallow `impl Trait` from `qself`
// (for cases like `<impl Trait>::Foo>`)
// but we allow `impl Trait` in `GenericArgs`
// iff there are no more PathSegments.
if let Some(ref qself) = *qself {
// `impl Trait` in `qself` is always illegal
self.with_ban(|this| this.visit_ty(&qself.ty));
}
for (i, segment) in path.segments.iter().enumerate() {
// Allow `impl Trait` iff we're on the final path segment
if i == path.segments.len() - 1 {
visit::walk_path_segment(self, path.span, segment);
} else {
self.with_ban(|this|
visit::walk_path_segment(this, path.span, segment));
}
}
}
_ => visit::walk_ty(self, t),
}
}
fn visit_mac(&mut self, _mac: &Spanned<Mac_>) {
// covered in AstValidator
}
}
pub fn check_crate(session: &Session, krate: &Crate) {
visit::walk_crate(
&mut NestedImplTraitVisitor {
session,
outer_impl_trait: None,
}, krate);
visit::walk_crate(
&mut ImplTraitProjectionVisitor {
session,
is_banned: false,
}, krate);
visit::walk_crate(&mut AstValidator { session }, krate)
}