blob: 2106d6ff07dcc929a2efc9c912089de05c75ecf9 [file] [log] [blame]
use hir::Node;
use rustc_hir as hir;
use rustc_hir::def_id::LocalDefId;
use rustc_middle::query::Providers;
use rustc_middle::ty::subst::GenericArgKind;
use rustc_middle::ty::{self, CratePredicatesMap, TyCtxt};
use rustc_span::symbol::sym;
use rustc_span::Span;
mod explicit;
mod implicit_infer;
/// Code to write unit test for outlives.
pub mod test;
mod utils;
pub fn provide(providers: &mut Providers) {
*providers = Providers { inferred_outlives_of, inferred_outlives_crate, ..*providers };
}
fn inferred_outlives_of(tcx: TyCtxt<'_>, item_def_id: LocalDefId) -> &[(ty::Clause<'_>, Span)] {
let id = tcx.hir().local_def_id_to_hir_id(item_def_id);
if matches!(tcx.def_kind(item_def_id), hir::def::DefKind::AnonConst) && tcx.lazy_normalization()
{
if tcx.hir().opt_const_param_default_param_def_id(id).is_some() {
// In `generics_of` we set the generics' parent to be our parent's parent which means that
// we lose out on the predicates of our actual parent if we dont return those predicates here.
// (See comment in `generics_of` for more information on why the parent shenanigans is necessary)
//
// struct Foo<'a, 'b, const N: usize = { ... }>(&'a &'b ());
// ^^^ ^^^^^^^ the def id we are calling
// ^^^ inferred_outlives_of on
// parent item we dont have set as the
// parent of generics returned by `generics_of`
//
// In the above code we want the anon const to have predicates in its param env for `'b: 'a`
let item_def_id = tcx.hir().get_parent_item(id);
// In the above code example we would be calling `inferred_outlives_of(Foo)` here
return tcx.inferred_outlives_of(item_def_id);
}
}
match tcx.hir().get(id) {
Node::Item(item) => match item.kind {
hir::ItemKind::Struct(..) | hir::ItemKind::Enum(..) | hir::ItemKind::Union(..) => {
let crate_map = tcx.inferred_outlives_crate(());
let predicates =
crate_map.predicates.get(&item_def_id.to_def_id()).copied().unwrap_or(&[]);
if tcx.has_attr(item_def_id, sym::rustc_outlives) {
let mut pred: Vec<String> = predicates
.iter()
.map(|(out_pred, _)| match out_pred {
ty::Clause::RegionOutlives(p) => p.to_string(),
ty::Clause::TypeOutlives(p) => p.to_string(),
err => bug!("unexpected clause {:?}", err),
})
.collect();
pred.sort();
let span = tcx.def_span(item_def_id);
let mut err = tcx.sess.struct_span_err(span, "rustc_outlives");
for p in pred {
err.note(p);
}
err.emit();
}
debug!("inferred_outlives_of({:?}) = {:?}", item_def_id, predicates);
predicates
}
_ => &[],
},
_ => &[],
}
}
fn inferred_outlives_crate(tcx: TyCtxt<'_>, (): ()) -> CratePredicatesMap<'_> {
// Compute a map from each struct/enum/union S to the **explicit**
// outlives predicates (`T: 'a`, `'a: 'b`) that the user wrote.
// Typically there won't be many of these, except in older code where
// they were mandatory. Nonetheless, we have to ensure that every such
// predicate is satisfied, so they form a kind of base set of requirements
// for the type.
// Compute the inferred predicates
let global_inferred_outlives = implicit_infer::infer_predicates(tcx);
// Convert the inferred predicates into the "collected" form the
// global data structure expects.
//
// FIXME -- consider correcting impedance mismatch in some way,
// probably by updating the global data structure.
let predicates = global_inferred_outlives
.iter()
.map(|(&def_id, set)| {
let predicates =
&*tcx.arena.alloc_from_iter(set.as_ref().skip_binder().iter().filter_map(
|(ty::OutlivesPredicate(kind1, region2), &span)| {
match kind1.unpack() {
GenericArgKind::Type(ty1) => Some((
ty::Clause::TypeOutlives(ty::OutlivesPredicate(ty1, *region2)),
span,
)),
GenericArgKind::Lifetime(region1) => Some((
ty::Clause::RegionOutlives(ty::OutlivesPredicate(
region1, *region2,
)),
span,
)),
GenericArgKind::Const(_) => {
// Generic consts don't impose any constraints.
None
}
}
},
));
(def_id, predicates)
})
.collect();
ty::CratePredicatesMap { predicates }
}