blob: 642681a73a8a0a57c2f878efdffe9ce7b4bf78f7 [file] [log] [blame]
#![allow(non_snake_case)]
use rustc::hir::Node;
use rustc::ty::subst::Substs;
use rustc::ty::{self, AdtKind, ParamEnv, Ty, TyCtxt};
use rustc::ty::layout::{self, IntegerExt, LayoutOf, VariantIdx};
use rustc_data_structures::indexed_vec::Idx;
use util::nodemap::FxHashSet;
use lint::{LateContext, LintContext, LintArray};
use lint::{LintPass, LateLintPass};
use std::cmp;
use std::{i8, i16, i32, i64, u8, u16, u32, u64, f32, f64};
use syntax::{ast, attr};
use syntax::errors::Applicability;
use rustc_target::spec::abi::Abi;
use syntax::edition::Edition;
use syntax_pos::Span;
use syntax::source_map;
use rustc::hir;
declare_lint! {
UNUSED_COMPARISONS,
Warn,
"comparisons made useless by limits of the types involved"
}
declare_lint! {
OVERFLOWING_LITERALS,
Warn,
"literal out of range for its type",
Edition::Edition2018 => Deny
}
declare_lint! {
VARIANT_SIZE_DIFFERENCES,
Allow,
"detects enums with widely varying variant sizes"
}
#[derive(Copy, Clone)]
pub struct TypeLimits {
/// Id of the last visited negated expression
negated_expr_id: ast::NodeId,
}
impl TypeLimits {
pub fn new() -> TypeLimits {
TypeLimits { negated_expr_id: ast::DUMMY_NODE_ID }
}
}
impl LintPass for TypeLimits {
fn get_lints(&self) -> LintArray {
lint_array!(UNUSED_COMPARISONS,
OVERFLOWING_LITERALS)
}
}
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for TypeLimits {
fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, e: &'tcx hir::Expr) {
match e.node {
hir::ExprKind::Unary(hir::UnNeg, ref expr) => {
// propagate negation, if the negation itself isn't negated
if self.negated_expr_id != e.id {
self.negated_expr_id = expr.id;
}
}
hir::ExprKind::Binary(binop, ref l, ref r) => {
if is_comparison(binop) && !check_limits(cx, binop, &l, &r) {
cx.span_lint(UNUSED_COMPARISONS,
e.span,
"comparison is useless due to type limits");
}
}
hir::ExprKind::Lit(ref lit) => {
match cx.tables.node_id_to_type(e.hir_id).sty {
ty::Int(t) => {
match lit.node {
ast::LitKind::Int(v, ast::LitIntType::Signed(_)) |
ast::LitKind::Int(v, ast::LitIntType::Unsuffixed) => {
let int_type = if let ast::IntTy::Isize = t {
cx.sess().target.isize_ty
} else {
t
};
let (_, max) = int_ty_range(int_type);
let max = max as u128;
let negative = self.negated_expr_id == e.id;
// Detect literal value out of range [min, max] inclusive
// avoiding use of -min to prevent overflow/panic
if (negative && v > max + 1) || (!negative && v > max) {
if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
report_bin_hex_error(
cx,
e,
ty::Int(t),
repr_str,
v,
negative,
);
return;
}
cx.span_lint(
OVERFLOWING_LITERALS,
e.span,
&format!("literal out of range for {:?}", t),
);
return;
}
}
_ => bug!(),
};
}
ty::Uint(t) => {
let uint_type = if let ast::UintTy::Usize = t {
cx.sess().target.usize_ty
} else {
t
};
let (min, max) = uint_ty_range(uint_type);
let lit_val: u128 = match lit.node {
// _v is u8, within range by definition
ast::LitKind::Byte(_v) => return,
ast::LitKind::Int(v, _) => v,
_ => bug!(),
};
if lit_val < min || lit_val > max {
let parent_id = cx.tcx.hir().get_parent_node(e.id);
if let Node::Expr(parent_expr) = cx.tcx.hir().get(parent_id) {
if let hir::ExprKind::Cast(..) = parent_expr.node {
if let ty::Char = cx.tables.expr_ty(parent_expr).sty {
let mut err = cx.struct_span_lint(
OVERFLOWING_LITERALS,
parent_expr.span,
"only u8 can be cast into char");
err.span_suggestion_with_applicability(
parent_expr.span,
&"use a char literal instead",
format!("'\\u{{{:X}}}'", lit_val),
Applicability::MachineApplicable
);
err.emit();
return
}
}
}
if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
report_bin_hex_error(
cx,
e,
ty::Uint(t),
repr_str,
lit_val,
false,
);
return;
}
cx.span_lint(
OVERFLOWING_LITERALS,
e.span,
&format!("literal out of range for {:?}", t),
);
}
}
ty::Float(t) => {
let is_infinite = match lit.node {
ast::LitKind::Float(v, _) |
ast::LitKind::FloatUnsuffixed(v) => {
match t {
ast::FloatTy::F32 => v.as_str().parse().map(f32::is_infinite),
ast::FloatTy::F64 => v.as_str().parse().map(f64::is_infinite),
}
}
_ => bug!(),
};
if is_infinite == Ok(true) {
cx.span_lint(OVERFLOWING_LITERALS,
e.span,
&format!("literal out of range for {:?}", t));
}
}
_ => (),
};
}
_ => (),
};
fn is_valid<T: cmp::PartialOrd>(binop: hir::BinOp, v: T, min: T, max: T) -> bool {
match binop.node {
hir::BinOpKind::Lt => v > min && v <= max,
hir::BinOpKind::Le => v >= min && v < max,
hir::BinOpKind::Gt => v >= min && v < max,
hir::BinOpKind::Ge => v > min && v <= max,
hir::BinOpKind::Eq | hir::BinOpKind::Ne => v >= min && v <= max,
_ => bug!(),
}
}
fn rev_binop(binop: hir::BinOp) -> hir::BinOp {
source_map::respan(binop.span,
match binop.node {
hir::BinOpKind::Lt => hir::BinOpKind::Gt,
hir::BinOpKind::Le => hir::BinOpKind::Ge,
hir::BinOpKind::Gt => hir::BinOpKind::Lt,
hir::BinOpKind::Ge => hir::BinOpKind::Le,
_ => return binop,
})
}
// for isize & usize, be conservative with the warnings, so that the
// warnings are consistent between 32- and 64-bit platforms
fn int_ty_range(int_ty: ast::IntTy) -> (i128, i128) {
match int_ty {
ast::IntTy::Isize => (i64::min_value() as i128, i64::max_value() as i128),
ast::IntTy::I8 => (i8::min_value() as i64 as i128, i8::max_value() as i128),
ast::IntTy::I16 => (i16::min_value() as i64 as i128, i16::max_value() as i128),
ast::IntTy::I32 => (i32::min_value() as i64 as i128, i32::max_value() as i128),
ast::IntTy::I64 => (i64::min_value() as i128, i64::max_value() as i128),
ast::IntTy::I128 =>(i128::min_value() as i128, i128::max_value()),
}
}
fn uint_ty_range(uint_ty: ast::UintTy) -> (u128, u128) {
match uint_ty {
ast::UintTy::Usize => (u64::min_value() as u128, u64::max_value() as u128),
ast::UintTy::U8 => (u8::min_value() as u128, u8::max_value() as u128),
ast::UintTy::U16 => (u16::min_value() as u128, u16::max_value() as u128),
ast::UintTy::U32 => (u32::min_value() as u128, u32::max_value() as u128),
ast::UintTy::U64 => (u64::min_value() as u128, u64::max_value() as u128),
ast::UintTy::U128 => (u128::min_value(), u128::max_value()),
}
}
fn check_limits(cx: &LateContext,
binop: hir::BinOp,
l: &hir::Expr,
r: &hir::Expr)
-> bool {
let (lit, expr, swap) = match (&l.node, &r.node) {
(&hir::ExprKind::Lit(_), _) => (l, r, true),
(_, &hir::ExprKind::Lit(_)) => (r, l, false),
_ => return true,
};
// Normalize the binop so that the literal is always on the RHS in
// the comparison
let norm_binop = if swap { rev_binop(binop) } else { binop };
match cx.tables.node_id_to_type(expr.hir_id).sty {
ty::Int(int_ty) => {
let (min, max) = int_ty_range(int_ty);
let lit_val: i128 = match lit.node {
hir::ExprKind::Lit(ref li) => {
match li.node {
ast::LitKind::Int(v, ast::LitIntType::Signed(_)) |
ast::LitKind::Int(v, ast::LitIntType::Unsuffixed) => v as i128,
_ => return true
}
},
_ => bug!()
};
is_valid(norm_binop, lit_val, min, max)
}
ty::Uint(uint_ty) => {
let (min, max) :(u128, u128) = uint_ty_range(uint_ty);
let lit_val: u128 = match lit.node {
hir::ExprKind::Lit(ref li) => {
match li.node {
ast::LitKind::Int(v, _) => v,
_ => return true
}
},
_ => bug!()
};
is_valid(norm_binop, lit_val, min, max)
}
_ => true,
}
}
fn is_comparison(binop: hir::BinOp) -> bool {
match binop.node {
hir::BinOpKind::Eq |
hir::BinOpKind::Lt |
hir::BinOpKind::Le |
hir::BinOpKind::Ne |
hir::BinOpKind::Ge |
hir::BinOpKind::Gt => true,
_ => false,
}
}
fn get_bin_hex_repr(cx: &LateContext, lit: &ast::Lit) -> Option<String> {
let src = cx.sess().source_map().span_to_snippet(lit.span).ok()?;
let firstch = src.chars().next()?;
if firstch == '0' {
match src.chars().nth(1) {
Some('x') | Some('b') => return Some(src),
_ => return None,
}
}
None
}
// This function finds the next fitting type and generates a suggestion string.
// It searches for fitting types in the following way (`X < Y`):
// - `iX`: if literal fits in `uX` => `uX`, else => `iY`
// - `-iX` => `iY`
// - `uX` => `uY`
//
// No suggestion for: `isize`, `usize`.
fn get_type_suggestion<'a>(
t: &ty::TyKind,
val: u128,
negative: bool,
) -> Option<String> {
use syntax::ast::IntTy::*;
use syntax::ast::UintTy::*;
macro_rules! find_fit {
($ty:expr, $val:expr, $negative:expr,
$($type:ident => [$($utypes:expr),*] => [$($itypes:expr),*]),+) => {
{
let _neg = if negative { 1 } else { 0 };
match $ty {
$($type => {
$(if !negative && val <= uint_ty_range($utypes).1 {
return Some(format!("{:?}", $utypes))
})*
$(if val <= int_ty_range($itypes).1 as u128 + _neg {
return Some(format!("{:?}", $itypes))
})*
None
},)*
_ => None
}
}
}
}
match t {
&ty::Int(i) => find_fit!(i, val, negative,
I8 => [U8] => [I16, I32, I64, I128],
I16 => [U16] => [I32, I64, I128],
I32 => [U32] => [I64, I128],
I64 => [U64] => [I128],
I128 => [U128] => []),
&ty::Uint(u) => find_fit!(u, val, negative,
U8 => [U8, U16, U32, U64, U128] => [],
U16 => [U16, U32, U64, U128] => [],
U32 => [U32, U64, U128] => [],
U64 => [U64, U128] => [],
U128 => [U128] => []),
_ => None,
}
}
fn report_bin_hex_error(
cx: &LateContext,
expr: &hir::Expr,
ty: ty::TyKind,
repr_str: String,
val: u128,
negative: bool,
) {
let (t, actually) = match ty {
ty::Int(t) => {
let ity = attr::IntType::SignedInt(t);
let bits = layout::Integer::from_attr(&cx.tcx, ity).size().bits();
let actually = (val << (128 - bits)) as i128 >> (128 - bits);
(format!("{:?}", t), actually.to_string())
}
ty::Uint(t) => {
let ity = attr::IntType::UnsignedInt(t);
let bits = layout::Integer::from_attr(&cx.tcx, ity).size().bits();
let actually = (val << (128 - bits)) >> (128 - bits);
(format!("{:?}", t), actually.to_string())
}
_ => bug!(),
};
let mut err = cx.struct_span_lint(
OVERFLOWING_LITERALS,
expr.span,
&format!("literal out of range for {}", t),
);
err.note(&format!(
"the literal `{}` (decimal `{}`) does not fit into \
an `{}` and will become `{}{}`",
repr_str, val, t, actually, t
));
if let Some(sugg_ty) =
get_type_suggestion(&cx.tables.node_id_to_type(expr.hir_id).sty, val, negative)
{
if let Some(pos) = repr_str.chars().position(|c| c == 'i' || c == 'u') {
let (sans_suffix, _) = repr_str.split_at(pos);
err.span_suggestion_with_applicability(
expr.span,
&format!("consider using `{}` instead", sugg_ty),
format!("{}{}", sans_suffix, sugg_ty),
Applicability::MachineApplicable
);
} else {
err.help(&format!("consider using `{}` instead", sugg_ty));
}
}
err.emit();
}
}
}
declare_lint! {
IMPROPER_CTYPES,
Warn,
"proper use of libc types in foreign modules"
}
struct ImproperCTypesVisitor<'a, 'tcx: 'a> {
cx: &'a LateContext<'a, 'tcx>,
}
enum FfiResult<'tcx> {
FfiSafe,
FfiPhantom(Ty<'tcx>),
FfiUnsafe {
ty: Ty<'tcx>,
reason: &'static str,
help: Option<&'static str>,
},
}
/// Check if this enum can be safely exported based on the
/// "nullable pointer optimization". Currently restricted
/// to function pointers and references, but could be
/// expanded to cover NonZero raw pointers and newtypes.
/// FIXME: This duplicates code in codegen.
fn is_repr_nullable_ptr<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
def: &'tcx ty::AdtDef,
substs: &Substs<'tcx>)
-> bool {
if def.variants.len() == 2 {
let data_idx;
let zero = VariantIdx::new(0);
let one = VariantIdx::new(1);
if def.variants[zero].fields.is_empty() {
data_idx = one;
} else if def.variants[one].fields.is_empty() {
data_idx = zero;
} else {
return false;
}
if def.variants[data_idx].fields.len() == 1 {
match def.variants[data_idx].fields[0].ty(tcx, substs).sty {
ty::FnPtr(_) => {
return true;
}
ty::Ref(..) => {
return true;
}
_ => {}
}
}
}
false
}
impl<'a, 'tcx> ImproperCTypesVisitor<'a, 'tcx> {
/// Check if the given type is "ffi-safe" (has a stable, well-defined
/// representation which can be exported to C code).
fn check_type_for_ffi(&self,
cache: &mut FxHashSet<Ty<'tcx>>,
ty: Ty<'tcx>) -> FfiResult<'tcx> {
use self::FfiResult::*;
let cx = self.cx.tcx;
// Protect against infinite recursion, for example
// `struct S(*mut S);`.
// FIXME: A recursion limit is necessary as well, for irregular
// recursive types.
if !cache.insert(ty) {
return FfiSafe;
}
match ty.sty {
ty::Adt(def, substs) => {
if def.is_phantom_data() {
return FfiPhantom(ty);
}
match def.adt_kind() {
AdtKind::Struct => {
if !def.repr.c() && !def.repr.transparent() {
return FfiUnsafe {
ty: ty,
reason: "this struct has unspecified layout",
help: Some("consider adding a #[repr(C)] or #[repr(transparent)] \
attribute to this struct"),
};
}
if def.non_enum_variant().fields.is_empty() {
return FfiUnsafe {
ty: ty,
reason: "this struct has no fields",
help: Some("consider adding a member to this struct"),
};
}
// We can't completely trust repr(C) and repr(transparent) markings;
// make sure the fields are actually safe.
let mut all_phantom = true;
for field in &def.non_enum_variant().fields {
let field_ty = cx.normalize_erasing_regions(
ParamEnv::reveal_all(),
field.ty(cx, substs),
);
// repr(transparent) types are allowed to have arbitrary ZSTs, not just
// PhantomData -- skip checking all ZST fields
if def.repr.transparent() {
let is_zst = cx
.layout_of(cx.param_env(field.did).and(field_ty))
.map(|layout| layout.is_zst())
.unwrap_or(false);
if is_zst {
continue;
}
}
let r = self.check_type_for_ffi(cache, field_ty);
match r {
FfiSafe => {
all_phantom = false;
}
FfiPhantom(..) => {}
FfiUnsafe { .. } => {
return r;
}
}
}
if all_phantom { FfiPhantom(ty) } else { FfiSafe }
}
AdtKind::Union => {
if !def.repr.c() {
return FfiUnsafe {
ty: ty,
reason: "this union has unspecified layout",
help: Some("consider adding a #[repr(C)] attribute to this union"),
};
}
if def.non_enum_variant().fields.is_empty() {
return FfiUnsafe {
ty: ty,
reason: "this union has no fields",
help: Some("consider adding a field to this union"),
};
}
let mut all_phantom = true;
for field in &def.non_enum_variant().fields {
let field_ty = cx.normalize_erasing_regions(
ParamEnv::reveal_all(),
field.ty(cx, substs),
);
let r = self.check_type_for_ffi(cache, field_ty);
match r {
FfiSafe => {
all_phantom = false;
}
FfiPhantom(..) => {}
FfiUnsafe { .. } => {
return r;
}
}
}
if all_phantom { FfiPhantom(ty) } else { FfiSafe }
}
AdtKind::Enum => {
if def.variants.is_empty() {
// Empty enums are okay... although sort of useless.
return FfiSafe;
}
// Check for a repr() attribute to specify the size of the
// discriminant.
if !def.repr.c() && def.repr.int.is_none() {
// Special-case types like `Option<extern fn()>`.
if !is_repr_nullable_ptr(cx, def, substs) {
return FfiUnsafe {
ty: ty,
reason: "enum has no representation hint",
help: Some("consider adding a #[repr(...)] attribute \
to this enum"),
};
}
}
// Check the contained variants.
for variant in &def.variants {
for field in &variant.fields {
let arg = cx.normalize_erasing_regions(
ParamEnv::reveal_all(),
field.ty(cx, substs),
);
let r = self.check_type_for_ffi(cache, arg);
match r {
FfiSafe => {}
FfiUnsafe { .. } => {
return r;
}
FfiPhantom(..) => {
return FfiUnsafe {
ty: ty,
reason: "this enum contains a PhantomData field",
help: None,
};
}
}
}
}
FfiSafe
}
}
}
ty::Char => FfiUnsafe {
ty: ty,
reason: "the `char` type has no C equivalent",
help: Some("consider using `u32` or `libc::wchar_t` instead"),
},
ty::Int(ast::IntTy::I128) | ty::Uint(ast::UintTy::U128) => FfiUnsafe {
ty: ty,
reason: "128-bit integers don't currently have a known stable ABI",
help: None,
},
// Primitive types with a stable representation.
ty::Bool | ty::Int(..) | ty::Uint(..) | ty::Float(..) | ty::Never => FfiSafe,
ty::Slice(_) => FfiUnsafe {
ty: ty,
reason: "slices have no C equivalent",
help: Some("consider using a raw pointer instead"),
},
ty::Dynamic(..) => FfiUnsafe {
ty: ty,
reason: "trait objects have no C equivalent",
help: None,
},
ty::Str => FfiUnsafe {
ty: ty,
reason: "string slices have no C equivalent",
help: Some("consider using `*const u8` and a length instead"),
},
ty::Tuple(..) => FfiUnsafe {
ty: ty,
reason: "tuples have unspecified layout",
help: Some("consider using a struct instead"),
},
ty::RawPtr(ty::TypeAndMut { ty, .. }) |
ty::Ref(_, ty, _) => self.check_type_for_ffi(cache, ty),
ty::Array(ty, _) => self.check_type_for_ffi(cache, ty),
ty::FnPtr(sig) => {
match sig.abi() {
Abi::Rust | Abi::RustIntrinsic | Abi::PlatformIntrinsic | Abi::RustCall => {
return FfiUnsafe {
ty: ty,
reason: "this function pointer has Rust-specific calling convention",
help: Some("consider using an `extern fn(...) -> ...` \
function pointer instead"),
}
}
_ => {}
}
let sig = cx.erase_late_bound_regions(&sig);
if !sig.output().is_unit() {
let r = self.check_type_for_ffi(cache, sig.output());
match r {
FfiSafe => {}
_ => {
return r;
}
}
}
for arg in sig.inputs() {
let r = self.check_type_for_ffi(cache, arg);
match r {
FfiSafe => {}
_ => {
return r;
}
}
}
FfiSafe
}
ty::Foreign(..) => FfiSafe,
ty::Param(..) |
ty::Infer(..) |
ty::Bound(..) |
ty::Error |
ty::Closure(..) |
ty::Generator(..) |
ty::GeneratorWitness(..) |
ty::Placeholder(..) |
ty::UnnormalizedProjection(..) |
ty::Projection(..) |
ty::Opaque(..) |
ty::FnDef(..) => bug!("Unexpected type in foreign function"),
}
}
fn check_type_for_ffi_and_report_errors(&mut self, sp: Span, ty: Ty<'tcx>) {
// it is only OK to use this function because extern fns cannot have
// any generic types right now:
let ty = self.cx.tcx.normalize_erasing_regions(ParamEnv::reveal_all(), ty);
match self.check_type_for_ffi(&mut FxHashSet::default(), ty) {
FfiResult::FfiSafe => {}
FfiResult::FfiPhantom(ty) => {
self.cx.span_lint(IMPROPER_CTYPES,
sp,
&format!("`extern` block uses type `{}` which is not FFI-safe: \
composed only of PhantomData", ty));
}
FfiResult::FfiUnsafe { ty: unsafe_ty, reason, help } => {
let msg = format!("`extern` block uses type `{}` which is not FFI-safe: {}",
unsafe_ty, reason);
let mut diag = self.cx.struct_span_lint(IMPROPER_CTYPES, sp, &msg);
if let Some(s) = help {
diag.help(s);
}
if let ty::Adt(def, _) = unsafe_ty.sty {
if let Some(sp) = self.cx.tcx.hir().span_if_local(def.did) {
diag.span_note(sp, "type defined here");
}
}
diag.emit();
}
}
}
fn check_foreign_fn(&mut self, id: ast::NodeId, decl: &hir::FnDecl) {
let def_id = self.cx.tcx.hir().local_def_id(id);
let sig = self.cx.tcx.fn_sig(def_id);
let sig = self.cx.tcx.erase_late_bound_regions(&sig);
for (input_ty, input_hir) in sig.inputs().iter().zip(&decl.inputs) {
self.check_type_for_ffi_and_report_errors(input_hir.span, input_ty);
}
if let hir::Return(ref ret_hir) = decl.output {
let ret_ty = sig.output();
if !ret_ty.is_unit() {
self.check_type_for_ffi_and_report_errors(ret_hir.span, ret_ty);
}
}
}
fn check_foreign_static(&mut self, id: ast::NodeId, span: Span) {
let def_id = self.cx.tcx.hir().local_def_id(id);
let ty = self.cx.tcx.type_of(def_id);
self.check_type_for_ffi_and_report_errors(span, ty);
}
}
#[derive(Copy, Clone)]
pub struct ImproperCTypes;
impl LintPass for ImproperCTypes {
fn get_lints(&self) -> LintArray {
lint_array!(IMPROPER_CTYPES)
}
}
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for ImproperCTypes {
fn check_foreign_item(&mut self, cx: &LateContext, it: &hir::ForeignItem) {
let mut vis = ImproperCTypesVisitor { cx };
let abi = cx.tcx.hir().get_foreign_abi(it.id);
if abi != Abi::RustIntrinsic && abi != Abi::PlatformIntrinsic {
match it.node {
hir::ForeignItemKind::Fn(ref decl, _, _) => {
vis.check_foreign_fn(it.id, decl);
}
hir::ForeignItemKind::Static(ref ty, _) => {
vis.check_foreign_static(it.id, ty.span);
}
hir::ForeignItemKind::Type => ()
}
}
}
}
pub struct VariantSizeDifferences;
impl LintPass for VariantSizeDifferences {
fn get_lints(&self) -> LintArray {
lint_array!(VARIANT_SIZE_DIFFERENCES)
}
}
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for VariantSizeDifferences {
fn check_item(&mut self, cx: &LateContext, it: &hir::Item) {
if let hir::ItemKind::Enum(ref enum_definition, _) = it.node {
let item_def_id = cx.tcx.hir().local_def_id(it.id);
let t = cx.tcx.type_of(item_def_id);
let ty = cx.tcx.erase_regions(&t);
match cx.layout_of(ty) {
Ok(layout) => {
let variants = &layout.variants;
if let layout::Variants::Tagged { ref variants, ref tag, .. } = variants {
let discr_size = tag.value.size(&cx.tcx).bytes();
debug!("enum `{}` is {} bytes large with layout:\n{:#?}",
t, layout.size.bytes(), layout);
let (largest, slargest, largest_index) = enum_definition.variants
.iter()
.zip(variants)
.map(|(variant, variant_layout)| {
// Subtract the size of the enum discriminant.
let bytes = variant_layout.size.bytes().saturating_sub(discr_size);
debug!("- variant `{}` is {} bytes large",
variant.node.ident,
bytes);
bytes
})
.enumerate()
.fold((0, 0, 0), |(l, s, li), (idx, size)| if size > l {
(size, l, idx)
} else if size > s {
(l, size, li)
} else {
(l, s, li)
});
// We only warn if the largest variant is at least thrice as large as
// the second-largest.
if largest > slargest * 3 && slargest > 0 {
cx.span_lint(VARIANT_SIZE_DIFFERENCES,
enum_definition.variants[largest_index].span,
&format!("enum variant is more than three times \
larger ({} bytes) than the next largest",
largest));
}
}
}
Err(ty::layout::LayoutError::Unknown(_)) => return,
Err(err @ ty::layout::LayoutError::SizeOverflow(_)) => {
bug!("failed to get layout for `{}`: {}", t, err);
}
}
}
}
}