blob: 9d0e1123e43ac98facd5c190c0444bb270fdbf0a [file] [log] [blame]
use crate::ty::GenericArg;
use crate::ty::{self, Ty, TyCtxt};
use rustc_data_structures::fx::FxHashSet;
use rustc_data_structures::sso::SsoHashSet;
use rustc_hir as hir;
use rustc_hir::def_id::{CrateNum, DefId, LocalDefId};
use rustc_hir::definitions::{DefPathData, DisambiguatedDefPathData};
// `pretty` is a separate module only for organization.
mod pretty;
pub use self::pretty::*;
pub type PrintError = std::fmt::Error;
pub trait Print<'tcx, P> {
fn print(&self, cx: &mut P) -> Result<(), PrintError>;
}
/// Interface for outputting user-facing "type-system entities"
/// (paths, types, lifetimes, constants, etc.) as a side-effect
/// (e.g. formatting, like `PrettyPrinter` implementors do) or by
/// constructing some alternative representation (e.g. an AST),
/// which the associated types allow passing through the methods.
///
/// For pretty-printing/formatting in particular, see `PrettyPrinter`.
//
// FIXME(eddyb) find a better name; this is more general than "printing".
pub trait Printer<'tcx>: Sized {
fn tcx<'a>(&'a self) -> TyCtxt<'tcx>;
fn print_def_path(
&mut self,
def_id: DefId,
args: &'tcx [GenericArg<'tcx>],
) -> Result<(), PrintError> {
self.default_print_def_path(def_id, args)
}
fn print_impl_path(
&mut self,
impl_def_id: DefId,
args: &'tcx [GenericArg<'tcx>],
self_ty: Ty<'tcx>,
trait_ref: Option<ty::TraitRef<'tcx>>,
) -> Result<(), PrintError> {
self.default_print_impl_path(impl_def_id, args, self_ty, trait_ref)
}
fn print_region(&mut self, region: ty::Region<'tcx>) -> Result<(), PrintError>;
fn print_type(&mut self, ty: Ty<'tcx>) -> Result<(), PrintError>;
fn print_dyn_existential(
&mut self,
predicates: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
) -> Result<(), PrintError>;
fn print_const(&mut self, ct: ty::Const<'tcx>) -> Result<(), PrintError>;
fn path_crate(&mut self, cnum: CrateNum) -> Result<(), PrintError>;
fn path_qualified(
&mut self,
self_ty: Ty<'tcx>,
trait_ref: Option<ty::TraitRef<'tcx>>,
) -> Result<(), PrintError>;
fn path_append_impl(
&mut self,
print_prefix: impl FnOnce(&mut Self) -> Result<(), PrintError>,
disambiguated_data: &DisambiguatedDefPathData,
self_ty: Ty<'tcx>,
trait_ref: Option<ty::TraitRef<'tcx>>,
) -> Result<(), PrintError>;
fn path_append(
&mut self,
print_prefix: impl FnOnce(&mut Self) -> Result<(), PrintError>,
disambiguated_data: &DisambiguatedDefPathData,
) -> Result<(), PrintError>;
fn path_generic_args(
&mut self,
print_prefix: impl FnOnce(&mut Self) -> Result<(), PrintError>,
args: &[GenericArg<'tcx>],
) -> Result<(), PrintError>;
// Defaults (should not be overridden):
#[instrument(skip(self), level = "debug")]
fn default_print_def_path(
&mut self,
def_id: DefId,
args: &'tcx [GenericArg<'tcx>],
) -> Result<(), PrintError> {
let key = self.tcx().def_key(def_id);
debug!(?key);
match key.disambiguated_data.data {
DefPathData::CrateRoot => {
assert!(key.parent.is_none());
self.path_crate(def_id.krate)
}
DefPathData::Impl => {
let generics = self.tcx().generics_of(def_id);
let self_ty = self.tcx().type_of(def_id);
let impl_trait_ref = self.tcx().impl_trait_ref(def_id);
let (self_ty, impl_trait_ref) = if args.len() >= generics.count() {
(
self_ty.instantiate(self.tcx(), args),
impl_trait_ref.map(|i| i.instantiate(self.tcx(), args)),
)
} else {
(
self_ty.instantiate_identity(),
impl_trait_ref.map(|i| i.instantiate_identity()),
)
};
self.print_impl_path(def_id, args, self_ty, impl_trait_ref)
}
_ => {
let parent_def_id = DefId { index: key.parent.unwrap(), ..def_id };
let mut parent_args = args;
let mut trait_qualify_parent = false;
if !args.is_empty() {
let generics = self.tcx().generics_of(def_id);
parent_args = &args[..generics.parent_count.min(args.len())];
match key.disambiguated_data.data {
DefPathData::Closure => {
// FIXME(async_closures): This is somewhat ugly.
// We need to additionally print the `kind` field of a closure if
// it is desugared from a coroutine-closure.
if let Some(hir::CoroutineKind::Desugared(
_,
hir::CoroutineSource::Closure,
)) = self.tcx().coroutine_kind(def_id)
&& args.len() > parent_args.len()
{
return self.path_generic_args(
|cx| cx.print_def_path(def_id, parent_args),
&args[..parent_args.len() + 1][..1],
);
} else {
// Closures' own generics are only captures, don't print them.
}
}
// This covers both `DefKind::AnonConst` and `DefKind::InlineConst`.
// Anon consts doesn't have their own generics, and inline consts' own
// generics are their inferred types, so don't print them.
DefPathData::AnonConst => {}
// If we have any generic arguments to print, we do that
// on top of the same path, but without its own generics.
_ => {
if !generics.params.is_empty() && args.len() >= generics.count() {
let args = generics.own_args_no_defaults(self.tcx(), args);
return self.path_generic_args(
|cx| cx.print_def_path(def_id, parent_args),
args,
);
}
}
}
// FIXME(eddyb) try to move this into the parent's printing
// logic, instead of doing it when printing the child.
trait_qualify_parent = generics.has_self
&& generics.parent == Some(parent_def_id)
&& parent_args.len() == generics.parent_count
&& self.tcx().generics_of(parent_def_id).parent_count == 0;
}
self.path_append(
|cx: &mut Self| {
if trait_qualify_parent {
let trait_ref = ty::TraitRef::new(
cx.tcx(),
parent_def_id,
parent_args.iter().copied(),
);
cx.path_qualified(trait_ref.self_ty(), Some(trait_ref))
} else {
cx.print_def_path(parent_def_id, parent_args)
}
},
&key.disambiguated_data,
)
}
}
}
fn default_print_impl_path(
&mut self,
impl_def_id: DefId,
_args: &'tcx [GenericArg<'tcx>],
self_ty: Ty<'tcx>,
impl_trait_ref: Option<ty::TraitRef<'tcx>>,
) -> Result<(), PrintError> {
debug!(
"default_print_impl_path: impl_def_id={:?}, self_ty={}, impl_trait_ref={:?}",
impl_def_id, self_ty, impl_trait_ref
);
let key = self.tcx().def_key(impl_def_id);
let parent_def_id = DefId { index: key.parent.unwrap(), ..impl_def_id };
// Decide whether to print the parent path for the impl.
// Logically, since impls are global, it's never needed, but
// users may find it useful. Currently, we omit the parent if
// the impl is either in the same module as the self-type or
// as the trait.
let in_self_mod = match characteristic_def_id_of_type(self_ty) {
None => false,
Some(ty_def_id) => self.tcx().parent(ty_def_id) == parent_def_id,
};
let in_trait_mod = match impl_trait_ref {
None => false,
Some(trait_ref) => self.tcx().parent(trait_ref.def_id) == parent_def_id,
};
if !in_self_mod && !in_trait_mod {
// If the impl is not co-located with either self-type or
// trait-type, then fallback to a format that identifies
// the module more clearly.
self.path_append_impl(
|cx| cx.print_def_path(parent_def_id, &[]),
&key.disambiguated_data,
self_ty,
impl_trait_ref,
)
} else {
// Otherwise, try to give a good form that would be valid language
// syntax. Preferably using associated item notation.
self.path_qualified(self_ty, impl_trait_ref)
}
}
}
/// As a heuristic, when we see an impl, if we see that the
/// 'self type' is a type defined in the same module as the impl,
/// we can omit including the path to the impl itself. This
/// function tries to find a "characteristic `DefId`" for a
/// type. It's just a heuristic so it makes some questionable
/// decisions and we may want to adjust it later.
///
/// Visited set is needed to avoid full iteration over
/// deeply nested tuples that have no DefId.
fn characteristic_def_id_of_type_cached<'a>(
ty: Ty<'a>,
visited: &mut SsoHashSet<Ty<'a>>,
) -> Option<DefId> {
match *ty.kind() {
ty::Adt(adt_def, _) => Some(adt_def.did()),
ty::Dynamic(data, ..) => data.principal_def_id(),
ty::Pat(subty, _) | ty::Array(subty, _) | ty::Slice(subty) => {
characteristic_def_id_of_type_cached(subty, visited)
}
ty::RawPtr(ty, _) => characteristic_def_id_of_type_cached(ty, visited),
ty::Ref(_, ty, _) => characteristic_def_id_of_type_cached(ty, visited),
ty::Tuple(tys) => tys.iter().find_map(|ty| {
if visited.insert(ty) {
return characteristic_def_id_of_type_cached(ty, visited);
}
return None;
}),
ty::FnDef(def_id, _)
| ty::Closure(def_id, _)
| ty::CoroutineClosure(def_id, _)
| ty::Coroutine(def_id, _)
| ty::CoroutineWitness(def_id, _)
| ty::Foreign(def_id) => Some(def_id),
ty::Bool
| ty::Char
| ty::Int(_)
| ty::Uint(_)
| ty::Str
| ty::FnPtr(_)
| ty::Alias(..)
| ty::Placeholder(..)
| ty::Param(_)
| ty::Infer(_)
| ty::Bound(..)
| ty::Error(_)
| ty::Never
| ty::Float(_) => None,
}
}
pub fn characteristic_def_id_of_type(ty: Ty<'_>) -> Option<DefId> {
characteristic_def_id_of_type_cached(ty, &mut SsoHashSet::new())
}
impl<'tcx, P: Printer<'tcx>> Print<'tcx, P> for ty::Region<'tcx> {
fn print(&self, cx: &mut P) -> Result<(), PrintError> {
cx.print_region(*self)
}
}
impl<'tcx, P: Printer<'tcx>> Print<'tcx, P> for Ty<'tcx> {
fn print(&self, cx: &mut P) -> Result<(), PrintError> {
cx.print_type(*self)
}
}
impl<'tcx, P: Printer<'tcx>> Print<'tcx, P> for &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>> {
fn print(&self, cx: &mut P) -> Result<(), PrintError> {
cx.print_dyn_existential(self)
}
}
impl<'tcx, P: Printer<'tcx>> Print<'tcx, P> for ty::Const<'tcx> {
fn print(&self, cx: &mut P) -> Result<(), PrintError> {
cx.print_const(*self)
}
}
// This is only used by query descriptions
pub fn describe_as_module(def_id: impl Into<LocalDefId>, tcx: TyCtxt<'_>) -> String {
let def_id = def_id.into();
if def_id.is_top_level_module() {
"top-level module".to_string()
} else {
format!("module `{}`", tcx.def_path_str(def_id))
}
}