blob: 0245dfd333beebe82d1620798a761195c7f901b2 [file] [log] [blame]
//! Confirmation.
//!
//! Confirmation unifies the output type parameters of the trait
//! with the values found in the obligation, possibly yielding a
//! type error. See the [rustc dev guide] for more details.
//!
//! [rustc dev guide]:
//! https://rustc-dev-guide.rust-lang.org/traits/resolution.html#confirmation
use rustc_data_structures::stack::ensure_sufficient_stack;
use rustc_hir::lang_items::LangItem;
use rustc_infer::infer::LateBoundRegionConversionTime::HigherRankedType;
use rustc_infer::infer::{DefineOpaqueTypes, InferOk};
use rustc_middle::traits::SelectionOutputTypeParameterMismatch;
use rustc_middle::ty::{
self, Binder, GenericParamDefKind, InternalSubsts, SubstsRef, ToPolyTraitRef, ToPredicate,
TraitRef, Ty, TyCtxt, TypeVisitableExt,
};
use rustc_session::config::TraitSolver;
use rustc_span::def_id::DefId;
use crate::traits::project::{normalize_with_depth, normalize_with_depth_to};
use crate::traits::util::{self, closure_trait_ref_and_return_type};
use crate::traits::vtable::{
count_own_vtable_entries, prepare_vtable_segments, vtable_trait_first_method_offset,
VtblSegment,
};
use crate::traits::{
BuiltinDerivedObligation, ImplDerivedObligation, ImplDerivedObligationCause, ImplSource,
ImplSourceAutoImplData, ImplSourceBuiltinData, ImplSourceClosureData,
ImplSourceConstDestructData, ImplSourceFnPointerData, ImplSourceFutureData,
ImplSourceGeneratorData, ImplSourceObjectData, ImplSourceTraitAliasData,
ImplSourceTraitUpcastingData, ImplSourceUserDefinedData, Normalized, Obligation,
ObligationCause, OutputTypeParameterMismatch, PredicateObligation, Selection, SelectionError,
TraitNotObjectSafe, TraitObligation, Unimplemented,
};
use super::BuiltinImplConditions;
use super::SelectionCandidate::{self, *};
use super::SelectionContext;
use std::iter;
use std::ops::ControlFlow;
impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
#[instrument(level = "debug", skip(self))]
pub(super) fn confirm_candidate(
&mut self,
obligation: &TraitObligation<'tcx>,
candidate: SelectionCandidate<'tcx>,
) -> Result<Selection<'tcx>, SelectionError<'tcx>> {
let mut impl_src = match candidate {
BuiltinCandidate { has_nested } => {
let data = self.confirm_builtin_candidate(obligation, has_nested);
ImplSource::Builtin(data)
}
TransmutabilityCandidate => {
let data = self.confirm_transmutability_candidate(obligation)?;
ImplSource::Builtin(data)
}
ParamCandidate(param) => {
let obligations =
self.confirm_param_candidate(obligation, param.map_bound(|t| t.trait_ref));
ImplSource::Param(obligations, param.skip_binder().constness)
}
ImplCandidate(impl_def_id) => {
ImplSource::UserDefined(self.confirm_impl_candidate(obligation, impl_def_id))
}
AutoImplCandidate => {
let data = self.confirm_auto_impl_candidate(obligation);
ImplSource::AutoImpl(data)
}
ProjectionCandidate(idx, constness) => {
let obligations = self.confirm_projection_candidate(obligation, idx)?;
ImplSource::Param(obligations, constness)
}
ObjectCandidate(idx) => {
let data = self.confirm_object_candidate(obligation, idx)?;
ImplSource::Object(data)
}
ClosureCandidate { .. } => {
let vtable_closure = self.confirm_closure_candidate(obligation)?;
ImplSource::Closure(vtable_closure)
}
GeneratorCandidate => {
let vtable_generator = self.confirm_generator_candidate(obligation)?;
ImplSource::Generator(vtable_generator)
}
FutureCandidate => {
let vtable_future = self.confirm_future_candidate(obligation)?;
ImplSource::Future(vtable_future)
}
FnPointerCandidate { is_const } => {
let data = self.confirm_fn_pointer_candidate(obligation, is_const)?;
ImplSource::FnPointer(data)
}
TraitAliasCandidate => {
let data = self.confirm_trait_alias_candidate(obligation);
ImplSource::TraitAlias(data)
}
BuiltinObjectCandidate => {
// This indicates something like `Trait + Send: Send`. In this case, we know that
// this holds because that's what the object type is telling us, and there's really
// no additional obligations to prove and no types in particular to unify, etc.
ImplSource::Param(Vec::new(), ty::BoundConstness::NotConst)
}
BuiltinUnsizeCandidate => {
let data = self.confirm_builtin_unsize_candidate(obligation)?;
ImplSource::Builtin(data)
}
TraitUpcastingUnsizeCandidate(idx) => {
let data = self.confirm_trait_upcasting_unsize_candidate(obligation, idx)?;
ImplSource::TraitUpcasting(data)
}
ConstDestructCandidate(def_id) => {
let data = self.confirm_const_destruct_candidate(obligation, def_id)?;
ImplSource::ConstDestruct(data)
}
};
// The obligations returned by confirmation are recursively evaluated
// so we need to make sure they have the correct depth.
for subobligation in impl_src.borrow_nested_obligations_mut() {
subobligation.set_depth_from_parent(obligation.recursion_depth);
}
if !obligation.predicate.is_const_if_const() {
// normalize nested predicates according to parent predicate's constness.
impl_src = impl_src.map(|mut o| {
o.predicate = o.predicate.without_const(self.tcx());
o
});
}
Ok(impl_src)
}
fn confirm_projection_candidate(
&mut self,
obligation: &TraitObligation<'tcx>,
idx: usize,
) -> Result<Vec<PredicateObligation<'tcx>>, SelectionError<'tcx>> {
let tcx = self.tcx();
let trait_predicate = self.infcx.shallow_resolve(obligation.predicate);
let placeholder_trait_predicate =
self.infcx.instantiate_binder_with_placeholders(trait_predicate).trait_ref;
let placeholder_self_ty = placeholder_trait_predicate.self_ty();
let placeholder_trait_predicate = ty::Binder::dummy(placeholder_trait_predicate);
let (def_id, substs) = match *placeholder_self_ty.kind() {
// Excluding IATs here as they don't have meaningful item bounds.
ty::Alias(ty::Projection | ty::Opaque, ty::AliasTy { def_id, substs, .. }) => {
(def_id, substs)
}
_ => bug!("projection candidate for unexpected type: {:?}", placeholder_self_ty),
};
let candidate_predicate = tcx.item_bounds(def_id).map_bound(|i| i[idx]).subst(tcx, substs);
let candidate = candidate_predicate
.to_opt_poly_trait_pred()
.expect("projection candidate is not a trait predicate")
.map_bound(|t| t.trait_ref);
let mut obligations = Vec::new();
let candidate = normalize_with_depth_to(
self,
obligation.param_env,
obligation.cause.clone(),
obligation.recursion_depth + 1,
candidate,
&mut obligations,
);
obligations.extend(self.infcx.commit_if_ok(|_| {
self.infcx
.at(&obligation.cause, obligation.param_env)
.sup(DefineOpaqueTypes::No, placeholder_trait_predicate, candidate)
.map(|InferOk { obligations, .. }| obligations)
.map_err(|_| Unimplemented)
})?);
if let ty::Alias(ty::Projection, ..) = placeholder_self_ty.kind() {
let predicates = tcx.predicates_of(def_id).instantiate_own(tcx, substs);
for (predicate, _) in predicates {
let normalized = normalize_with_depth_to(
self,
obligation.param_env,
obligation.cause.clone(),
obligation.recursion_depth + 1,
predicate,
&mut obligations,
);
obligations.push(Obligation::with_depth(
self.tcx(),
obligation.cause.clone(),
obligation.recursion_depth + 1,
obligation.param_env,
normalized,
));
}
}
Ok(obligations)
}
fn confirm_param_candidate(
&mut self,
obligation: &TraitObligation<'tcx>,
param: ty::PolyTraitRef<'tcx>,
) -> Vec<PredicateObligation<'tcx>> {
debug!(?obligation, ?param, "confirm_param_candidate");
// During evaluation, we already checked that this
// where-clause trait-ref could be unified with the obligation
// trait-ref. Repeat that unification now without any
// transactional boundary; it should not fail.
match self.match_where_clause_trait_ref(obligation, param) {
Ok(obligations) => obligations,
Err(()) => {
bug!(
"Where clause `{:?}` was applicable to `{:?}` but now is not",
param,
obligation
);
}
}
}
fn confirm_builtin_candidate(
&mut self,
obligation: &TraitObligation<'tcx>,
has_nested: bool,
) -> ImplSourceBuiltinData<PredicateObligation<'tcx>> {
debug!(?obligation, ?has_nested, "confirm_builtin_candidate");
let lang_items = self.tcx().lang_items();
let obligations = if has_nested {
let trait_def = obligation.predicate.def_id();
let conditions = if Some(trait_def) == lang_items.sized_trait() {
self.sized_conditions(obligation)
} else if Some(trait_def) == lang_items.copy_trait() {
self.copy_clone_conditions(obligation)
} else if Some(trait_def) == lang_items.clone_trait() {
self.copy_clone_conditions(obligation)
} else {
bug!("unexpected builtin trait {:?}", trait_def)
};
let BuiltinImplConditions::Where(nested) = conditions else {
bug!("obligation {:?} had matched a builtin impl but now doesn't", obligation);
};
let cause = obligation.derived_cause(BuiltinDerivedObligation);
self.collect_predicates_for_types(
obligation.param_env,
cause,
obligation.recursion_depth + 1,
trait_def,
nested,
)
} else {
vec![]
};
debug!(?obligations);
ImplSourceBuiltinData { nested: obligations }
}
fn confirm_transmutability_candidate(
&mut self,
obligation: &TraitObligation<'tcx>,
) -> Result<ImplSourceBuiltinData<PredicateObligation<'tcx>>, SelectionError<'tcx>> {
debug!(?obligation, "confirm_transmutability_candidate");
// We erase regions here because transmutability calls layout queries,
// which does not handle inference regions and doesn't particularly
// care about other regions. Erasing late-bound regions is equivalent
// to instantiating the binder with placeholders then erasing those
// placeholder regions.
let predicate =
self.tcx().erase_regions(self.tcx().erase_late_bound_regions(obligation.predicate));
let Some(assume) = rustc_transmute::Assume::from_const(
self.infcx.tcx,
obligation.param_env,
predicate.trait_ref.substs.const_at(3)
) else {
return Err(Unimplemented);
};
let mut transmute_env = rustc_transmute::TransmuteTypeEnv::new(self.infcx);
let maybe_transmutable = transmute_env.is_transmutable(
obligation.cause.clone(),
rustc_transmute::Types {
dst: predicate.trait_ref.substs.type_at(0),
src: predicate.trait_ref.substs.type_at(1),
},
predicate.trait_ref.substs.type_at(2),
assume,
);
match maybe_transmutable {
rustc_transmute::Answer::Yes => Ok(ImplSourceBuiltinData { nested: vec![] }),
_ => Err(Unimplemented),
}
}
/// This handles the case where an `auto trait Foo` impl is being used.
/// The idea is that the impl applies to `X : Foo` if the following conditions are met:
///
/// 1. For each constituent type `Y` in `X`, `Y : Foo` holds
/// 2. For each where-clause `C` declared on `Foo`, `[Self => X] C` holds.
fn confirm_auto_impl_candidate(
&mut self,
obligation: &TraitObligation<'tcx>,
) -> ImplSourceAutoImplData<PredicateObligation<'tcx>> {
debug!(?obligation, "confirm_auto_impl_candidate");
let self_ty = self.infcx.shallow_resolve(obligation.predicate.self_ty());
let types = self.constituent_types_for_ty(self_ty);
self.vtable_auto_impl(obligation, obligation.predicate.def_id(), types)
}
/// See `confirm_auto_impl_candidate`.
fn vtable_auto_impl(
&mut self,
obligation: &TraitObligation<'tcx>,
trait_def_id: DefId,
nested: ty::Binder<'tcx, Vec<Ty<'tcx>>>,
) -> ImplSourceAutoImplData<PredicateObligation<'tcx>> {
debug!(?nested, "vtable_auto_impl");
ensure_sufficient_stack(|| {
let cause = obligation.derived_cause(BuiltinDerivedObligation);
let poly_trait_ref = obligation.predicate.to_poly_trait_ref();
let trait_ref = self.infcx.instantiate_binder_with_placeholders(poly_trait_ref);
let trait_obligations: Vec<PredicateObligation<'_>> = self.impl_or_trait_obligations(
&cause,
obligation.recursion_depth + 1,
obligation.param_env,
trait_def_id,
&trait_ref.substs,
obligation.predicate,
);
let mut obligations = self.collect_predicates_for_types(
obligation.param_env,
cause,
obligation.recursion_depth + 1,
trait_def_id,
nested,
);
// Adds the predicates from the trait. Note that this contains a `Self: Trait`
// predicate as usual. It won't have any effect since auto traits are coinductive.
obligations.extend(trait_obligations);
debug!(?obligations, "vtable_auto_impl");
ImplSourceAutoImplData { trait_def_id, nested: obligations }
})
}
fn confirm_impl_candidate(
&mut self,
obligation: &TraitObligation<'tcx>,
impl_def_id: DefId,
) -> ImplSourceUserDefinedData<'tcx, PredicateObligation<'tcx>> {
debug!(?obligation, ?impl_def_id, "confirm_impl_candidate");
// First, create the substitutions by matching the impl again,
// this time not in a probe.
let substs = self.rematch_impl(impl_def_id, obligation);
debug!(?substs, "impl substs");
ensure_sufficient_stack(|| {
self.vtable_impl(
impl_def_id,
substs,
&obligation.cause,
obligation.recursion_depth + 1,
obligation.param_env,
obligation.predicate,
)
})
}
fn vtable_impl(
&mut self,
impl_def_id: DefId,
substs: Normalized<'tcx, SubstsRef<'tcx>>,
cause: &ObligationCause<'tcx>,
recursion_depth: usize,
param_env: ty::ParamEnv<'tcx>,
parent_trait_pred: ty::Binder<'tcx, ty::TraitPredicate<'tcx>>,
) -> ImplSourceUserDefinedData<'tcx, PredicateObligation<'tcx>> {
debug!(?impl_def_id, ?substs, ?recursion_depth, "vtable_impl");
let mut impl_obligations = self.impl_or_trait_obligations(
cause,
recursion_depth,
param_env,
impl_def_id,
&substs.value,
parent_trait_pred,
);
debug!(?impl_obligations, "vtable_impl");
// Because of RFC447, the impl-trait-ref and obligations
// are sufficient to determine the impl substs, without
// relying on projections in the impl-trait-ref.
//
// e.g., `impl<U: Tr, V: Iterator<Item=U>> Foo<<U as Tr>::T> for V`
impl_obligations.extend(substs.obligations);
ImplSourceUserDefinedData { impl_def_id, substs: substs.value, nested: impl_obligations }
}
fn confirm_object_candidate(
&mut self,
obligation: &TraitObligation<'tcx>,
index: usize,
) -> Result<ImplSourceObjectData<'tcx, PredicateObligation<'tcx>>, SelectionError<'tcx>> {
let tcx = self.tcx();
debug!(?obligation, ?index, "confirm_object_candidate");
let trait_predicate = self.infcx.instantiate_binder_with_placeholders(obligation.predicate);
let self_ty = self.infcx.shallow_resolve(trait_predicate.self_ty());
let obligation_trait_ref = ty::Binder::dummy(trait_predicate.trait_ref);
let ty::Dynamic(data, ..) = *self_ty.kind() else {
span_bug!(obligation.cause.span, "object candidate with non-object");
};
let object_trait_ref = data.principal().unwrap_or_else(|| {
span_bug!(obligation.cause.span, "object candidate with no principal")
});
let object_trait_ref = self.infcx.instantiate_binder_with_fresh_vars(
obligation.cause.span,
HigherRankedType,
object_trait_ref,
);
let object_trait_ref = object_trait_ref.with_self_ty(self.tcx(), self_ty);
let mut nested = vec![];
let mut supertraits = util::supertraits(tcx, ty::Binder::dummy(object_trait_ref));
let unnormalized_upcast_trait_ref =
supertraits.nth(index).expect("supertraits iterator no longer has as many elements");
let upcast_trait_ref = normalize_with_depth_to(
self,
obligation.param_env,
obligation.cause.clone(),
obligation.recursion_depth + 1,
unnormalized_upcast_trait_ref,
&mut nested,
);
nested.extend(self.infcx.commit_if_ok(|_| {
self.infcx
.at(&obligation.cause, obligation.param_env)
.sup(DefineOpaqueTypes::No, obligation_trait_ref, upcast_trait_ref)
.map(|InferOk { obligations, .. }| obligations)
.map_err(|_| Unimplemented)
})?);
// Check supertraits hold. This is so that their associated type bounds
// will be checked in the code below.
for super_trait in tcx
.super_predicates_of(trait_predicate.def_id())
.instantiate(tcx, trait_predicate.trait_ref.substs)
.predicates
.into_iter()
{
let normalized_super_trait = normalize_with_depth_to(
self,
obligation.param_env,
obligation.cause.clone(),
obligation.recursion_depth + 1,
super_trait,
&mut nested,
);
nested.push(obligation.with(tcx, normalized_super_trait));
}
let assoc_types: Vec<_> = tcx
.associated_items(trait_predicate.def_id())
.in_definition_order()
.filter_map(
|item| if item.kind == ty::AssocKind::Type { Some(item.def_id) } else { None },
)
.collect();
for assoc_type in assoc_types {
let defs: &ty::Generics = tcx.generics_of(assoc_type);
if !defs.params.is_empty() && !tcx.features().generic_associated_types_extended {
tcx.sess.delay_span_bug(
obligation.cause.span,
"GATs in trait object shouldn't have been considered",
);
return Err(SelectionError::Unimplemented);
}
// This maybe belongs in wf, but that can't (doesn't) handle
// higher-ranked things.
// Prevent, e.g., `dyn Iterator<Item = str>`.
for bound in self.tcx().item_bounds(assoc_type).transpose_iter() {
let subst_bound =
if defs.count() == 0 {
bound.subst(tcx, trait_predicate.trait_ref.substs)
} else {
let mut substs = smallvec::SmallVec::with_capacity(defs.count());
substs.extend(trait_predicate.trait_ref.substs.iter());
let mut bound_vars: smallvec::SmallVec<[ty::BoundVariableKind; 8]> =
smallvec::SmallVec::with_capacity(
bound.skip_binder().kind().bound_vars().len() + defs.count(),
);
bound_vars.extend(bound.skip_binder().kind().bound_vars().into_iter());
InternalSubsts::fill_single(&mut substs, defs, &mut |param, _| match param
.kind
{
GenericParamDefKind::Type { .. } => {
let kind = ty::BoundTyKind::Param(param.def_id, param.name);
let bound_var = ty::BoundVariableKind::Ty(kind);
bound_vars.push(bound_var);
tcx.mk_bound(
ty::INNERMOST,
ty::BoundTy {
var: ty::BoundVar::from_usize(bound_vars.len() - 1),
kind,
},
)
.into()
}
GenericParamDefKind::Lifetime => {
let kind = ty::BoundRegionKind::BrNamed(param.def_id, param.name);
let bound_var = ty::BoundVariableKind::Region(kind);
bound_vars.push(bound_var);
tcx.mk_re_late_bound(
ty::INNERMOST,
ty::BoundRegion {
var: ty::BoundVar::from_usize(bound_vars.len() - 1),
kind,
},
)
.into()
}
GenericParamDefKind::Const { .. } => {
let bound_var = ty::BoundVariableKind::Const;
bound_vars.push(bound_var);
tcx.mk_const(
ty::ConstKind::Bound(
ty::INNERMOST,
ty::BoundVar::from_usize(bound_vars.len() - 1),
),
tcx.type_of(param.def_id)
.no_bound_vars()
.expect("const parameter types cannot be generic"),
)
.into()
}
});
let bound_vars = tcx.mk_bound_variable_kinds(&bound_vars);
let assoc_ty_substs = tcx.mk_substs(&substs);
let bound =
bound.map_bound(|b| b.kind().skip_binder()).subst(tcx, assoc_ty_substs);
tcx.mk_predicate(ty::Binder::bind_with_vars(bound, bound_vars))
};
let normalized_bound = normalize_with_depth_to(
self,
obligation.param_env,
obligation.cause.clone(),
obligation.recursion_depth + 1,
subst_bound,
&mut nested,
);
nested.push(obligation.with(tcx, normalized_bound));
}
}
debug!(?nested, "object nested obligations");
let vtable_base = vtable_trait_first_method_offset(
tcx,
(unnormalized_upcast_trait_ref, ty::Binder::dummy(object_trait_ref)),
);
Ok(ImplSourceObjectData { upcast_trait_ref, vtable_base, nested })
}
fn confirm_fn_pointer_candidate(
&mut self,
obligation: &TraitObligation<'tcx>,
is_const: bool,
) -> Result<ImplSourceFnPointerData<'tcx, PredicateObligation<'tcx>>, SelectionError<'tcx>>
{
debug!(?obligation, "confirm_fn_pointer_candidate");
let tcx = self.tcx();
let Some(self_ty) = self
.infcx
.shallow_resolve(obligation.self_ty().no_bound_vars()) else
{
// FIXME: Ideally we'd support `for<'a> fn(&'a ()): Fn(&'a ())`,
// but we do not currently. Luckily, such a bound is not
// particularly useful, so we don't expect users to write
// them often.
return Err(SelectionError::Unimplemented);
};
let sig = self_ty.fn_sig(tcx);
let trait_ref = closure_trait_ref_and_return_type(
tcx,
obligation.predicate.def_id(),
self_ty,
sig,
util::TupleArgumentsFlag::Yes,
)
.map_bound(|(trait_ref, _)| trait_ref);
let mut nested = self.confirm_poly_trait_refs(obligation, trait_ref)?;
let cause = obligation.derived_cause(BuiltinDerivedObligation);
if obligation.is_const() && !is_const {
// function is a trait method
if let ty::FnDef(def_id, substs) = self_ty.kind() && let Some(trait_id) = tcx.trait_of_item(*def_id) {
let trait_ref = TraitRef::from_method(tcx, trait_id, *substs);
let poly_trait_pred = Binder::dummy(trait_ref).with_constness(ty::BoundConstness::ConstIfConst);
let obligation = Obligation::new(tcx, cause.clone(), obligation.param_env, poly_trait_pred);
nested.push(obligation);
}
}
// Confirm the `type Output: Sized;` bound that is present on `FnOnce`
let output_ty = self.infcx.instantiate_binder_with_placeholders(sig.output());
let output_ty = normalize_with_depth_to(
self,
obligation.param_env,
cause.clone(),
obligation.recursion_depth,
output_ty,
&mut nested,
);
let tr = ty::TraitRef::from_lang_item(self.tcx(), LangItem::Sized, cause.span, [output_ty]);
nested.push(Obligation::new(self.infcx.tcx, cause, obligation.param_env, tr));
Ok(ImplSourceFnPointerData { fn_ty: self_ty, nested })
}
fn confirm_trait_alias_candidate(
&mut self,
obligation: &TraitObligation<'tcx>,
) -> ImplSourceTraitAliasData<'tcx, PredicateObligation<'tcx>> {
debug!(?obligation, "confirm_trait_alias_candidate");
let alias_def_id = obligation.predicate.def_id();
let predicate = self.infcx.instantiate_binder_with_placeholders(obligation.predicate);
let trait_ref = predicate.trait_ref;
let trait_def_id = trait_ref.def_id;
let substs = trait_ref.substs;
let trait_obligations = self.impl_or_trait_obligations(
&obligation.cause,
obligation.recursion_depth,
obligation.param_env,
trait_def_id,
&substs,
obligation.predicate,
);
debug!(?trait_def_id, ?trait_obligations, "trait alias obligations");
ImplSourceTraitAliasData { alias_def_id, substs, nested: trait_obligations }
}
fn confirm_generator_candidate(
&mut self,
obligation: &TraitObligation<'tcx>,
) -> Result<ImplSourceGeneratorData<'tcx, PredicateObligation<'tcx>>, SelectionError<'tcx>>
{
// Okay to skip binder because the substs on generator types never
// touch bound regions, they just capture the in-scope
// type/region parameters.
let self_ty = self.infcx.shallow_resolve(obligation.self_ty().skip_binder());
let ty::Generator(generator_def_id, substs, _) = *self_ty.kind() else {
bug!("closure candidate for non-closure {:?}", obligation);
};
debug!(?obligation, ?generator_def_id, ?substs, "confirm_generator_candidate");
let gen_sig = substs.as_generator().poly_sig();
// NOTE: The self-type is a generator type and hence is
// in fact unparameterized (or at least does not reference any
// regions bound in the obligation).
let self_ty = obligation
.predicate
.self_ty()
.no_bound_vars()
.expect("unboxed closure type should not capture bound vars from the predicate");
let trait_ref = super::util::generator_trait_ref_and_outputs(
self.tcx(),
obligation.predicate.def_id(),
self_ty,
gen_sig,
)
.map_bound(|(trait_ref, ..)| trait_ref);
let nested = self.confirm_poly_trait_refs(obligation, trait_ref)?;
debug!(?trait_ref, ?nested, "generator candidate obligations");
Ok(ImplSourceGeneratorData { generator_def_id, substs, nested })
}
fn confirm_future_candidate(
&mut self,
obligation: &TraitObligation<'tcx>,
) -> Result<ImplSourceFutureData<'tcx, PredicateObligation<'tcx>>, SelectionError<'tcx>> {
// Okay to skip binder because the substs on generator types never
// touch bound regions, they just capture the in-scope
// type/region parameters.
let self_ty = self.infcx.shallow_resolve(obligation.self_ty().skip_binder());
let ty::Generator(generator_def_id, substs, _) = *self_ty.kind() else {
bug!("closure candidate for non-closure {:?}", obligation);
};
debug!(?obligation, ?generator_def_id, ?substs, "confirm_future_candidate");
let gen_sig = substs.as_generator().poly_sig();
let trait_ref = super::util::future_trait_ref_and_outputs(
self.tcx(),
obligation.predicate.def_id(),
obligation.predicate.no_bound_vars().expect("future has no bound vars").self_ty(),
gen_sig,
)
.map_bound(|(trait_ref, ..)| trait_ref);
let nested = self.confirm_poly_trait_refs(obligation, trait_ref)?;
debug!(?trait_ref, ?nested, "future candidate obligations");
Ok(ImplSourceFutureData { generator_def_id, substs, nested })
}
#[instrument(skip(self), level = "debug")]
fn confirm_closure_candidate(
&mut self,
obligation: &TraitObligation<'tcx>,
) -> Result<ImplSourceClosureData<'tcx, PredicateObligation<'tcx>>, SelectionError<'tcx>> {
let kind = self
.tcx()
.fn_trait_kind_from_def_id(obligation.predicate.def_id())
.unwrap_or_else(|| bug!("closure candidate for non-fn trait {:?}", obligation));
// Okay to skip binder because the substs on closure types never
// touch bound regions, they just capture the in-scope
// type/region parameters.
let self_ty = self.infcx.shallow_resolve(obligation.self_ty().skip_binder());
let ty::Closure(closure_def_id, substs) = *self_ty.kind() else {
bug!("closure candidate for non-closure {:?}", obligation);
};
let trait_ref = self.closure_trait_ref_unnormalized(obligation, substs);
let mut nested = self.confirm_poly_trait_refs(obligation, trait_ref)?;
debug!(?closure_def_id, ?trait_ref, ?nested, "confirm closure candidate obligations");
// FIXME: Chalk
if self.tcx().sess.opts.unstable_opts.trait_solver != TraitSolver::Chalk {
nested.push(obligation.with(
self.tcx(),
ty::Binder::dummy(ty::PredicateKind::ClosureKind(closure_def_id, substs, kind)),
));
}
Ok(ImplSourceClosureData { closure_def_id, substs, nested })
}
/// In the case of closure types and fn pointers,
/// we currently treat the input type parameters on the trait as
/// outputs. This means that when we have a match we have only
/// considered the self type, so we have to go back and make sure
/// to relate the argument types too. This is kind of wrong, but
/// since we control the full set of impls, also not that wrong,
/// and it DOES yield better error messages (since we don't report
/// errors as if there is no applicable impl, but rather report
/// errors are about mismatched argument types.
///
/// Here is an example. Imagine we have a closure expression
/// and we desugared it so that the type of the expression is
/// `Closure`, and `Closure` expects `i32` as argument. Then it
/// is "as if" the compiler generated this impl:
/// ```ignore (illustrative)
/// impl Fn(i32) for Closure { ... }
/// ```
/// Now imagine our obligation is `Closure: Fn(usize)`. So far
/// we have matched the self type `Closure`. At this point we'll
/// compare the `i32` to `usize` and generate an error.
///
/// Note that this checking occurs *after* the impl has selected,
/// because these output type parameters should not affect the
/// selection of the impl. Therefore, if there is a mismatch, we
/// report an error to the user.
#[instrument(skip(self), level = "trace")]
fn confirm_poly_trait_refs(
&mut self,
obligation: &TraitObligation<'tcx>,
self_ty_trait_ref: ty::PolyTraitRef<'tcx>,
) -> Result<Vec<PredicateObligation<'tcx>>, SelectionError<'tcx>> {
let obligation_trait_ref = obligation.predicate.to_poly_trait_ref();
// Normalize the obligation and expected trait refs together, because why not
let Normalized { obligations: nested, value: (obligation_trait_ref, expected_trait_ref) } =
ensure_sufficient_stack(|| {
normalize_with_depth(
self,
obligation.param_env,
obligation.cause.clone(),
obligation.recursion_depth + 1,
(obligation_trait_ref, self_ty_trait_ref),
)
});
// needed to define opaque types for tests/ui/type-alias-impl-trait/assoc-projection-ice.rs
self.infcx
.at(&obligation.cause, obligation.param_env)
.sup(DefineOpaqueTypes::Yes, obligation_trait_ref, expected_trait_ref)
.map(|InferOk { mut obligations, .. }| {
obligations.extend(nested);
obligations
})
.map_err(|terr| {
OutputTypeParameterMismatch(Box::new(SelectionOutputTypeParameterMismatch {
expected_trait_ref: obligation_trait_ref,
found_trait_ref: expected_trait_ref,
terr,
}))
})
}
fn confirm_trait_upcasting_unsize_candidate(
&mut self,
obligation: &TraitObligation<'tcx>,
idx: usize,
) -> Result<ImplSourceTraitUpcastingData<'tcx, PredicateObligation<'tcx>>, SelectionError<'tcx>>
{
let tcx = self.tcx();
// `assemble_candidates_for_unsizing` should ensure there are no late-bound
// regions here. See the comment there for more details.
let source = self.infcx.shallow_resolve(obligation.self_ty().no_bound_vars().unwrap());
let target = obligation.predicate.skip_binder().trait_ref.substs.type_at(1);
let target = self.infcx.shallow_resolve(target);
debug!(?source, ?target, "confirm_trait_upcasting_unsize_candidate");
let mut nested = vec![];
let source_trait_ref;
let upcast_trait_ref;
match (source.kind(), target.kind()) {
// TraitA+Kx+'a -> TraitB+Ky+'b (trait upcasting coercion).
(
&ty::Dynamic(ref data_a, r_a, repr_a @ ty::Dyn),
&ty::Dynamic(ref data_b, r_b, ty::Dyn),
) => {
// See `assemble_candidates_for_unsizing` for more info.
// We already checked the compatibility of auto traits within `assemble_candidates_for_unsizing`.
let principal_a = data_a.principal().unwrap();
source_trait_ref = principal_a.with_self_ty(tcx, source);
upcast_trait_ref = util::supertraits(tcx, source_trait_ref).nth(idx).unwrap();
assert_eq!(data_b.principal_def_id(), Some(upcast_trait_ref.def_id()));
let existential_predicate = upcast_trait_ref.map_bound(|trait_ref| {
ty::ExistentialPredicate::Trait(ty::ExistentialTraitRef::erase_self_ty(
tcx, trait_ref,
))
});
let iter = Some(existential_predicate)
.into_iter()
.chain(
data_a
.projection_bounds()
.map(|b| b.map_bound(ty::ExistentialPredicate::Projection)),
)
.chain(
data_b
.auto_traits()
.map(ty::ExistentialPredicate::AutoTrait)
.map(ty::Binder::dummy),
);
let existential_predicates = tcx.mk_poly_existential_predicates_from_iter(iter);
let source_trait = tcx.mk_dynamic(existential_predicates, r_b, repr_a);
// Require that the traits involved in this upcast are **equal**;
// only the **lifetime bound** is changed.
let InferOk { obligations, .. } = self
.infcx
.at(&obligation.cause, obligation.param_env)
.sup(DefineOpaqueTypes::No, target, source_trait)
.map_err(|_| Unimplemented)?;
nested.extend(obligations);
let outlives = ty::OutlivesPredicate(r_a, r_b);
nested.push(Obligation::with_depth(
tcx,
obligation.cause.clone(),
obligation.recursion_depth + 1,
obligation.param_env,
obligation.predicate.rebind(outlives),
));
}
_ => bug!(),
};
let vtable_segment_callback = {
let mut vptr_offset = 0;
move |segment| {
match segment {
VtblSegment::MetadataDSA => {
vptr_offset += TyCtxt::COMMON_VTABLE_ENTRIES.len();
}
VtblSegment::TraitOwnEntries { trait_ref, emit_vptr } => {
vptr_offset += count_own_vtable_entries(tcx, trait_ref);
if trait_ref == upcast_trait_ref {
if emit_vptr {
return ControlFlow::Break(Some(vptr_offset));
} else {
return ControlFlow::Break(None);
}
}
if emit_vptr {
vptr_offset += 1;
}
}
}
ControlFlow::Continue(())
}
};
let vtable_vptr_slot =
prepare_vtable_segments(tcx, source_trait_ref, vtable_segment_callback).unwrap();
Ok(ImplSourceTraitUpcastingData { upcast_trait_ref, vtable_vptr_slot, nested })
}
fn confirm_builtin_unsize_candidate(
&mut self,
obligation: &TraitObligation<'tcx>,
) -> Result<ImplSourceBuiltinData<PredicateObligation<'tcx>>, SelectionError<'tcx>> {
let tcx = self.tcx();
// `assemble_candidates_for_unsizing` should ensure there are no late-bound
// regions here. See the comment there for more details.
let source = self.infcx.shallow_resolve(obligation.self_ty().no_bound_vars().unwrap());
let target = obligation.predicate.skip_binder().trait_ref.substs.type_at(1);
let target = self.infcx.shallow_resolve(target);
debug!(?source, ?target, "confirm_builtin_unsize_candidate");
let mut nested = vec![];
match (source.kind(), target.kind()) {
// Trait+Kx+'a -> Trait+Ky+'b (auto traits and lifetime subtyping).
(&ty::Dynamic(ref data_a, r_a, dyn_a), &ty::Dynamic(ref data_b, r_b, dyn_b))
if dyn_a == dyn_b =>
{
// See `assemble_candidates_for_unsizing` for more info.
// We already checked the compatibility of auto traits within `assemble_candidates_for_unsizing`.
let iter = data_a
.principal()
.map(|b| b.map_bound(ty::ExistentialPredicate::Trait))
.into_iter()
.chain(
data_a
.projection_bounds()
.map(|b| b.map_bound(ty::ExistentialPredicate::Projection)),
)
.chain(
data_b
.auto_traits()
.map(ty::ExistentialPredicate::AutoTrait)
.map(ty::Binder::dummy),
);
let existential_predicates = tcx.mk_poly_existential_predicates_from_iter(iter);
let source_trait = tcx.mk_dynamic(existential_predicates, r_b, dyn_a);
// Require that the traits involved in this upcast are **equal**;
// only the **lifetime bound** is changed.
let InferOk { obligations, .. } = self
.infcx
.at(&obligation.cause, obligation.param_env)
.sup(DefineOpaqueTypes::No, target, source_trait)
.map_err(|_| Unimplemented)?;
nested.extend(obligations);
// Register one obligation for 'a: 'b.
let outlives = ty::OutlivesPredicate(r_a, r_b);
nested.push(Obligation::with_depth(
tcx,
obligation.cause.clone(),
obligation.recursion_depth + 1,
obligation.param_env,
obligation.predicate.rebind(outlives),
));
}
// `T` -> `Trait`
(_, &ty::Dynamic(ref data, r, ty::Dyn)) => {
let mut object_dids = data.auto_traits().chain(data.principal_def_id());
if let Some(did) = object_dids.find(|did| !tcx.check_is_object_safe(*did)) {
return Err(TraitNotObjectSafe(did));
}
let predicate_to_obligation = |predicate| {
Obligation::with_depth(
tcx,
obligation.cause.clone(),
obligation.recursion_depth + 1,
obligation.param_env,
predicate,
)
};
// Create obligations:
// - Casting `T` to `Trait`
// - For all the various builtin bounds attached to the object cast. (In other
// words, if the object type is `Foo + Send`, this would create an obligation for
// the `Send` check.)
// - Projection predicates
nested.extend(
data.iter().map(|predicate| {
predicate_to_obligation(predicate.with_self_ty(tcx, source))
}),
);
// We can only make objects from sized types.
let tr = ty::TraitRef::from_lang_item(
tcx,
LangItem::Sized,
obligation.cause.span,
[source],
);
nested.push(predicate_to_obligation(tr.without_const().to_predicate(tcx)));
// If the type is `Foo + 'a`, ensure that the type
// being cast to `Foo + 'a` outlives `'a`:
let outlives = ty::OutlivesPredicate(source, r);
nested.push(predicate_to_obligation(ty::Binder::dummy(outlives).to_predicate(tcx)));
}
// `[T; n]` -> `[T]`
(&ty::Array(a, _), &ty::Slice(b)) => {
let InferOk { obligations, .. } = self
.infcx
.at(&obligation.cause, obligation.param_env)
.eq(DefineOpaqueTypes::No, b, a)
.map_err(|_| Unimplemented)?;
nested.extend(obligations);
}
// `Struct<T>` -> `Struct<U>`
(&ty::Adt(def, substs_a), &ty::Adt(_, substs_b)) => {
let unsizing_params = tcx.unsizing_params_for_adt(def.did());
if unsizing_params.is_empty() {
return Err(Unimplemented);
}
let tail_field = def
.non_enum_variant()
.fields
.raw
.last()
.expect("expected unsized ADT to have a tail field");
let tail_field_ty = tcx.type_of(tail_field.did);
// Extract `TailField<T>` and `TailField<U>` from `Struct<T>` and `Struct<U>`,
// normalizing in the process, since `type_of` returns something directly from
// astconv (which means it's un-normalized).
let source_tail = normalize_with_depth_to(
self,
obligation.param_env,
obligation.cause.clone(),
obligation.recursion_depth + 1,
tail_field_ty.subst(tcx, substs_a),
&mut nested,
);
let target_tail = normalize_with_depth_to(
self,
obligation.param_env,
obligation.cause.clone(),
obligation.recursion_depth + 1,
tail_field_ty.subst(tcx, substs_b),
&mut nested,
);
// Check that the source struct with the target's
// unsizing parameters is equal to the target.
let substs = tcx.mk_substs_from_iter(substs_a.iter().enumerate().map(|(i, k)| {
if unsizing_params.contains(i as u32) { substs_b[i] } else { k }
}));
let new_struct = tcx.mk_adt(def, substs);
let InferOk { obligations, .. } = self
.infcx
.at(&obligation.cause, obligation.param_env)
.eq(DefineOpaqueTypes::No, target, new_struct)
.map_err(|_| Unimplemented)?;
nested.extend(obligations);
// Construct the nested `TailField<T>: Unsize<TailField<U>>` predicate.
let tail_unsize_obligation = obligation.with(
tcx,
ty::TraitRef::new(
tcx,
obligation.predicate.def_id(),
[source_tail, target_tail],
),
);
nested.push(tail_unsize_obligation);
}
// `(.., T)` -> `(.., U)`
(&ty::Tuple(tys_a), &ty::Tuple(tys_b)) => {
assert_eq!(tys_a.len(), tys_b.len());
// The last field of the tuple has to exist.
let (&a_last, a_mid) = tys_a.split_last().ok_or(Unimplemented)?;
let &b_last = tys_b.last().unwrap();
// Check that the source tuple with the target's
// last element is equal to the target.
let new_tuple =
tcx.mk_tup_from_iter(a_mid.iter().copied().chain(iter::once(b_last)));
let InferOk { obligations, .. } = self
.infcx
.at(&obligation.cause, obligation.param_env)
.eq(DefineOpaqueTypes::No, target, new_tuple)
.map_err(|_| Unimplemented)?;
nested.extend(obligations);
// Add a nested `T: Unsize<U>` predicate.
let last_unsize_obligation = obligation.with(
tcx,
ty::TraitRef::new(tcx, obligation.predicate.def_id(), [a_last, b_last]),
);
nested.push(last_unsize_obligation);
}
_ => bug!("source: {source}, target: {target}"),
};
Ok(ImplSourceBuiltinData { nested })
}
fn confirm_const_destruct_candidate(
&mut self,
obligation: &TraitObligation<'tcx>,
impl_def_id: Option<DefId>,
) -> Result<ImplSourceConstDestructData<PredicateObligation<'tcx>>, SelectionError<'tcx>> {
// `~const Destruct` in a non-const environment is always trivially true, since our type is `Drop`
if !obligation.is_const() {
return Ok(ImplSourceConstDestructData { nested: vec![] });
}
let drop_trait = self.tcx().require_lang_item(LangItem::Drop, None);
let tcx = self.tcx();
let self_ty = self.infcx.shallow_resolve(obligation.self_ty());
let mut nested = vec![];
let cause = obligation.derived_cause(BuiltinDerivedObligation);
// If we have a custom `impl const Drop`, then
// first check it like a regular impl candidate.
// This is copied from confirm_impl_candidate but remaps the predicate to `~const Drop` beforehand.
if let Some(impl_def_id) = impl_def_id {
let mut new_obligation = obligation.clone();
new_obligation.predicate = new_obligation.predicate.map_bound(|mut trait_pred| {
trait_pred.trait_ref.def_id = drop_trait;
trait_pred
});
let substs = self.rematch_impl(impl_def_id, &new_obligation);
debug!(?substs, "impl substs");
let cause = obligation.derived_cause(|derived| {
ImplDerivedObligation(Box::new(ImplDerivedObligationCause {
derived,
impl_or_alias_def_id: impl_def_id,
impl_def_predicate_index: None,
span: obligation.cause.span,
}))
});
let obligations = ensure_sufficient_stack(|| {
self.vtable_impl(
impl_def_id,
substs,
&cause,
new_obligation.recursion_depth + 1,
new_obligation.param_env,
obligation.predicate,
)
});
nested.extend(obligations.nested);
}
// We want to confirm the ADT's fields if we have an ADT
let mut stack = match *self_ty.skip_binder().kind() {
ty::Adt(def, substs) => def.all_fields().map(|f| f.ty(tcx, substs)).collect(),
_ => vec![self_ty.skip_binder()],
};
while let Some(nested_ty) = stack.pop() {
match *nested_ty.kind() {
// We know these types are trivially drop
ty::Bool
| ty::Char
| ty::Int(_)
| ty::Uint(_)
| ty::Float(_)
| ty::Infer(ty::IntVar(_))
| ty::Infer(ty::FloatVar(_))
| ty::Str
| ty::RawPtr(_)
| ty::Ref(..)
| ty::FnDef(..)
| ty::FnPtr(_)
| ty::Never
| ty::Foreign(_) => {}
// `ManuallyDrop` is trivially drop
ty::Adt(def, _) if Some(def.did()) == tcx.lang_items().manually_drop() => {}
// These types are built-in, so we can fast-track by registering
// nested predicates for their constituent type(s)
ty::Array(ty, _) | ty::Slice(ty) => {
stack.push(ty);
}
ty::Tuple(tys) => {
stack.extend(tys.iter());
}
ty::Closure(_, substs) => {
stack.push(substs.as_closure().tupled_upvars_ty());
}
ty::Generator(_, substs, _) => {
let generator = substs.as_generator();
stack.extend([generator.tupled_upvars_ty(), generator.witness()]);
}
ty::GeneratorWitness(tys) => {
stack.extend(tcx.erase_late_bound_regions(tys).to_vec());
}
ty::GeneratorWitnessMIR(def_id, substs) => {
let tcx = self.tcx();
stack.extend(tcx.generator_hidden_types(def_id).map(|bty| {
let ty = bty.subst(tcx, substs);
debug_assert!(!ty.has_late_bound_regions());
ty
}))
}
// If we have a projection type, make sure to normalize it so we replace it
// with a fresh infer variable
ty::Alias(ty::Projection | ty::Inherent, ..) => {
let predicate = normalize_with_depth_to(
self,
obligation.param_env,
cause.clone(),
obligation.recursion_depth + 1,
self_ty.rebind(ty::TraitPredicate {
trait_ref: ty::TraitRef::from_lang_item(
self.tcx(),
LangItem::Destruct,
cause.span,
[nested_ty],
),
constness: ty::BoundConstness::ConstIfConst,
polarity: ty::ImplPolarity::Positive,
}),
&mut nested,
);
nested.push(Obligation::with_depth(
tcx,
cause.clone(),
obligation.recursion_depth + 1,
obligation.param_env,
predicate,
));
}
// If we have any other type (e.g. an ADT), just register a nested obligation
// since it's either not `const Drop` (and we raise an error during selection),
// or it's an ADT (and we need to check for a custom impl during selection)
_ => {
let predicate = self_ty.rebind(ty::TraitPredicate {
trait_ref: ty::TraitRef::from_lang_item(
self.tcx(),
LangItem::Destruct,
cause.span,
[nested_ty],
),
constness: ty::BoundConstness::ConstIfConst,
polarity: ty::ImplPolarity::Positive,
});
nested.push(Obligation::with_depth(
tcx,
cause.clone(),
obligation.recursion_depth + 1,
obligation.param_env,
predicate,
));
}
}
}
Ok(ImplSourceConstDestructData { nested })
}
}