blob: 1071b8fc7026f49dd9cf0469ab3ac48050557eea [file] [log] [blame]
use rustc_data_structures::fx::FxHashMap;
use rustc_hir::{def_id::DefId, Movability, Mutability};
use rustc_infer::traits::query::NoSolution;
use rustc_middle::ty::{
self, Ty, TyCtxt, TypeFoldable, TypeFolder, TypeSuperFoldable, TypeVisitableExt,
};
use crate::solve::EvalCtxt;
// Calculates the constituent types of a type for `auto trait` purposes.
//
// For types with an "existential" binder, i.e. generator witnesses, we also
// instantiate the binder with placeholders eagerly.
pub(in crate::solve) fn instantiate_constituent_tys_for_auto_trait<'tcx>(
ecx: &EvalCtxt<'_, 'tcx>,
ty: Ty<'tcx>,
) -> Result<Vec<Ty<'tcx>>, NoSolution> {
let tcx = ecx.tcx();
match *ty.kind() {
ty::Uint(_)
| ty::Int(_)
| ty::Bool
| ty::Float(_)
| ty::FnDef(..)
| ty::FnPtr(_)
| ty::Error(_)
| ty::Never
| ty::Char => Ok(vec![]),
// Treat `str` like it's defined as `struct str([u8]);`
ty::Str => Ok(vec![tcx.mk_slice(tcx.types.u8)]),
ty::Dynamic(..)
| ty::Param(..)
| ty::Foreign(..)
| ty::Alias(ty::Projection | ty::Inherent, ..)
| ty::Placeholder(..)
| ty::Bound(..)
| ty::Infer(_) => {
bug!("unexpected type `{ty}`")
}
ty::RawPtr(ty::TypeAndMut { ty: element_ty, .. }) | ty::Ref(_, element_ty, _) => {
Ok(vec![element_ty])
}
ty::Array(element_ty, _) | ty::Slice(element_ty) => Ok(vec![element_ty]),
ty::Tuple(ref tys) => {
// (T1, ..., Tn) -- meets any bound that all of T1...Tn meet
Ok(tys.iter().collect())
}
ty::Closure(_, ref substs) => Ok(vec![substs.as_closure().tupled_upvars_ty()]),
ty::Generator(_, ref substs, _) => {
let generator_substs = substs.as_generator();
Ok(vec![generator_substs.tupled_upvars_ty(), generator_substs.witness()])
}
ty::GeneratorWitness(types) => Ok(ecx.instantiate_binder_with_placeholders(types).to_vec()),
ty::GeneratorWitnessMIR(def_id, substs) => Ok(ecx
.tcx()
.generator_hidden_types(def_id)
.map(|bty| {
ecx.instantiate_binder_with_placeholders(replace_erased_lifetimes_with_bound_vars(
tcx,
bty.subst(tcx, substs),
))
})
.collect()),
// For `PhantomData<T>`, we pass `T`.
ty::Adt(def, substs) if def.is_phantom_data() => Ok(vec![substs.type_at(0)]),
ty::Adt(def, substs) => Ok(def.all_fields().map(|f| f.ty(tcx, substs)).collect()),
ty::Alias(ty::Opaque, ty::AliasTy { def_id, substs, .. }) => {
// We can resolve the `impl Trait` to its concrete type,
// which enforces a DAG between the functions requiring
// the auto trait bounds in question.
Ok(vec![tcx.type_of(def_id).subst(tcx, substs)])
}
}
}
pub(in crate::solve) fn replace_erased_lifetimes_with_bound_vars<'tcx>(
tcx: TyCtxt<'tcx>,
ty: Ty<'tcx>,
) -> ty::Binder<'tcx, Ty<'tcx>> {
debug_assert!(!ty.has_late_bound_regions());
let mut counter = 0;
let ty = tcx.fold_regions(ty, |r, current_depth| match r.kind() {
ty::ReErased => {
let br =
ty::BoundRegion { var: ty::BoundVar::from_u32(counter), kind: ty::BrAnon(None) };
counter += 1;
tcx.mk_re_late_bound(current_depth, br)
}
// All free regions should be erased here.
r => bug!("unexpected region: {r:?}"),
});
let bound_vars = tcx.mk_bound_variable_kinds_from_iter(
(0..counter).map(|_| ty::BoundVariableKind::Region(ty::BrAnon(None))),
);
ty::Binder::bind_with_vars(ty, bound_vars)
}
pub(in crate::solve) fn instantiate_constituent_tys_for_sized_trait<'tcx>(
ecx: &EvalCtxt<'_, 'tcx>,
ty: Ty<'tcx>,
) -> Result<Vec<Ty<'tcx>>, NoSolution> {
match *ty.kind() {
ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
| ty::Uint(_)
| ty::Int(_)
| ty::Bool
| ty::Float(_)
| ty::FnDef(..)
| ty::FnPtr(_)
| ty::RawPtr(..)
| ty::Char
| ty::Ref(..)
| ty::Generator(..)
| ty::GeneratorWitness(..)
| ty::GeneratorWitnessMIR(..)
| ty::Array(..)
| ty::Closure(..)
| ty::Never
| ty::Dynamic(_, _, ty::DynStar)
| ty::Error(_) => Ok(vec![]),
ty::Str
| ty::Slice(_)
| ty::Dynamic(..)
| ty::Foreign(..)
| ty::Alias(..)
| ty::Param(_)
| ty::Placeholder(..) => Err(NoSolution),
ty::Bound(..)
| ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
bug!("unexpected type `{ty}`")
}
ty::Tuple(tys) => Ok(tys.to_vec()),
ty::Adt(def, substs) => {
let sized_crit = def.sized_constraint(ecx.tcx());
Ok(sized_crit.subst_iter_copied(ecx.tcx(), substs).collect())
}
}
}
pub(in crate::solve) fn instantiate_constituent_tys_for_copy_clone_trait<'tcx>(
ecx: &EvalCtxt<'_, 'tcx>,
ty: Ty<'tcx>,
) -> Result<Vec<Ty<'tcx>>, NoSolution> {
match *ty.kind() {
ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
| ty::FnDef(..)
| ty::FnPtr(_)
| ty::Error(_) => Ok(vec![]),
// Implementations are provided in core
ty::Uint(_)
| ty::Int(_)
| ty::Bool
| ty::Float(_)
| ty::Char
| ty::RawPtr(..)
| ty::Never
| ty::Ref(_, _, Mutability::Not)
| ty::Array(..) => Err(NoSolution),
ty::Dynamic(..)
| ty::Str
| ty::Slice(_)
| ty::Generator(_, _, Movability::Static)
| ty::Foreign(..)
| ty::Ref(_, _, Mutability::Mut)
| ty::Adt(_, _)
| ty::Alias(_, _)
| ty::Param(_)
| ty::Placeholder(..) => Err(NoSolution),
ty::Bound(..)
| ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
bug!("unexpected type `{ty}`")
}
ty::Tuple(tys) => Ok(tys.to_vec()),
ty::Closure(_, substs) => Ok(vec![substs.as_closure().tupled_upvars_ty()]),
ty::Generator(_, substs, Movability::Movable) => {
if ecx.tcx().features().generator_clone {
let generator = substs.as_generator();
Ok(vec![generator.tupled_upvars_ty(), generator.witness()])
} else {
Err(NoSolution)
}
}
ty::GeneratorWitness(types) => Ok(ecx.instantiate_binder_with_placeholders(types).to_vec()),
ty::GeneratorWitnessMIR(def_id, substs) => Ok(ecx
.tcx()
.generator_hidden_types(def_id)
.map(|bty| {
ecx.instantiate_binder_with_placeholders(replace_erased_lifetimes_with_bound_vars(
ecx.tcx(),
bty.subst(ecx.tcx(), substs),
))
})
.collect()),
}
}
// Returns a binder of the tupled inputs types and output type from a builtin callable type.
pub(in crate::solve) fn extract_tupled_inputs_and_output_from_callable<'tcx>(
tcx: TyCtxt<'tcx>,
self_ty: Ty<'tcx>,
goal_kind: ty::ClosureKind,
) -> Result<Option<ty::Binder<'tcx, (Ty<'tcx>, Ty<'tcx>)>>, NoSolution> {
match *self_ty.kind() {
// keep this in sync with assemble_fn_pointer_candidates until the old solver is removed.
ty::FnDef(def_id, substs) => {
let sig = tcx.fn_sig(def_id);
if sig.skip_binder().is_fn_trait_compatible()
&& tcx.codegen_fn_attrs(def_id).target_features.is_empty()
{
Ok(Some(
sig.subst(tcx, substs)
.map_bound(|sig| (tcx.mk_tup(sig.inputs()), sig.output())),
))
} else {
Err(NoSolution)
}
}
// keep this in sync with assemble_fn_pointer_candidates until the old solver is removed.
ty::FnPtr(sig) => {
if sig.is_fn_trait_compatible() {
Ok(Some(sig.map_bound(|sig| (tcx.mk_tup(sig.inputs()), sig.output()))))
} else {
Err(NoSolution)
}
}
ty::Closure(_, substs) => {
let closure_substs = substs.as_closure();
match closure_substs.kind_ty().to_opt_closure_kind() {
// If the closure's kind doesn't extend the goal kind,
// then the closure doesn't implement the trait.
Some(closure_kind) => {
if !closure_kind.extends(goal_kind) {
return Err(NoSolution);
}
}
// Closure kind is not yet determined, so we return ambiguity unless
// the expected kind is `FnOnce` as that is always implemented.
None => {
if goal_kind != ty::ClosureKind::FnOnce {
return Ok(None);
}
}
}
Ok(Some(closure_substs.sig().map_bound(|sig| (sig.inputs()[0], sig.output()))))
}
ty::Bool
| ty::Char
| ty::Int(_)
| ty::Uint(_)
| ty::Float(_)
| ty::Adt(_, _)
| ty::Foreign(_)
| ty::Str
| ty::Array(_, _)
| ty::Slice(_)
| ty::RawPtr(_)
| ty::Ref(_, _, _)
| ty::Dynamic(_, _, _)
| ty::Generator(_, _, _)
| ty::GeneratorWitness(_)
| ty::GeneratorWitnessMIR(..)
| ty::Never
| ty::Tuple(_)
| ty::Alias(_, _)
| ty::Param(_)
| ty::Placeholder(..)
| ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
| ty::Error(_) => Err(NoSolution),
ty::Bound(..)
| ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
bug!("unexpected type `{self_ty}`")
}
}
}
/// Assemble a list of predicates that would be present on a theoretical
/// user impl for an object type. These predicates must be checked any time
/// we assemble a built-in object candidate for an object type, since they
/// are not implied by the well-formedness of the type.
///
/// For example, given the following traits:
///
/// ```rust,ignore (theoretical code)
/// trait Foo: Baz {
/// type Bar: Copy;
/// }
///
/// trait Baz {}
/// ```
///
/// For the dyn type `dyn Foo<Item = Ty>`, we can imagine there being a
/// pair of theoretical impls:
///
/// ```rust,ignore (theoretical code)
/// impl Foo for dyn Foo<Item = Ty>
/// where
/// Self: Baz,
/// <Self as Foo>::Bar: Copy,
/// {
/// type Bar = Ty;
/// }
///
/// impl Baz for dyn Foo<Item = Ty> {}
/// ```
///
/// However, in order to make such impls well-formed, we need to do an
/// additional step of eagerly folding the associated types in the where
/// clauses of the impl. In this example, that means replacing
/// `<Self as Foo>::Bar` with `Ty` in the first impl.
///
// FIXME: This is only necessary as `<Self as Trait>::Assoc: ItemBound`
// bounds in impls are trivially proven using the item bound candidates.
// This is unsound in general and once that is fixed, we don't need to
// normalize eagerly here. See https://github.com/lcnr/solver-woes/issues/9
// for more details.
pub(in crate::solve) fn predicates_for_object_candidate<'tcx>(
ecx: &EvalCtxt<'_, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
trait_ref: ty::TraitRef<'tcx>,
object_bound: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
) -> Vec<ty::Predicate<'tcx>> {
let tcx = ecx.tcx();
let mut requirements = vec![];
requirements.extend(
tcx.super_predicates_of(trait_ref.def_id).instantiate(tcx, trait_ref.substs).predicates,
);
for item in tcx.associated_items(trait_ref.def_id).in_definition_order() {
// FIXME(associated_const_equality): Also add associated consts to
// the requirements here.
if item.kind == ty::AssocKind::Type {
requirements.extend(tcx.item_bounds(item.def_id).subst(tcx, trait_ref.substs));
}
}
let mut replace_projection_with = FxHashMap::default();
for bound in object_bound {
if let ty::ExistentialPredicate::Projection(proj) = bound.skip_binder() {
let proj = proj.with_self_ty(tcx, trait_ref.self_ty());
let old_ty = replace_projection_with.insert(proj.def_id(), bound.rebind(proj));
assert_eq!(
old_ty,
None,
"{} has two substitutions: {} and {}",
proj.projection_ty,
proj.term,
old_ty.unwrap()
);
}
}
requirements.fold_with(&mut ReplaceProjectionWith {
ecx,
param_env,
mapping: replace_projection_with,
})
}
struct ReplaceProjectionWith<'a, 'tcx> {
ecx: &'a EvalCtxt<'a, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
mapping: FxHashMap<DefId, ty::PolyProjectionPredicate<'tcx>>,
}
impl<'tcx> TypeFolder<TyCtxt<'tcx>> for ReplaceProjectionWith<'_, 'tcx> {
fn interner(&self) -> TyCtxt<'tcx> {
self.ecx.tcx()
}
fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
if let ty::Alias(ty::Projection, alias_ty) = *ty.kind()
&& let Some(replacement) = self.mapping.get(&alias_ty.def_id)
{
// We may have a case where our object type's projection bound is higher-ranked,
// but the where clauses we instantiated are not. We can solve this by instantiating
// the binder at the usage site.
let proj = self.ecx.instantiate_binder_with_infer(*replacement);
// FIXME: Technically this folder could be fallible?
let nested = self
.ecx
.eq_and_get_goals(self.param_env, alias_ty, proj.projection_ty)
.expect("expected to be able to unify goal projection with dyn's projection");
// FIXME: Technically we could register these too..
assert!(nested.is_empty(), "did not expect unification to have any nested goals");
proj.term.ty().unwrap()
} else {
ty.super_fold_with(self)
}
}
}