blob: 2241494b484a86e647348d8c10eafb64aa045d7c [file] [log] [blame]
//! A heuristic to tell whether an expression's type can be determined purely from its
//! subexpressions, and the arguments and locals they use. Put another way, `expr_type_is_certain`
//! tries to tell whether an expression's type can be determined without appeal to the surrounding
//! context.
//!
//! This is, in some sense, a counterpart to `let_unit_value`'s `expr_needs_inferred_result`.
//! Intuitively, that function determines whether an expression's type is needed for type inference,
//! whereas `expr_type_is_certain` determines whether type inference is needed for an expression's
//! type.
//!
//! As a heuristic, `expr_type_is_certain` may produce false negatives, but a false positive should
//! be considered a bug.
use crate::def_path_res;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::def_id::DefId;
use rustc_hir::intravisit::{walk_qpath, walk_ty, Visitor};
use rustc_hir::{self as hir, Expr, ExprKind, GenericArgs, HirId, Node, PathSegment, QPath, TyKind};
use rustc_lint::LateContext;
use rustc_middle::ty::{self, AdtDef, GenericArgKind, Ty};
use rustc_span::{Span, Symbol};
mod certainty;
use certainty::{join, meet, Certainty, Meet};
pub fn expr_type_is_certain(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool {
expr_type_certainty(cx, expr).is_certain()
}
fn expr_type_certainty(cx: &LateContext<'_>, expr: &Expr<'_>) -> Certainty {
let certainty = match &expr.kind {
ExprKind::Unary(_, expr)
| ExprKind::Field(expr, _)
| ExprKind::Index(expr, _, _)
| ExprKind::AddrOf(_, _, expr) => expr_type_certainty(cx, expr),
ExprKind::Array(exprs) => join(exprs.iter().map(|expr| expr_type_certainty(cx, expr))),
ExprKind::Call(callee, args) => {
let lhs = expr_type_certainty(cx, callee);
let rhs = if type_is_inferable_from_arguments(cx, expr) {
meet(args.iter().map(|arg| expr_type_certainty(cx, arg)))
} else {
Certainty::Uncertain
};
lhs.join_clearing_def_ids(rhs)
},
ExprKind::MethodCall(method, receiver, args, _) => {
let mut receiver_type_certainty = expr_type_certainty(cx, receiver);
// Even if `receiver_type_certainty` is `Certain(Some(..))`, the `Self` type in the method
// identified by `type_dependent_def_id(..)` can differ. This can happen as a result of a `deref`,
// for example. So update the `DefId` in `receiver_type_certainty` (if any).
if let Some(method_def_id) = cx.typeck_results().type_dependent_def_id(expr.hir_id)
&& let Some(self_ty_def_id) = adt_def_id(self_ty(cx, method_def_id))
{
receiver_type_certainty = receiver_type_certainty.with_def_id(self_ty_def_id);
};
let lhs = path_segment_certainty(cx, receiver_type_certainty, method, false);
let rhs = if type_is_inferable_from_arguments(cx, expr) {
meet(
std::iter::once(receiver_type_certainty).chain(args.iter().map(|arg| expr_type_certainty(cx, arg))),
)
} else {
Certainty::Uncertain
};
lhs.join(rhs)
},
ExprKind::Tup(exprs) => meet(exprs.iter().map(|expr| expr_type_certainty(cx, expr))),
ExprKind::Binary(_, lhs, rhs) => expr_type_certainty(cx, lhs).meet(expr_type_certainty(cx, rhs)),
ExprKind::Lit(_) => Certainty::Certain(None),
ExprKind::Cast(_, ty) => type_certainty(cx, ty),
ExprKind::If(_, if_expr, Some(else_expr)) => {
expr_type_certainty(cx, if_expr).join(expr_type_certainty(cx, else_expr))
},
ExprKind::Path(qpath) => qpath_certainty(cx, qpath, false),
ExprKind::Struct(qpath, _, _) => qpath_certainty(cx, qpath, true),
_ => Certainty::Uncertain,
};
let expr_ty = cx.typeck_results().expr_ty(expr);
if let Some(def_id) = adt_def_id(expr_ty) {
certainty.with_def_id(def_id)
} else {
certainty.clear_def_id()
}
}
struct CertaintyVisitor<'cx, 'tcx> {
cx: &'cx LateContext<'tcx>,
certainty: Certainty,
}
impl<'cx, 'tcx> CertaintyVisitor<'cx, 'tcx> {
fn new(cx: &'cx LateContext<'tcx>) -> Self {
Self {
cx,
certainty: Certainty::Certain(None),
}
}
}
impl<'cx, 'tcx> Visitor<'cx> for CertaintyVisitor<'cx, 'tcx> {
fn visit_qpath(&mut self, qpath: &'cx QPath<'_>, hir_id: HirId, _: Span) {
self.certainty = self.certainty.meet(qpath_certainty(self.cx, qpath, true));
if self.certainty != Certainty::Uncertain {
walk_qpath(self, qpath, hir_id);
}
}
fn visit_ty(&mut self, ty: &'cx hir::Ty<'_>) {
if matches!(ty.kind, TyKind::Infer) {
self.certainty = Certainty::Uncertain;
}
if self.certainty != Certainty::Uncertain {
walk_ty(self, ty);
}
}
}
fn type_certainty(cx: &LateContext<'_>, ty: &hir::Ty<'_>) -> Certainty {
// Handle `TyKind::Path` specially so that its `DefId` can be preserved.
//
// Note that `CertaintyVisitor::new` initializes the visitor's internal certainty to
// `Certainty::Certain(None)`. Furthermore, if a `TyKind::Path` is encountered while traversing
// `ty`, the result of the call to `qpath_certainty` is combined with the visitor's internal
// certainty using `Certainty::meet`. Thus, if the `TyKind::Path` were not treated specially here,
// the resulting certainty would be `Certainty::Certain(None)`.
if let TyKind::Path(qpath) = &ty.kind {
return qpath_certainty(cx, qpath, true);
}
let mut visitor = CertaintyVisitor::new(cx);
visitor.visit_ty(ty);
visitor.certainty
}
fn generic_args_certainty(cx: &LateContext<'_>, args: &GenericArgs<'_>) -> Certainty {
let mut visitor = CertaintyVisitor::new(cx);
visitor.visit_generic_args(args);
visitor.certainty
}
/// Tries to tell whether a `QPath` resolves to something certain, e.g., whether all of its path
/// segments generic arguments are instantiated.
///
/// `qpath` could refer to either a type or a value. The heuristic never needs the `DefId` of a
/// value. So `DefId`s are retained only when `resolves_to_type` is true.
fn qpath_certainty(cx: &LateContext<'_>, qpath: &QPath<'_>, resolves_to_type: bool) -> Certainty {
let certainty = match qpath {
QPath::Resolved(ty, path) => {
let len = path.segments.len();
path.segments.iter().enumerate().fold(
ty.map_or(Certainty::Uncertain, |ty| type_certainty(cx, ty)),
|parent_certainty, (i, path_segment)| {
path_segment_certainty(cx, parent_certainty, path_segment, i != len - 1 || resolves_to_type)
},
)
},
QPath::TypeRelative(ty, path_segment) => {
path_segment_certainty(cx, type_certainty(cx, ty), path_segment, resolves_to_type)
},
QPath::LangItem(lang_item, ..) => cx
.tcx
.lang_items()
.get(*lang_item)
.map_or(Certainty::Uncertain, |def_id| {
let generics = cx.tcx.generics_of(def_id);
if generics.parent_count == 0 && generics.params.is_empty() {
Certainty::Certain(if resolves_to_type { Some(def_id) } else { None })
} else {
Certainty::Uncertain
}
}),
};
debug_assert!(resolves_to_type || certainty.to_def_id().is_none());
certainty
}
fn path_segment_certainty(
cx: &LateContext<'_>,
parent_certainty: Certainty,
path_segment: &PathSegment<'_>,
resolves_to_type: bool,
) -> Certainty {
let certainty = match update_res(cx, parent_certainty, path_segment).unwrap_or(path_segment.res) {
// A definition's type is certain if it refers to something without generics (e.g., a crate or module, or
// an unparameterized type), or the generics are instantiated with arguments that are certain.
//
// If the parent is uncertain, then the current path segment must account for the parent's generic arguments.
// Consider the following examples, where the current path segment is `None`:
// - `Option::None` // uncertain; parent (i.e., `Option`) is uncertain
// - `Option::<Vec<u64>>::None` // certain; parent (i.e., `Option::<..>`) is certain
// - `Option::None::<Vec<u64>>` // certain; parent (i.e., `Option`) is uncertain
Res::Def(_, def_id) => {
// Checking `res_generics_def_id(..)` before calling `generics_of` avoids an ICE.
if cx.tcx.res_generics_def_id(path_segment.res).is_some() {
let generics = cx.tcx.generics_of(def_id);
let count = generics.params.len() - usize::from(generics.host_effect_index.is_some());
let lhs = if (parent_certainty.is_certain() || generics.parent_count == 0) && count == 0 {
Certainty::Certain(None)
} else {
Certainty::Uncertain
};
let rhs = path_segment
.args
.map_or(Certainty::Uncertain, |args| generic_args_certainty(cx, args));
// See the comment preceding `qpath_certainty`. `def_id` could refer to a type or a value.
let certainty = lhs.join_clearing_def_ids(rhs);
if resolves_to_type {
if let DefKind::TyAlias = cx.tcx.def_kind(def_id) {
adt_def_id(cx.tcx.type_of(def_id).instantiate_identity())
.map_or(certainty, |def_id| certainty.with_def_id(def_id))
} else {
certainty.with_def_id(def_id)
}
} else {
certainty
}
} else {
Certainty::Certain(None)
}
},
Res::PrimTy(_) | Res::SelfTyParam { .. } | Res::SelfTyAlias { .. } | Res::SelfCtor(_) => {
Certainty::Certain(None)
},
// `get_parent` because `hir_id` refers to a `Pat`, and we're interested in the node containing the `Pat`.
Res::Local(hir_id) => match cx.tcx.parent_hir_node(hir_id) {
// An argument's type is always certain.
Node::Param(..) => Certainty::Certain(None),
// A local's type is certain if its type annotation is certain or it has an initializer whose
// type is certain.
Node::LetStmt(local) => {
let lhs = local.ty.map_or(Certainty::Uncertain, |ty| type_certainty(cx, ty));
let rhs = local
.init
.map_or(Certainty::Uncertain, |init| expr_type_certainty(cx, init));
let certainty = lhs.join(rhs);
if resolves_to_type {
certainty
} else {
certainty.clear_def_id()
}
},
_ => Certainty::Uncertain,
},
_ => Certainty::Uncertain,
};
debug_assert!(resolves_to_type || certainty.to_def_id().is_none());
certainty
}
/// For at least some `QPath::TypeRelative`, the path segment's `res` can be `Res::Err`.
/// `update_res` tries to fix the resolution when `parent_certainty` is `Certain(Some(..))`.
fn update_res(cx: &LateContext<'_>, parent_certainty: Certainty, path_segment: &PathSegment<'_>) -> Option<Res> {
if path_segment.res == Res::Err
&& let Some(def_id) = parent_certainty.to_def_id()
{
let mut def_path = cx.get_def_path(def_id);
def_path.push(path_segment.ident.name);
let reses = def_path_res(cx, &def_path.iter().map(Symbol::as_str).collect::<Vec<_>>());
if let [res] = reses.as_slice() { Some(*res) } else { None }
} else {
None
}
}
#[allow(clippy::cast_possible_truncation)]
fn type_is_inferable_from_arguments(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool {
let Some(callee_def_id) = (match expr.kind {
ExprKind::Call(callee, _) => {
let callee_ty = cx.typeck_results().expr_ty(callee);
if let ty::FnDef(callee_def_id, _) = callee_ty.kind() {
Some(*callee_def_id)
} else {
None
}
},
ExprKind::MethodCall(_, _, _, _) => cx.typeck_results().type_dependent_def_id(expr.hir_id),
_ => None,
}) else {
return false;
};
let generics = cx.tcx.generics_of(callee_def_id);
let fn_sig = cx.tcx.fn_sig(callee_def_id).skip_binder();
// Check that all type parameters appear in the functions input types.
(0..(generics.parent_count + generics.params.len()) as u32).all(|index| {
Some(index as usize) == generics.host_effect_index
|| fn_sig
.inputs()
.iter()
.any(|input_ty| contains_param(*input_ty.skip_binder(), index))
})
}
fn self_ty<'tcx>(cx: &LateContext<'tcx>, method_def_id: DefId) -> Ty<'tcx> {
cx.tcx.fn_sig(method_def_id).skip_binder().inputs().skip_binder()[0]
}
fn adt_def_id(ty: Ty<'_>) -> Option<DefId> {
ty.peel_refs().ty_adt_def().map(AdtDef::did)
}
fn contains_param(ty: Ty<'_>, index: u32) -> bool {
ty.walk()
.any(|arg| matches!(arg.unpack(), GenericArgKind::Type(ty) if ty.is_param(index)))
}