blob: 078009515e4286527d7b67db9f9ac9d68c7b881d [file] [log] [blame]
//! Give useful errors and suggestions to users when an item can't be
//! found or is otherwise invalid.
// ignore-tidy-filelength
use crate::errors::{self, CandidateTraitNote, NoAssociatedItem};
use crate::Expectation;
use crate::FnCtxt;
use core::ops::ControlFlow;
use rustc_ast::ast::Mutability;
use rustc_attr::parse_confusables;
use rustc_data_structures::fx::{FxIndexMap, FxIndexSet};
use rustc_data_structures::sorted_map::SortedMap;
use rustc_data_structures::unord::UnordSet;
use rustc_errors::{
codes::*, pluralize, struct_span_code_err, Applicability, Diag, MultiSpan, StashKey,
};
use rustc_hir as hir;
use rustc_hir::def::DefKind;
use rustc_hir::def_id::DefId;
use rustc_hir::lang_items::LangItem;
use rustc_hir::PatKind::Binding;
use rustc_hir::PathSegment;
use rustc_hir::{ExprKind, Node, QPath};
use rustc_infer::infer::{self, type_variable::TypeVariableOrigin, RegionVariableOrigin};
use rustc_middle::infer::unify_key::ConstVariableOrigin;
use rustc_middle::ty::fast_reject::DeepRejectCtxt;
use rustc_middle::ty::fast_reject::{simplify_type, TreatParams};
use rustc_middle::ty::print::{with_crate_prefix, with_forced_trimmed_paths};
use rustc_middle::ty::IsSuggestable;
use rustc_middle::ty::{self, GenericArgKind, Ty, TyCtxt, TypeVisitableExt};
use rustc_span::def_id::DefIdSet;
use rustc_span::symbol::{kw, sym, Ident};
use rustc_span::{edit_distance, ExpnKind, FileName, MacroKind, Span};
use rustc_span::{Symbol, DUMMY_SP};
use rustc_trait_selection::infer::InferCtxtExt;
use rustc_trait_selection::traits::error_reporting::on_unimplemented::OnUnimplementedNote;
use rustc_trait_selection::traits::error_reporting::on_unimplemented::TypeErrCtxtExt as _;
use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt as _;
use rustc_trait_selection::traits::{
supertraits, FulfillmentError, Obligation, ObligationCause, ObligationCauseCode,
};
use std::borrow::Cow;
use super::probe::{AutorefOrPtrAdjustment, IsSuggestion, Mode, ProbeScope};
use super::{CandidateSource, MethodError, NoMatchData};
use rustc_hir::intravisit::Visitor;
use std::iter;
impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
fn is_fn_ty(&self, ty: Ty<'tcx>, span: Span) -> bool {
let tcx = self.tcx;
match ty.kind() {
// Not all of these (e.g., unsafe fns) implement `FnOnce`,
// so we look for these beforehand.
// FIXME(async_closures): These don't impl `FnOnce` by default.
ty::Closure(..) | ty::FnDef(..) | ty::FnPtr(_) => true,
// If it's not a simple function, look for things which implement `FnOnce`.
_ => {
let Some(fn_once) = tcx.lang_items().fn_once_trait() else {
return false;
};
// This conditional prevents us from asking to call errors and unresolved types.
// It might seem that we can use `predicate_must_hold_modulo_regions`,
// but since a Dummy binder is used to fill in the FnOnce trait's arguments,
// type resolution always gives a "maybe" here.
if self.autoderef(span, ty).any(|(ty, _)| {
info!("check deref {:?} error", ty);
matches!(ty.kind(), ty::Error(_) | ty::Infer(_))
}) {
return false;
}
self.autoderef(span, ty).any(|(ty, _)| {
info!("check deref {:?} impl FnOnce", ty);
self.probe(|_| {
let trait_ref = ty::TraitRef::new(
tcx,
fn_once,
[ty, self.next_ty_var(TypeVariableOrigin { param_def_id: None, span })],
);
let poly_trait_ref = ty::Binder::dummy(trait_ref);
let obligation = Obligation::misc(
tcx,
span,
self.body_id,
self.param_env,
poly_trait_ref,
);
self.predicate_may_hold(&obligation)
})
})
}
}
}
fn is_slice_ty(&self, ty: Ty<'tcx>, span: Span) -> bool {
self.autoderef(span, ty).any(|(ty, _)| matches!(ty.kind(), ty::Slice(..) | ty::Array(..)))
}
fn impl_into_iterator_should_be_iterator(
&self,
ty: Ty<'tcx>,
span: Span,
unsatisfied_predicates: &Vec<(
ty::Predicate<'_>,
Option<ty::Predicate<'_>>,
Option<ObligationCause<'_>>,
)>,
) -> bool {
fn predicate_bounds_generic_param<'tcx>(
predicate: ty::Predicate<'_>,
generics: &'tcx ty::Generics,
generic_param: &ty::GenericParamDef,
tcx: TyCtxt<'tcx>,
) -> bool {
if let ty::PredicateKind::Clause(ty::ClauseKind::Trait(trait_pred)) =
predicate.kind().as_ref().skip_binder()
{
let ty::TraitPredicate { trait_ref: ty::TraitRef { args, .. }, .. } = trait_pred;
if args.is_empty() {
return false;
}
let Some(arg_ty) = args[0].as_type() else {
return false;
};
let ty::Param(param) = *arg_ty.kind() else {
return false;
};
// Is `generic_param` the same as the arg for this trait predicate?
generic_param.index == generics.type_param(param, tcx).index
} else {
false
}
}
fn is_iterator_predicate(predicate: ty::Predicate<'_>, tcx: TyCtxt<'_>) -> bool {
if let ty::PredicateKind::Clause(ty::ClauseKind::Trait(trait_pred)) =
predicate.kind().as_ref().skip_binder()
{
tcx.is_diagnostic_item(sym::Iterator, trait_pred.trait_ref.def_id)
} else {
false
}
}
// Does the `ty` implement `IntoIterator`?
let Some(into_iterator_trait) = self.tcx.get_diagnostic_item(sym::IntoIterator) else {
return false;
};
let trait_ref = ty::TraitRef::new(self.tcx, into_iterator_trait, [ty]);
let cause = ObligationCause::new(span, self.body_id, ObligationCauseCode::MiscObligation);
let obligation = Obligation::new(self.tcx, cause, self.param_env, trait_ref);
if !self.predicate_must_hold_modulo_regions(&obligation) {
return false;
}
match *ty.peel_refs().kind() {
ty::Param(param) => {
let generics = self.tcx.generics_of(self.body_id);
let generic_param = generics.type_param(param, self.tcx);
for unsatisfied in unsatisfied_predicates.iter() {
// The parameter implements `IntoIterator`
// but it has called a method that requires it to implement `Iterator`
if predicate_bounds_generic_param(
unsatisfied.0,
generics,
generic_param,
self.tcx,
) && is_iterator_predicate(unsatisfied.0, self.tcx)
{
return true;
}
}
}
ty::Slice(..) | ty::Adt(..) | ty::Alias(ty::AliasKind::Opaque, _) => {
for unsatisfied in unsatisfied_predicates.iter() {
if is_iterator_predicate(unsatisfied.0, self.tcx) {
return true;
}
}
}
_ => return false,
}
false
}
#[instrument(level = "debug", skip(self))]
pub fn report_method_error(
&self,
span: Span,
rcvr_ty: Ty<'tcx>,
item_name: Ident,
source: SelfSource<'tcx>,
error: MethodError<'tcx>,
args: Option<&'tcx [hir::Expr<'tcx>]>,
expected: Expectation<'tcx>,
trait_missing_method: bool,
) -> Option<Diag<'_>> {
// Avoid suggestions when we don't know what's going on.
if rcvr_ty.references_error() {
return None;
}
let sugg_span = if let SelfSource::MethodCall(expr) = source {
// Given `foo.bar(baz)`, `expr` is `bar`, but we want to point to the whole thing.
self.tcx.hir().expect_expr(self.tcx.parent_hir_id(expr.hir_id)).span
} else {
span
};
match error {
MethodError::NoMatch(mut no_match_data) => {
return self.report_no_match_method_error(
span,
rcvr_ty,
item_name,
source,
args,
sugg_span,
&mut no_match_data,
expected,
trait_missing_method,
);
}
MethodError::Ambiguity(mut sources) => {
let mut err = struct_span_code_err!(
self.dcx(),
item_name.span,
E0034,
"multiple applicable items in scope"
);
err.span_label(item_name.span, format!("multiple `{item_name}` found"));
self.note_candidates_on_method_error(
rcvr_ty,
item_name,
source,
args,
span,
&mut err,
&mut sources,
Some(sugg_span),
);
err.emit();
}
MethodError::PrivateMatch(kind, def_id, out_of_scope_traits) => {
let kind = self.tcx.def_kind_descr(kind, def_id);
let mut err = struct_span_code_err!(
self.dcx(),
item_name.span,
E0624,
"{} `{}` is private",
kind,
item_name
);
err.span_label(item_name.span, format!("private {kind}"));
let sp = self
.tcx
.hir()
.span_if_local(def_id)
.unwrap_or_else(|| self.tcx.def_span(def_id));
err.span_label(sp, format!("private {kind} defined here"));
self.suggest_valid_traits(&mut err, item_name, out_of_scope_traits, true);
err.emit();
}
MethodError::IllegalSizedBound { candidates, needs_mut, bound_span, self_expr } => {
let msg = if needs_mut {
with_forced_trimmed_paths!(format!(
"the `{item_name}` method cannot be invoked on `{rcvr_ty}`"
))
} else {
format!("the `{item_name}` method cannot be invoked on a trait object")
};
let mut err = self.dcx().struct_span_err(span, msg);
if !needs_mut {
err.span_label(bound_span, "this has a `Sized` requirement");
}
if !candidates.is_empty() {
let help = format!(
"{an}other candidate{s} {were} found in the following trait{s}, perhaps \
add a `use` for {one_of_them}:",
an = if candidates.len() == 1 { "an" } else { "" },
s = pluralize!(candidates.len()),
were = pluralize!("was", candidates.len()),
one_of_them = if candidates.len() == 1 { "it" } else { "one_of_them" },
);
self.suggest_use_candidates(&mut err, help, candidates);
}
if let ty::Ref(region, t_type, mutability) = rcvr_ty.kind() {
if needs_mut {
let trait_type =
Ty::new_ref(self.tcx, *region, *t_type, mutability.invert());
let msg = format!("you need `{trait_type}` instead of `{rcvr_ty}`");
let mut kind = &self_expr.kind;
while let hir::ExprKind::AddrOf(_, _, expr)
| hir::ExprKind::Unary(hir::UnOp::Deref, expr) = kind
{
kind = &expr.kind;
}
if let hir::ExprKind::Path(hir::QPath::Resolved(None, path)) = kind
&& let hir::def::Res::Local(hir_id) = path.res
&& let hir::Node::Pat(b) = self.tcx.hir_node(hir_id)
&& let hir::Node::Param(p) = self.tcx.parent_hir_node(b.hir_id)
&& let Some(decl) = self.tcx.parent_hir_node(p.hir_id).fn_decl()
&& let Some(ty) = decl.inputs.iter().find(|ty| ty.span == p.ty_span)
&& let hir::TyKind::Ref(_, mut_ty) = &ty.kind
&& let hir::Mutability::Not = mut_ty.mutbl
{
err.span_suggestion_verbose(
mut_ty.ty.span.shrink_to_lo(),
msg,
"mut ",
Applicability::MachineApplicable,
);
} else {
err.help(msg);
}
}
}
err.emit();
}
MethodError::BadReturnType => bug!("no return type expectations but got BadReturnType"),
}
None
}
fn suggest_missing_writer(&self, rcvr_ty: Ty<'tcx>, rcvr_expr: &hir::Expr<'tcx>) -> Diag<'_> {
let mut file = None;
let ty_str = self.tcx.short_ty_string(rcvr_ty, &mut file);
let mut err = struct_span_code_err!(
self.dcx(),
rcvr_expr.span,
E0599,
"cannot write into `{}`",
ty_str
);
err.span_note(
rcvr_expr.span,
"must implement `io::Write`, `fmt::Write`, or have a `write_fmt` method",
);
if let ExprKind::Lit(_) = rcvr_expr.kind {
err.span_help(
rcvr_expr.span.shrink_to_lo(),
"a writer is needed before this format string",
);
};
if let Some(file) = file {
err.note(format!("the full type name has been written to '{}'", file.display()));
err.note("consider using `--verbose` to print the full type name to the console");
}
err
}
pub fn report_no_match_method_error(
&self,
mut span: Span,
rcvr_ty: Ty<'tcx>,
item_name: Ident,
source: SelfSource<'tcx>,
args: Option<&'tcx [hir::Expr<'tcx>]>,
sugg_span: Span,
no_match_data: &mut NoMatchData<'tcx>,
expected: Expectation<'tcx>,
trait_missing_method: bool,
) -> Option<Diag<'_>> {
let mode = no_match_data.mode;
let tcx = self.tcx;
let rcvr_ty = self.resolve_vars_if_possible(rcvr_ty);
let mut ty_file = None;
let (mut ty_str, short_ty_str) =
if trait_missing_method && let ty::Dynamic(predicates, _, _) = rcvr_ty.kind() {
(predicates.to_string(), with_forced_trimmed_paths!(predicates.to_string()))
} else {
(
tcx.short_ty_string(rcvr_ty, &mut ty_file),
with_forced_trimmed_paths!(rcvr_ty.to_string()),
)
};
let is_method = mode == Mode::MethodCall;
let unsatisfied_predicates = &no_match_data.unsatisfied_predicates;
let similar_candidate = no_match_data.similar_candidate;
let item_kind = if is_method {
"method"
} else if rcvr_ty.is_enum() {
"variant or associated item"
} else {
match (item_name.as_str().chars().next(), rcvr_ty.is_fresh_ty()) {
(Some(name), false) if name.is_lowercase() => "function or associated item",
(Some(_), false) => "associated item",
(Some(_), true) | (None, false) => "variant or associated item",
(None, true) => "variant",
}
};
// We could pass the file for long types into these two, but it isn't strictly necessary
// given how targeted they are.
if self.suggest_wrapping_range_with_parens(
tcx,
rcvr_ty,
source,
span,
item_name,
&short_ty_str,
) || self.suggest_constraining_numerical_ty(
tcx,
rcvr_ty,
source,
span,
item_kind,
item_name,
&short_ty_str,
) {
return None;
}
span = item_name.span;
// Don't show generic arguments when the method can't be found in any implementation (#81576).
let mut ty_str_reported = ty_str.clone();
if let ty::Adt(_, generics) = rcvr_ty.kind() {
if generics.len() > 0 {
let mut autoderef = self.autoderef(span, rcvr_ty);
let candidate_found = autoderef.any(|(ty, _)| {
if let ty::Adt(adt_def, _) = ty.kind() {
self.tcx
.inherent_impls(adt_def.did())
.into_iter()
.flatten()
.any(|def_id| self.associated_value(*def_id, item_name).is_some())
} else {
false
}
});
let has_deref = autoderef.step_count() > 0;
if !candidate_found && !has_deref && unsatisfied_predicates.is_empty() {
if let Some((path_string, _)) = ty_str.split_once('<') {
ty_str_reported = path_string.to_string();
}
}
}
}
let is_write = sugg_span.ctxt().outer_expn_data().macro_def_id.is_some_and(|def_id| {
tcx.is_diagnostic_item(sym::write_macro, def_id)
|| tcx.is_diagnostic_item(sym::writeln_macro, def_id)
}) && item_name.name == Symbol::intern("write_fmt");
let mut err = if is_write && let SelfSource::MethodCall(rcvr_expr) = source {
self.suggest_missing_writer(rcvr_ty, rcvr_expr)
} else {
tcx.dcx().create_err(NoAssociatedItem {
span,
item_kind,
item_name,
ty_prefix: if trait_missing_method {
// FIXME(mu001999) E0599 maybe not suitable here because it is for types
Cow::from("trait")
} else {
rcvr_ty.prefix_string(self.tcx)
},
ty_str: ty_str_reported,
trait_missing_method,
})
};
if tcx.sess.source_map().is_multiline(sugg_span) {
err.span_label(sugg_span.with_hi(span.lo()), "");
}
if short_ty_str.len() < ty_str.len() && ty_str.len() > 10 {
ty_str = short_ty_str;
}
if let Some(file) = ty_file {
err.note(format!("the full type name has been written to '{}'", file.display(),));
err.note("consider using `--verbose` to print the full type name to the console");
}
if rcvr_ty.references_error() {
err.downgrade_to_delayed_bug();
}
if matches!(source, SelfSource::QPath(_)) && args.is_some() {
self.find_builder_fn(&mut err, rcvr_ty);
}
if tcx.ty_is_opaque_future(rcvr_ty) && item_name.name == sym::poll {
err.help(format!(
"method `poll` found on `Pin<&mut {ty_str}>`, \
see documentation for `std::pin::Pin`"
));
err.help("self type must be pinned to call `Future::poll`, \
see https://rust-lang.github.io/async-book/04_pinning/01_chapter.html#pinning-in-practice"
);
}
if let Mode::MethodCall = mode
&& let SelfSource::MethodCall(cal) = source
{
self.suggest_await_before_method(
&mut err,
item_name,
rcvr_ty,
cal,
span,
expected.only_has_type(self),
);
}
if let Some(span) =
tcx.resolutions(()).confused_type_with_std_module.get(&span.with_parent(None))
{
err.span_suggestion(
span.shrink_to_lo(),
"you are looking for the module in `std`, not the primitive type",
"std::",
Applicability::MachineApplicable,
);
}
// on pointers, check if the method would exist on a reference
if let SelfSource::MethodCall(rcvr_expr) = source
&& let ty::RawPtr(ty, ptr_mutbl) = *rcvr_ty.kind()
&& let Ok(pick) = self.lookup_probe_for_diagnostic(
item_name,
Ty::new_ref(tcx, ty::Region::new_error_misc(tcx), ty, ptr_mutbl),
self.tcx.hir().expect_expr(self.tcx.parent_hir_id(rcvr_expr.hir_id)),
ProbeScope::TraitsInScope,
None,
)
&& let ty::Ref(_, _, sugg_mutbl) = *pick.self_ty.kind()
&& (sugg_mutbl.is_not() || ptr_mutbl.is_mut())
{
let (method, method_anchor) = match sugg_mutbl {
Mutability::Not => {
let method_anchor = match ptr_mutbl {
Mutability::Not => "as_ref",
Mutability::Mut => "as_ref-1",
};
("as_ref", method_anchor)
}
Mutability::Mut => ("as_mut", "as_mut"),
};
err.span_note(
tcx.def_span(pick.item.def_id),
format!("the method `{item_name}` exists on the type `{ty}`", ty = pick.self_ty),
);
let mut_str = ptr_mutbl.ptr_str();
err.note(format!(
"you might want to use the unsafe method `<*{mut_str} T>::{method}` to get \
an optional reference to the value behind the pointer"
));
err.note(format!(
"read the documentation for `<*{mut_str} T>::{method}` and ensure you satisfy its \
safety preconditions before calling it to avoid undefined behavior: \
https://doc.rust-lang.org/std/primitive.pointer.html#method.{method_anchor}"
));
}
let mut ty_span = match rcvr_ty.kind() {
ty::Param(param_type) => {
Some(param_type.span_from_generics(self.tcx, self.body_id.to_def_id()))
}
ty::Adt(def, _) if def.did().is_local() => Some(tcx.def_span(def.did())),
_ => None,
};
if let SelfSource::MethodCall(rcvr_expr) = source {
self.suggest_fn_call(&mut err, rcvr_expr, rcvr_ty, |output_ty| {
let call_expr =
self.tcx.hir().expect_expr(self.tcx.parent_hir_id(rcvr_expr.hir_id));
let probe = self.lookup_probe_for_diagnostic(
item_name,
output_ty,
call_expr,
ProbeScope::AllTraits,
expected.only_has_type(self),
);
probe.is_ok()
});
self.note_internal_mutation_in_method(
&mut err,
rcvr_expr,
expected.to_option(self),
rcvr_ty,
);
}
let mut custom_span_label = false;
let static_candidates = &mut no_match_data.static_candidates;
// `static_candidates` may have same candidates appended by
// inherent and extension, which may result in incorrect
// diagnostic.
static_candidates.dedup();
if !static_candidates.is_empty() {
err.note(
"found the following associated functions; to be used as methods, \
functions must have a `self` parameter",
);
err.span_label(span, "this is an associated function, not a method");
custom_span_label = true;
}
if static_candidates.len() == 1 {
self.suggest_associated_call_syntax(
&mut err,
static_candidates,
rcvr_ty,
source,
item_name,
args,
sugg_span,
);
self.note_candidates_on_method_error(
rcvr_ty,
item_name,
source,
args,
span,
&mut err,
static_candidates,
None,
);
} else if static_candidates.len() > 1 {
self.note_candidates_on_method_error(
rcvr_ty,
item_name,
source,
args,
span,
&mut err,
static_candidates,
Some(sugg_span),
);
}
let mut bound_spans: SortedMap<Span, Vec<String>> = Default::default();
let mut restrict_type_params = false;
let mut suggested_derive = false;
let mut unsatisfied_bounds = false;
if item_name.name == sym::count && self.is_slice_ty(rcvr_ty, span) {
let msg = "consider using `len` instead";
if let SelfSource::MethodCall(_expr) = source {
err.span_suggestion_short(span, msg, "len", Applicability::MachineApplicable);
} else {
err.span_label(span, msg);
}
if let Some(iterator_trait) = self.tcx.get_diagnostic_item(sym::Iterator) {
let iterator_trait = self.tcx.def_path_str(iterator_trait);
err.note(format!(
"`count` is defined on `{iterator_trait}`, which `{rcvr_ty}` does not implement"
));
}
} else if self.impl_into_iterator_should_be_iterator(rcvr_ty, span, unsatisfied_predicates)
{
err.span_label(span, format!("`{rcvr_ty}` is not an iterator"));
err.multipart_suggestion_verbose(
"call `.into_iter()` first",
vec![(span.shrink_to_lo(), format!("into_iter()."))],
Applicability::MaybeIncorrect,
);
return Some(err);
} else if !unsatisfied_predicates.is_empty() && matches!(rcvr_ty.kind(), ty::Param(_)) {
// We special case the situation where we are looking for `_` in
// `<TypeParam as _>::method` because otherwise the machinery will look for blanket
// implementations that have unsatisfied trait bounds to suggest, leading us to claim
// things like "we're looking for a trait with method `cmp`, both `Iterator` and `Ord`
// have one, in order to implement `Ord` you need to restrict `TypeParam: FnPtr` so
// that `impl<T: FnPtr> Ord for T` can apply", which is not what we want. We have a type
// parameter, we want to directly say "`Ord::cmp` and `Iterator::cmp` exist, restrict
// `TypeParam: Ord` or `TypeParam: Iterator`"". That is done further down when calling
// `self.suggest_traits_to_import`, so we ignore the `unsatisfied_predicates`
// suggestions.
} else if !unsatisfied_predicates.is_empty() {
let mut type_params = FxIndexMap::default();
// Pick out the list of unimplemented traits on the receiver.
// This is used for custom error messages with the `#[rustc_on_unimplemented]` attribute.
let mut unimplemented_traits = FxIndexMap::default();
let mut unimplemented_traits_only = true;
for (predicate, _parent_pred, cause) in unsatisfied_predicates {
if let (ty::PredicateKind::Clause(ty::ClauseKind::Trait(p)), Some(cause)) =
(predicate.kind().skip_binder(), cause.as_ref())
{
if p.trait_ref.self_ty() != rcvr_ty {
// This is necessary, not just to keep the errors clean, but also
// because our derived obligations can wind up with a trait ref that
// requires a different param_env to be correctly compared.
continue;
}
unimplemented_traits.entry(p.trait_ref.def_id).or_insert((
predicate.kind().rebind(p.trait_ref),
Obligation {
cause: cause.clone(),
param_env: self.param_env,
predicate: *predicate,
recursion_depth: 0,
},
));
}
}
// Make sure that, if any traits other than the found ones were involved,
// we don't don't report an unimplemented trait.
// We don't want to say that `iter::Cloned` is not an iterator, just
// because of some non-Clone item being iterated over.
for (predicate, _parent_pred, _cause) in unsatisfied_predicates {
match predicate.kind().skip_binder() {
ty::PredicateKind::Clause(ty::ClauseKind::Trait(p))
if unimplemented_traits.contains_key(&p.trait_ref.def_id) => {}
_ => {
unimplemented_traits_only = false;
break;
}
}
}
let mut collect_type_param_suggestions =
|self_ty: Ty<'tcx>, parent_pred: ty::Predicate<'tcx>, obligation: &str| {
// We don't care about regions here, so it's fine to skip the binder here.
if let (ty::Param(_), ty::PredicateKind::Clause(ty::ClauseKind::Trait(p))) =
(self_ty.kind(), parent_pred.kind().skip_binder())
{
let node = match p.trait_ref.self_ty().kind() {
ty::Param(_) => {
// Account for `fn` items like in `issue-35677.rs` to
// suggest restricting its type params.
Some(self.tcx.hir_node_by_def_id(self.body_id))
}
ty::Adt(def, _) => def
.did()
.as_local()
.map(|def_id| self.tcx.hir_node_by_def_id(def_id)),
_ => None,
};
if let Some(hir::Node::Item(hir::Item { kind, .. })) = node
&& let Some(g) = kind.generics()
{
let key = (
g.tail_span_for_predicate_suggestion(),
g.add_where_or_trailing_comma(),
);
type_params
.entry(key)
.or_insert_with(UnordSet::default)
.insert(obligation.to_owned());
return true;
}
}
false
};
let mut bound_span_label = |self_ty: Ty<'_>, obligation: &str, quiet: &str| {
let msg = format!("`{}`", if obligation.len() > 50 { quiet } else { obligation });
match &self_ty.kind() {
// Point at the type that couldn't satisfy the bound.
ty::Adt(def, _) => {
bound_spans.get_mut_or_insert_default(tcx.def_span(def.did())).push(msg)
}
// Point at the trait object that couldn't satisfy the bound.
ty::Dynamic(preds, _, _) => {
for pred in preds.iter() {
match pred.skip_binder() {
ty::ExistentialPredicate::Trait(tr) => {
bound_spans
.get_mut_or_insert_default(tcx.def_span(tr.def_id))
.push(msg.clone());
}
ty::ExistentialPredicate::Projection(_)
| ty::ExistentialPredicate::AutoTrait(_) => {}
}
}
}
// Point at the closure that couldn't satisfy the bound.
ty::Closure(def_id, _) => {
bound_spans
.get_mut_or_insert_default(tcx.def_span(*def_id))
.push(format!("`{quiet}`"));
}
_ => {}
}
};
let mut format_pred = |pred: ty::Predicate<'tcx>| {
let bound_predicate = pred.kind();
match bound_predicate.skip_binder() {
ty::PredicateKind::Clause(ty::ClauseKind::Projection(pred)) => {
let pred = bound_predicate.rebind(pred);
// `<Foo as Iterator>::Item = String`.
let projection_ty = pred.skip_binder().projection_ty;
let args_with_infer_self = tcx.mk_args_from_iter(
iter::once(Ty::new_var(tcx, ty::TyVid::ZERO).into())
.chain(projection_ty.args.iter().skip(1)),
);
let quiet_projection_ty =
ty::AliasTy::new(tcx, projection_ty.def_id, args_with_infer_self);
let term = pred.skip_binder().term;
let obligation = format!("{projection_ty} = {term}");
let quiet = with_forced_trimmed_paths!(format!(
"{} = {}",
quiet_projection_ty, term
));
bound_span_label(projection_ty.self_ty(), &obligation, &quiet);
Some((obligation, projection_ty.self_ty()))
}
ty::PredicateKind::Clause(ty::ClauseKind::Trait(poly_trait_ref)) => {
let p = poly_trait_ref.trait_ref;
let self_ty = p.self_ty();
let path = p.print_only_trait_path();
let obligation = format!("{self_ty}: {path}");
let quiet = with_forced_trimmed_paths!(format!("_: {}", path));
bound_span_label(self_ty, &obligation, &quiet);
Some((obligation, self_ty))
}
_ => None,
}
};
// Find all the requirements that come from a local `impl` block.
let mut skip_list: UnordSet<_> = Default::default();
let mut spanned_predicates = FxIndexMap::default();
for (p, parent_p, cause) in unsatisfied_predicates {
// Extract the predicate span and parent def id of the cause,
// if we have one.
let (item_def_id, cause_span) = match cause.as_ref().map(|cause| cause.code()) {
Some(ObligationCauseCode::ImplDerivedObligation(data)) => {
(data.impl_or_alias_def_id, data.span)
}
Some(
ObligationCauseCode::ExprBindingObligation(def_id, span, _, _)
| ObligationCauseCode::BindingObligation(def_id, span),
) => (*def_id, *span),
_ => continue,
};
// Don't point out the span of `WellFormed` predicates.
if !matches!(
p.kind().skip_binder(),
ty::PredicateKind::Clause(
ty::ClauseKind::Projection(..) | ty::ClauseKind::Trait(..)
)
) {
continue;
};
match self.tcx.hir().get_if_local(item_def_id) {
// Unmet obligation comes from a `derive` macro, point at it once to
// avoid multiple span labels pointing at the same place.
Some(Node::Item(hir::Item {
kind: hir::ItemKind::Impl(hir::Impl { of_trait, self_ty, .. }),
..
})) if matches!(
self_ty.span.ctxt().outer_expn_data().kind,
ExpnKind::Macro(MacroKind::Derive, _)
) || matches!(
of_trait.as_ref().map(|t| t.path.span.ctxt().outer_expn_data().kind),
Some(ExpnKind::Macro(MacroKind::Derive, _))
) =>
{
let span = self_ty.span.ctxt().outer_expn_data().call_site;
let entry = spanned_predicates.entry(span);
let entry = entry.or_insert_with(|| {
(FxIndexSet::default(), FxIndexSet::default(), Vec::new())
});
entry.0.insert(span);
entry.1.insert((
span,
"unsatisfied trait bound introduced in this `derive` macro",
));
entry.2.push(p);
skip_list.insert(p);
}
// Unmet obligation coming from an `impl`.
Some(Node::Item(hir::Item {
kind: hir::ItemKind::Impl(hir::Impl { of_trait, self_ty, generics, .. }),
span: item_span,
..
})) => {
let sized_pred =
unsatisfied_predicates.iter().any(|(pred, _, _)| {
match pred.kind().skip_binder() {
ty::PredicateKind::Clause(ty::ClauseKind::Trait(pred)) => {
Some(pred.def_id()) == self.tcx.lang_items().sized_trait()
&& pred.polarity == ty::PredicatePolarity::Positive
}
_ => false,
}
});
for param in generics.params {
if param.span == cause_span && sized_pred {
let (sp, sugg) = match param.colon_span {
Some(sp) => (sp.shrink_to_hi(), " ?Sized +"),
None => (param.span.shrink_to_hi(), ": ?Sized"),
};
err.span_suggestion_verbose(
sp,
"consider relaxing the type parameter's implicit `Sized` bound",
sugg,
Applicability::MachineApplicable,
);
}
}
if let Some(pred) = parent_p {
// Done to add the "doesn't satisfy" `span_label`.
let _ = format_pred(*pred);
}
skip_list.insert(p);
let entry = spanned_predicates.entry(self_ty.span);
let entry = entry.or_insert_with(|| {
(FxIndexSet::default(), FxIndexSet::default(), Vec::new())
});
entry.2.push(p);
if cause_span != *item_span {
entry.0.insert(cause_span);
entry.1.insert((cause_span, "unsatisfied trait bound introduced here"));
} else {
if let Some(trait_ref) = of_trait {
entry.0.insert(trait_ref.path.span);
}
entry.0.insert(self_ty.span);
};
if let Some(trait_ref) = of_trait {
entry.1.insert((trait_ref.path.span, ""));
}
entry.1.insert((self_ty.span, ""));
}
Some(Node::Item(hir::Item {
kind: hir::ItemKind::Trait(rustc_ast::ast::IsAuto::Yes, ..),
span: item_span,
..
})) => {
tcx.dcx().span_delayed_bug(
*item_span,
"auto trait is invoked with no method error, but no error reported?",
);
}
Some(
Node::Item(hir::Item {
ident,
kind: hir::ItemKind::Trait(..) | hir::ItemKind::TraitAlias(..),
..
})
// We may also encounter unsatisfied GAT or method bounds
| Node::TraitItem(hir::TraitItem { ident, .. })
| Node::ImplItem(hir::ImplItem { ident, .. }),
) => {
skip_list.insert(p);
let entry = spanned_predicates.entry(ident.span);
let entry = entry.or_insert_with(|| {
(FxIndexSet::default(), FxIndexSet::default(), Vec::new())
});
entry.0.insert(cause_span);
entry.1.insert((ident.span, ""));
entry.1.insert((cause_span, "unsatisfied trait bound introduced here"));
entry.2.push(p);
}
Some(node) => unreachable!("encountered `{node:?}` due to `{cause:#?}`"),
None => (),
}
}
let mut spanned_predicates: Vec<_> = spanned_predicates.into_iter().collect();
spanned_predicates.sort_by_key(|(span, _)| *span);
for (_, (primary_spans, span_labels, predicates)) in spanned_predicates {
let mut preds: Vec<_> = predicates
.iter()
.filter_map(|pred| format_pred(**pred))
.map(|(p, _)| format!("`{p}`"))
.collect();
preds.sort();
preds.dedup();
let msg = if let [pred] = &preds[..] {
format!("trait bound {pred} was not satisfied")
} else {
format!("the following trait bounds were not satisfied:\n{}", preds.join("\n"),)
};
let mut span: MultiSpan = primary_spans.into_iter().collect::<Vec<_>>().into();
for (sp, label) in span_labels {
span.push_span_label(sp, label);
}
err.span_note(span, msg);
unsatisfied_bounds = true;
}
let mut suggested_bounds = UnordSet::default();
// The requirements that didn't have an `impl` span to show.
let mut bound_list = unsatisfied_predicates
.iter()
.filter_map(|(pred, parent_pred, _cause)| {
let mut suggested = false;
format_pred(*pred).map(|(p, self_ty)| {
if let Some(parent) = parent_pred
&& suggested_bounds.contains(parent)
{
// We don't suggest `PartialEq` when we already suggest `Eq`.
} else if !suggested_bounds.contains(pred) {
if collect_type_param_suggestions(self_ty, *pred, &p) {
suggested = true;
suggested_bounds.insert(pred);
}
}
(
match parent_pred {
None => format!("`{}`", &p),
Some(parent_pred) => match format_pred(*parent_pred) {
None => format!("`{}`", &p),
Some((parent_p, _)) => {
if !suggested
&& !suggested_bounds.contains(pred)
&& !suggested_bounds.contains(parent_pred)
{
if collect_type_param_suggestions(
self_ty,
*parent_pred,
&p,
) {
suggested_bounds.insert(pred);
}
}
format!("`{p}`\nwhich is required by `{parent_p}`")
}
},
},
*pred,
)
})
})
.filter(|(_, pred)| !skip_list.contains(&pred))
.map(|(t, _)| t)
.enumerate()
.collect::<Vec<(usize, String)>>();
if !matches!(rcvr_ty.peel_refs().kind(), ty::Param(_)) {
for ((span, add_where_or_comma), obligations) in type_params.into_iter() {
restrict_type_params = true;
// #74886: Sort here so that the output is always the same.
let obligations = obligations.into_sorted_stable_ord();
err.span_suggestion_verbose(
span,
format!(
"consider restricting the type parameter{s} to satisfy the trait \
bound{s}",
s = pluralize!(obligations.len())
),
format!("{} {}", add_where_or_comma, obligations.join(", ")),
Applicability::MaybeIncorrect,
);
}
}
bound_list.sort_by(|(_, a), (_, b)| a.cmp(b)); // Sort alphabetically.
bound_list.dedup_by(|(_, a), (_, b)| a == b); // #35677
bound_list.sort_by_key(|(pos, _)| *pos); // Keep the original predicate order.
if !bound_list.is_empty() || !skip_list.is_empty() {
let bound_list =
bound_list.into_iter().map(|(_, path)| path).collect::<Vec<_>>().join("\n");
let actual_prefix = rcvr_ty.prefix_string(self.tcx);
info!("unimplemented_traits.len() == {}", unimplemented_traits.len());
let mut long_ty_file = None;
let (primary_message, label) = if unimplemented_traits.len() == 1
&& unimplemented_traits_only
{
unimplemented_traits
.into_iter()
.next()
.map(|(_, (trait_ref, obligation))| {
if trait_ref.self_ty().references_error() || rcvr_ty.references_error()
{
// Avoid crashing.
return (None, None);
}
let OnUnimplementedNote { message, label, .. } = self
.err_ctxt()
.on_unimplemented_note(trait_ref, &obligation, &mut long_ty_file);
(message, label)
})
.unwrap()
} else {
(None, None)
};
let primary_message = primary_message.unwrap_or_else(|| {
format!(
"the {item_kind} `{item_name}` exists for {actual_prefix} `{ty_str}`, \
but its trait bounds were not satisfied"
)
});
err.primary_message(primary_message);
if let Some(file) = long_ty_file {
err.note(format!(
"the full name for the type has been written to '{}'",
file.display(),
));
err.note(
"consider using `--verbose` to print the full type name to the console",
);
}
if let Some(label) = label {
custom_span_label = true;
err.span_label(span, label);
}
if !bound_list.is_empty() {
err.note(format!(
"the following trait bounds were not satisfied:\n{bound_list}"
));
}
suggested_derive = self.suggest_derive(&mut err, unsatisfied_predicates);
unsatisfied_bounds = true;
}
} else if let ty::Adt(def, targs) = rcvr_ty.kind()
&& let SelfSource::MethodCall(rcvr_expr) = source
{
// This is useful for methods on arbitrary self types that might have a simple
// mutability difference, like calling a method on `Pin<&mut Self>` that is on
// `Pin<&Self>`.
if targs.len() == 1 {
let mut item_segment = hir::PathSegment::invalid();
item_segment.ident = item_name;
for t in [Ty::new_mut_ref, Ty::new_imm_ref, |_, _, t| t] {
let new_args =
tcx.mk_args_from_iter(targs.iter().map(|arg| match arg.as_type() {
Some(ty) => ty::GenericArg::from(t(
tcx,
tcx.lifetimes.re_erased,
ty.peel_refs(),
)),
_ => arg,
}));
let rcvr_ty = Ty::new_adt(tcx, *def, new_args);
if let Ok(method) = self.lookup_method_for_diagnostic(
rcvr_ty,
&item_segment,
span,
tcx.parent_hir_node(rcvr_expr.hir_id).expect_expr(),
rcvr_expr,
) {
err.span_note(
tcx.def_span(method.def_id),
format!("{item_kind} is available for `{rcvr_ty}`"),
);
}
}
}
}
let label_span_not_found = |err: &mut Diag<'_>| {
if unsatisfied_predicates.is_empty() {
err.span_label(span, format!("{item_kind} not found in `{ty_str}`"));
let is_string_or_ref_str = match rcvr_ty.kind() {
ty::Ref(_, ty, _) => {
ty.is_str()
|| matches!(
ty.kind(),
ty::Adt(adt, _) if Some(adt.did()) == self.tcx.lang_items().string()
)
}
ty::Adt(adt, _) => Some(adt.did()) == self.tcx.lang_items().string(),
_ => false,
};
if is_string_or_ref_str && item_name.name == sym::iter {
err.span_suggestion_verbose(
item_name.span,
"because of the in-memory representation of `&str`, to obtain \
an `Iterator` over each of its codepoint use method `chars`",
"chars",
Applicability::MachineApplicable,
);
}
if let ty::Adt(adt, _) = rcvr_ty.kind() {
let mut inherent_impls_candidate = self
.tcx
.inherent_impls(adt.did())
.into_iter()
.flatten()
.copied()
.filter(|def_id| {
if let Some(assoc) = self.associated_value(*def_id, item_name) {
// Check for both mode is the same so we avoid suggesting
// incorrect associated item.
match (mode, assoc.fn_has_self_parameter, source) {
(Mode::MethodCall, true, SelfSource::MethodCall(_)) => {
// We check that the suggest type is actually
// different from the received one
// So we avoid suggestion method with Box<Self>
// for instance
self.tcx.at(span).type_of(*def_id).instantiate_identity()
!= rcvr_ty
}
(Mode::Path, false, _) => true,
_ => false,
}
} else {
false
}
})
.collect::<Vec<_>>();
if !inherent_impls_candidate.is_empty() {
inherent_impls_candidate.sort_by_key(|id| self.tcx.def_path_str(id));
inherent_impls_candidate.dedup();
// number of types to show at most
let limit = if inherent_impls_candidate.len() == 5 { 5 } else { 4 };
let type_candidates = inherent_impls_candidate
.iter()
.take(limit)
.map(|impl_item| {
format!(
"- `{}`",
self.tcx.at(span).type_of(*impl_item).instantiate_identity()
)
})
.collect::<Vec<_>>()
.join("\n");
let additional_types = if inherent_impls_candidate.len() > limit {
format!("\nand {} more types", inherent_impls_candidate.len() - limit)
} else {
"".to_string()
};
err.note(format!(
"the {item_kind} was found for\n{type_candidates}{additional_types}"
));
}
}
} else {
let ty_str =
if ty_str.len() > 50 { String::new() } else { format!("on `{ty_str}` ") };
err.span_label(
span,
format!("{item_kind} cannot be called {ty_str}due to unsatisfied trait bounds"),
);
}
};
// If the method name is the name of a field with a function or closure type,
// give a helping note that it has to be called as `(x.f)(...)`.
if let SelfSource::MethodCall(expr) = source {
if !self.suggest_calling_field_as_fn(span, rcvr_ty, expr, item_name, &mut err)
&& similar_candidate.is_none()
&& !custom_span_label
{
label_span_not_found(&mut err);
}
} else if !custom_span_label {
label_span_not_found(&mut err);
}
let confusable_suggested = self.confusable_method_name(
&mut err,
rcvr_ty,
item_name,
args.map(|args| {
args.iter()
.map(|expr| {
self.node_ty_opt(expr.hir_id).unwrap_or_else(|| {
self.next_ty_var(TypeVariableOrigin {
param_def_id: None,
span: expr.span,
})
})
})
.collect()
}),
);
// Don't suggest (for example) `expr.field.clone()` if `expr.clone()`
// can't be called due to `typeof(expr): Clone` not holding.
if unsatisfied_predicates.is_empty() {
self.suggest_calling_method_on_field(
&mut err,
source,
span,
rcvr_ty,
item_name,
expected.only_has_type(self),
);
}
self.suggest_unwrapping_inner_self(&mut err, source, rcvr_ty, item_name);
for (span, mut bounds) in bound_spans {
if !tcx.sess.source_map().is_span_accessible(span) {
continue;
}
bounds.sort();
bounds.dedup();
let pre = if Some(span) == ty_span {
ty_span.take();
format!(
"{item_kind} `{item_name}` not found for this {} because it ",
rcvr_ty.prefix_string(self.tcx)
)
} else {
String::new()
};
let msg = match &bounds[..] {
[bound] => format!("{pre}doesn't satisfy {bound}"),
bounds if bounds.len() > 4 => format!("doesn't satisfy {} bounds", bounds.len()),
[bounds @ .., last] => {
format!("{pre}doesn't satisfy {} or {last}", bounds.join(", "))
}
[] => unreachable!(),
};
err.span_label(span, msg);
}
if let Some(span) = ty_span {
err.span_label(
span,
format!(
"{item_kind} `{item_name}` not found for this {}",
rcvr_ty.prefix_string(self.tcx)
),
);
}
if rcvr_ty.is_numeric() && rcvr_ty.is_fresh() || restrict_type_params || suggested_derive {
} else {
self.suggest_traits_to_import(
&mut err,
span,
rcvr_ty,
item_name,
args.map(|args| args.len() + 1),
source,
no_match_data.out_of_scope_traits.clone(),
static_candidates,
unsatisfied_bounds,
expected.only_has_type(self),
trait_missing_method,
);
}
// Don't emit a suggestion if we found an actual method
// that had unsatisfied trait bounds
if unsatisfied_predicates.is_empty() && rcvr_ty.is_enum() {
let adt_def = rcvr_ty.ty_adt_def().expect("enum is not an ADT");
if let Some(suggestion) = edit_distance::find_best_match_for_name(
&adt_def.variants().iter().map(|s| s.name).collect::<Vec<_>>(),
item_name.name,
None,
) {
err.span_suggestion(
span,
"there is a variant with a similar name",
suggestion,
Applicability::MaybeIncorrect,
);
}
}
if item_name.name == sym::as_str && rcvr_ty.peel_refs().is_str() {
let msg = "remove this method call";
let mut fallback_span = true;
if let SelfSource::MethodCall(expr) = source {
let call_expr = self.tcx.hir().expect_expr(self.tcx.parent_hir_id(expr.hir_id));
if let Some(span) = call_expr.span.trim_start(expr.span) {
err.span_suggestion(span, msg, "", Applicability::MachineApplicable);
fallback_span = false;
}
}
if fallback_span {
err.span_label(span, msg);
}
} else if let Some(similar_candidate) = similar_candidate {
// Don't emit a suggestion if we found an actual method
// that had unsatisfied trait bounds
if unsatisfied_predicates.is_empty()
// ...or if we already suggested that name because of `rustc_confusable` annotation.
&& Some(similar_candidate.name) != confusable_suggested
{
self.find_likely_intended_associated_item(
&mut err,
similar_candidate,
span,
args,
mode,
);
}
}
// If an appropriate error source is not found, check method chain for possible candiates
if unsatisfied_predicates.is_empty()
&& let Mode::MethodCall = mode
&& let SelfSource::MethodCall(mut source_expr) = source
{
let mut stack_methods = vec![];
while let hir::ExprKind::MethodCall(_path_segment, rcvr_expr, _args, method_span) =
source_expr.kind
{
// Pop the matching receiver, to align on it's notional span
if let Some(prev_match) = stack_methods.pop() {
err.span_label(
method_span,
format!("{item_kind} `{item_name}` is available on `{prev_match}`"),
);
}
let rcvr_ty = self.resolve_vars_if_possible(
self.typeck_results
.borrow()
.expr_ty_adjusted_opt(rcvr_expr)
.unwrap_or(Ty::new_misc_error(self.tcx)),
);
for _matched_method in self.probe_for_name_many(
Mode::MethodCall,
item_name,
None,
IsSuggestion(true),
rcvr_ty,
source_expr.hir_id,
ProbeScope::TraitsInScope,
) {
// found a match, push to stack
stack_methods.push(rcvr_ty);
}
source_expr = rcvr_expr;
}
// If there is a match at the start of the chain, add a label for it too!
if let Some(prev_match) = stack_methods.pop() {
err.span_label(
source_expr.span,
format!("{item_kind} `{item_name}` is available on `{prev_match}`"),
);
}
}
self.note_derefed_ty_has_method(&mut err, source, rcvr_ty, item_name, expected);
Some(err)
}
fn find_likely_intended_associated_item(
&self,
err: &mut Diag<'_>,
similar_candidate: ty::AssocItem,
span: Span,
args: Option<&'tcx [hir::Expr<'tcx>]>,
mode: Mode,
) {
let tcx = self.tcx;
let def_kind = similar_candidate.kind.as_def_kind();
let an = self.tcx.def_kind_descr_article(def_kind, similar_candidate.def_id);
let msg = format!(
"there is {an} {} `{}` with a similar name",
self.tcx.def_kind_descr(def_kind, similar_candidate.def_id),
similar_candidate.name,
);
// Methods are defined within the context of a struct and their first parameter
// is always `self`, which represents the instance of the struct the method is
// being called on Associated functions don’t take self as a parameter and they are
// not methods because they don’t have an instance of the struct to work with.
if def_kind == DefKind::AssocFn {
let ty_args = self.infcx.fresh_args_for_item(span, similar_candidate.def_id);
let fn_sig = tcx.fn_sig(similar_candidate.def_id).instantiate(tcx, ty_args);
let fn_sig = self.instantiate_binder_with_fresh_vars(span, infer::FnCall, fn_sig);
if similar_candidate.fn_has_self_parameter {
if let Some(args) = args
&& fn_sig.inputs()[1..].len() == args.len()
{
// We found a method with the same number of arguments as the method
// call expression the user wrote.
err.span_suggestion_verbose(
span,
msg,
similar_candidate.name,
Applicability::MaybeIncorrect,
);
} else {
// We found a method but either the expression is not a method call or
// the argument count didn't match.
err.span_help(
tcx.def_span(similar_candidate.def_id),
format!(
"{msg}{}",
if let None = args { "" } else { ", but with different arguments" },
),
);
}
} else if let Some(args) = args
&& fn_sig.inputs().len() == args.len()
{
// We have fn call expression and the argument count match the associated
// function we found.
err.span_suggestion_verbose(
span,
msg,
similar_candidate.name,
Applicability::MaybeIncorrect,
);
} else {
err.span_help(tcx.def_span(similar_candidate.def_id), msg);
}
} else if let Mode::Path = mode
&& args.unwrap_or(&[]).is_empty()
{
// We have an associated item syntax and we found something that isn't an fn.
err.span_suggestion_verbose(
span,
msg,
similar_candidate.name,
Applicability::MaybeIncorrect,
);
} else {
// The expression is a function or method call, but the item we found is an
// associated const or type.
err.span_help(tcx.def_span(similar_candidate.def_id), msg);
}
}
pub(crate) fn confusable_method_name(
&self,
err: &mut Diag<'_>,
rcvr_ty: Ty<'tcx>,
item_name: Ident,
call_args: Option<Vec<Ty<'tcx>>>,
) -> Option<Symbol> {
if let ty::Adt(adt, adt_args) = rcvr_ty.kind() {
for inherent_impl_did in self.tcx.inherent_impls(adt.did()).into_iter().flatten() {
for inherent_method in
self.tcx.associated_items(inherent_impl_did).in_definition_order()
{
if let Some(attr) =
self.tcx.get_attr(inherent_method.def_id, sym::rustc_confusables)
&& let Some(candidates) = parse_confusables(attr)
&& candidates.contains(&item_name.name)
&& let ty::AssocKind::Fn = inherent_method.kind
{
let args =
ty::GenericArgs::identity_for_item(self.tcx, inherent_method.def_id)
.rebase_onto(
self.tcx,
inherent_method.container_id(self.tcx),
adt_args,
);
let fn_sig =
self.tcx.fn_sig(inherent_method.def_id).instantiate(self.tcx, args);
let fn_sig = self.instantiate_binder_with_fresh_vars(
item_name.span,
infer::FnCall,
fn_sig,
);
if let Some(ref args) = call_args
&& fn_sig.inputs()[1..]
.iter()
.zip(args.into_iter())
.all(|(expected, found)| self.can_coerce(*expected, *found))
&& fn_sig.inputs()[1..].len() == args.len()
{
err.span_suggestion_verbose(
item_name.span,
format!("you might have meant to use `{}`", inherent_method.name),
inherent_method.name,
Applicability::MaybeIncorrect,
);
return Some(inherent_method.name);
} else if let None = call_args {
err.span_note(
self.tcx.def_span(inherent_method.def_id),
format!(
"you might have meant to use method `{}`",
inherent_method.name,
),
);
return Some(inherent_method.name);
}
}
}
}
}
None
}
fn note_candidates_on_method_error(
&self,
rcvr_ty: Ty<'tcx>,
item_name: Ident,
self_source: SelfSource<'tcx>,
args: Option<&'tcx [hir::Expr<'tcx>]>,
span: Span,
err: &mut Diag<'_>,
sources: &mut Vec<CandidateSource>,
sugg_span: Option<Span>,
) {
sources.sort_by_key(|source| match source {
CandidateSource::Trait(id) => (0, self.tcx.def_path_str(id)),
CandidateSource::Impl(id) => (1, self.tcx.def_path_str(id)),
});
sources.dedup();
// Dynamic limit to avoid hiding just one candidate, which is silly.
let limit = if sources.len() == 5 { 5 } else { 4 };
let mut suggs = vec![];
for (idx, source) in sources.iter().take(limit).enumerate() {
match *source {
CandidateSource::Impl(impl_did) => {
// Provide the best span we can. Use the item, if local to crate, else
// the impl, if local to crate (item may be defaulted), else nothing.
let Some(item) = self.associated_value(impl_did, item_name).or_else(|| {
let impl_trait_ref = self.tcx.impl_trait_ref(impl_did)?;
self.associated_value(impl_trait_ref.skip_binder().def_id, item_name)
}) else {
continue;
};
let note_span = if item.def_id.is_local() {
Some(self.tcx.def_span(item.def_id))
} else if impl_did.is_local() {
Some(self.tcx.def_span(impl_did))
} else {
None
};
let impl_ty = self.tcx.at(span).type_of(impl_did).instantiate_identity();
let insertion = match self.tcx.impl_trait_ref(impl_did) {
None => String::new(),
Some(trait_ref) => {
format!(
" of the trait `{}`",
self.tcx.def_path_str(trait_ref.skip_binder().def_id)
)
}
};
let (note_str, idx) = if sources.len() > 1 {
(
format!(
"candidate #{} is defined in an impl{} for the type `{}`",
idx + 1,
insertion,
impl_ty,
),
Some(idx + 1),
)
} else {
(
format!(
"the candidate is defined in an impl{insertion} for the type `{impl_ty}`",
),
None,
)
};
if let Some(note_span) = note_span {
// We have a span pointing to the method. Show note with snippet.
err.span_note(note_span, note_str);
} else {
err.note(note_str);
}
if let Some(sugg_span) = sugg_span
&& let Some(trait_ref) = self.tcx.impl_trait_ref(impl_did)
&& let Some(sugg) = print_disambiguation_help(
self.tcx,
err,
self_source,
args,
trait_ref
.instantiate(
self.tcx,
self.fresh_args_for_item(sugg_span, impl_did),
)
.with_self_ty(self.tcx, rcvr_ty),
idx,
sugg_span,
item,
)
{
suggs.push(sugg);
}
}
CandidateSource::Trait(trait_did) => {
let Some(item) = self.associated_value(trait_did, item_name) else { continue };
let item_span = self.tcx.def_span(item.def_id);
let idx = if sources.len() > 1 {
let msg = format!(
"candidate #{} is defined in the trait `{}`",
idx + 1,
self.tcx.def_path_str(trait_did)
);
err.span_note(item_span, msg);
Some(idx + 1)
} else {
let msg = format!(
"the candidate is defined in the trait `{}`",
self.tcx.def_path_str(trait_did)
);
err.span_note(item_span, msg);
None
};
if let Some(sugg_span) = sugg_span
&& let Some(sugg) = print_disambiguation_help(
self.tcx,
err,
self_source,
args,
ty::TraitRef::new(
self.tcx,
trait_did,
self.fresh_args_for_item(sugg_span, trait_did),
)
.with_self_ty(self.tcx, rcvr_ty),
idx,
sugg_span,
item,
)
{
suggs.push(sugg);
}
}
}
}
if !suggs.is_empty()
&& let Some(span) = sugg_span
{
suggs.sort();
err.span_suggestions(
span.with_hi(item_name.span.lo()),
"use fully-qualified syntax to disambiguate",
suggs,
Applicability::MachineApplicable,
);
}
if sources.len() > limit {
err.note(format!("and {} others", sources.len() - limit));
}
}
/// Look at all the associated functions without receivers in the type's inherent impls
/// to look for builders that return `Self`, `Option<Self>` or `Result<Self, _>`.
fn find_builder_fn(&self, err: &mut Diag<'_>, rcvr_ty: Ty<'tcx>) {
let ty::Adt(adt_def, _) = rcvr_ty.kind() else {
return;
};
// FIXME(oli-obk): try out bubbling this error up one level and cancelling the other error in that case.
let Ok(impls) = self.tcx.inherent_impls(adt_def.did()) else { return };
let mut items = impls
.iter()
.flat_map(|i| self.tcx.associated_items(i).in_definition_order())
// Only assoc fn with no receivers.
.filter(|item| matches!(item.kind, ty::AssocKind::Fn) && !item.fn_has_self_parameter)
.filter_map(|item| {
// Only assoc fns that return `Self`, `Option<Self>` or `Result<Self, _>`.
let ret_ty = self
.tcx
.fn_sig(item.def_id)
.instantiate(self.tcx, self.fresh_args_for_item(DUMMY_SP, item.def_id))
.output();
let ret_ty = self.tcx.instantiate_bound_regions_with_erased(ret_ty);
let ty::Adt(def, args) = ret_ty.kind() else {
return None;
};
// Check for `-> Self`
if self.can_eq(self.param_env, ret_ty, rcvr_ty) {
return Some((item.def_id, ret_ty));
}
// Check for `-> Option<Self>` or `-> Result<Self, _>`
if ![self.tcx.lang_items().option_type(), self.tcx.get_diagnostic_item(sym::Result)]
.contains(&Some(def.did()))
{
return None;
}
let arg = args.get(0)?.expect_ty();
if self.can_eq(self.param_env, rcvr_ty, arg) {
Some((item.def_id, ret_ty))
} else {
None
}
})
.collect::<Vec<_>>();
let post = if items.len() > 5 {
let items_len = items.len();
items.truncate(4);
format!("\nand {} others", items_len - 4)
} else {
String::new()
};
match &items[..] {
[] => {}
[(def_id, ret_ty)] => {
err.span_note(
self.tcx.def_span(def_id),
format!(
"if you're trying to build a new `{rcvr_ty}`, consider using `{}` which \
returns `{ret_ty}`",
self.tcx.def_path_str(def_id),
),
);
}
_ => {
let span: MultiSpan = items
.iter()
.map(|(def_id, _)| self.tcx.def_span(def_id))
.collect::<Vec<Span>>()
.into();
err.span_note(
span,
format!(
"if you're trying to build a new `{rcvr_ty}` consider using one of the \
following associated functions:\n{}{post}",
items
.iter()
.map(|(def_id, _ret_ty)| self.tcx.def_path_str(def_id))
.collect::<Vec<String>>()
.join("\n")
),
);
}
}
}
/// Suggest calling `Ty::method` if `.method()` isn't found because the method
/// doesn't take a `self` receiver.
fn suggest_associated_call_syntax(
&self,
err: &mut Diag<'_>,
static_candidates: &Vec<CandidateSource>,
rcvr_ty: Ty<'tcx>,
source: SelfSource<'tcx>,
item_name: Ident,
args: Option<&'tcx [hir::Expr<'tcx>]>,
sugg_span: Span,
) {
let mut has_unsuggestable_args = false;
let ty_str = if let Some(CandidateSource::Impl(impl_did)) = static_candidates.get(0) {
// When the "method" is resolved through dereferencing, we really want the
// original type that has the associated function for accurate suggestions.
// (#61411)
let impl_ty = self.tcx.type_of(*impl_did).instantiate_identity();
let target_ty = self
.autoderef(sugg_span, rcvr_ty)
.find(|(rcvr_ty, _)| {
DeepRejectCtxt { treat_obligation_params: TreatParams::AsCandidateKey }
.types_may_unify(*rcvr_ty, impl_ty)
})
.map_or(impl_ty, |(ty, _)| ty)
.peel_refs();
if let ty::Adt(def, args) = target_ty.kind() {
// If there are any inferred arguments, (`{integer}`), we should replace
// them with underscores to allow the compiler to infer them
let infer_args = self.tcx.mk_args_from_iter(args.into_iter().map(|arg| {
if !arg.is_suggestable(self.tcx, true) {
has_unsuggestable_args = true;
match arg.unpack() {
GenericArgKind::Lifetime(_) => self
.next_region_var(RegionVariableOrigin::MiscVariable(DUMMY_SP))
.into(),
GenericArgKind::Type(_) => self
.next_ty_var(TypeVariableOrigin {
span: DUMMY_SP,
param_def_id: None,
})
.into(),
GenericArgKind::Const(arg) => self
.next_const_var(
arg.ty(),
ConstVariableOrigin { span: DUMMY_SP, param_def_id: None },
)
.into(),
}
} else {
arg
}
}));
self.tcx.value_path_str_with_args(def.did(), infer_args)
} else {
self.ty_to_value_string(target_ty)
}
} else {
self.ty_to_value_string(rcvr_ty.peel_refs())
};
if let SelfSource::MethodCall(_) = source {
let first_arg = static_candidates.get(0).and_then(|candidate_source| {
let (assoc_did, self_ty) = match candidate_source {
CandidateSource::Impl(impl_did) => {
(*impl_did, self.tcx.type_of(*impl_did).instantiate_identity())
}
CandidateSource::Trait(trait_did) => (*trait_did, rcvr_ty),
};
let assoc = self.associated_value(assoc_did, item_name)?;
if assoc.kind != ty::AssocKind::Fn {
return None;
}
// for CandidateSource::Impl, `Self` will be instantiated to a concrete type
// but for CandidateSource::Trait, `Self` is still `Self`
let sig = self.tcx.fn_sig(assoc.def_id).instantiate_identity();
sig.inputs().skip_binder().get(0).and_then(|first| {
// if the type of first arg is the same as the current impl type, we should take the first arg into assoc function
let first_ty = first.peel_refs();
if first_ty == self_ty || first_ty == self.tcx.types.self_param {
Some(first.ref_mutability().map_or("", |mutbl| mutbl.ref_prefix_str()))
} else {
None
}
})
});
let mut applicability = Applicability::MachineApplicable;
let args = if let SelfSource::MethodCall(receiver) = source
&& let Some(args) = args
{
// The first arg is the same kind as the receiver
let explicit_args = if first_arg.is_some() {
std::iter::once(receiver).chain(args.iter()).collect::<Vec<_>>()
} else {
// There is no `Self` kind to infer the arguments from
if has_unsuggestable_args {
applicability = Applicability::HasPlaceholders;
}
args.iter().collect()
};
format!(
"({}{})",
first_arg.unwrap_or(""),
explicit_args
.iter()
.map(|arg| self
.tcx
.sess
.source_map()
.span_to_snippet(arg.span)
.unwrap_or_else(|_| {
applicability = Applicability::HasPlaceholders;
"_".to_owned()
}))
.collect::<Vec<_>>()
.join(", "),
)
} else {
applicability = Applicability::HasPlaceholders;
"(...)".to_owned()
};
err.span_suggestion(
sugg_span,
"use associated function syntax instead",
format!("{ty_str}::{item_name}{args}"),
applicability,
);
} else {
err.help(format!("try with `{ty_str}::{item_name}`",));
}
}
/// Suggest calling a field with a type that implements the `Fn*` traits instead of a method with
/// the same name as the field i.e. `(a.my_fn_ptr)(10)` instead of `a.my_fn_ptr(10)`.
fn suggest_calling_field_as_fn(
&self,
span: Span,
rcvr_ty: Ty<'tcx>,
expr: &hir::Expr<'_>,
item_name: Ident,
err: &mut Diag<'_>,
) -> bool {
let tcx = self.tcx;
let field_receiver = self.autoderef(span, rcvr_ty).find_map(|(ty, _)| match ty.kind() {
ty::Adt(def, args) if !def.is_enum() => {
let variant = &def.non_enum_variant();
tcx.find_field_index(item_name, variant).map(|index| {
let field = &variant.fields[index];
let field_ty = field.ty(tcx, args);
(field, field_ty)
})
}
_ => None,
});
if let Some((field, field_ty)) = field_receiver {
let scope = tcx.parent_module_from_def_id(self.body_id);
let is_accessible = field.vis.is_accessible_from(scope, tcx);
if is_accessible {
if self.is_fn_ty(field_ty, span) {
let expr_span = expr.span.to(item_name.span);
err.multipart_suggestion(
format!(
"to call the function stored in `{item_name}`, \
surround the field access with parentheses",
),
vec![
(expr_span.shrink_to_lo(), '('.to_string()),
(expr_span.shrink_to_hi(), ')'.to_string()),
],
Applicability::MachineApplicable,
);
} else {
let call_expr = tcx.hir().expect_expr(tcx.parent_hir_id(expr.hir_id));
if let Some(span) = call_expr.span.trim_start(item_name.span) {
err.span_suggestion(
span,
"remove the arguments",
"",
Applicability::MaybeIncorrect,
);
}
}
}
let field_kind = if is_accessible { "field" } else { "private field" };
err.span_label(item_name.span, format!("{field_kind}, not a method"));
return true;
}
false
}
/// Suggest possible range with adding parentheses, for example:
/// when encountering `0..1.map(|i| i + 1)` suggest `(0..1).map(|i| i + 1)`.
fn suggest_wrapping_range_with_parens(
&self,
tcx: TyCtxt<'tcx>,
actual: Ty<'tcx>,
source: SelfSource<'tcx>,
span: Span,
item_name: Ident,
ty_str: &str,
) -> bool {
if let SelfSource::MethodCall(expr) = source {
for (_, parent) in tcx.hir().parent_iter(expr.hir_id).take(5) {
if let Node::Expr(parent_expr) = parent {
let lang_item = match parent_expr.kind {
ExprKind::Struct(qpath, _, _) => match *qpath {
QPath::LangItem(LangItem::Range, ..) => Some(LangItem::Range),
QPath::LangItem(LangItem::RangeTo, ..) => Some(LangItem::RangeTo),
QPath::LangItem(LangItem::RangeToInclusive, ..) => {
Some(LangItem::RangeToInclusive)
}
_ => None,
},
ExprKind::Call(func, _) => match func.kind {
// `..=` desugars into `::std::ops::RangeInclusive::new(...)`.
ExprKind::Path(QPath::LangItem(LangItem::RangeInclusiveNew, ..)) => {
Some(LangItem::RangeInclusiveStruct)
}
_ => None,
},
_ => None,
};
if lang_item.is_none() {
continue;
}
let span_included = match parent_expr.kind {
hir::ExprKind::Struct(_, eps, _) => {
eps.len() > 0 && eps.last().is_some_and(|ep| ep.span.contains(span))
}
// `..=` desugars into `::std::ops::RangeInclusive::new(...)`.
hir::ExprKind::Call(func, ..) => func.span.contains(span),
_ => false,
};
if !span_included {
continue;
}
let Some(range_def_id) =
lang_item.and_then(|lang_item| self.tcx.lang_items().get(lang_item))
else {
continue;
};
let range_ty =
self.tcx.type_of(range_def_id).instantiate(self.tcx, &[actual.into()]);
let pick = self.lookup_probe_for_diagnostic(
item_name,
range_ty,
expr,
ProbeScope::AllTraits,
None,
);
if pick.is_ok() {
let range_span = parent_expr.span.with_hi(expr.span.hi());
tcx.dcx().emit_err(errors::MissingParenthesesInRange {
span,
ty_str: ty_str.to_string(),
method_name: item_name.as_str().to_string(),
add_missing_parentheses: Some(errors::AddMissingParenthesesInRange {
func_name: item_name.name.as_str().to_string(),
left: range_span.shrink_to_lo(),
right: range_span.shrink_to_hi(),
}),
});
return true;
}
}
}
}
false
}
fn suggest_constraining_numerical_ty(
&self,
tcx: TyCtxt<'tcx>,
actual: Ty<'tcx>,
source: SelfSource<'_>,
span: Span,
item_kind: &str,
item_name: Ident,
ty_str: &str,
) -> bool {
let found_candidate = all_traits(self.tcx)
.into_iter()
.any(|info| self.associated_value(info.def_id, item_name).is_some());
let found_assoc = |ty: Ty<'tcx>| {
simplify_type(tcx, ty, TreatParams::AsCandidateKey)
.and_then(|simp| {
tcx.incoherent_impls(simp)
.into_iter()
.flatten()
.find_map(|&id| self.associated_value(id, item_name))
})
.is_some()
};
let found_candidate = found_candidate
|| found_assoc(tcx.types.i8)
|| found_assoc(tcx.types.i16)
|| found_assoc(tcx.types.i32)
|| found_assoc(tcx.types.i64)
|| found_assoc(tcx.types.i128)
|| found_assoc(tcx.types.u8)
|| found_assoc(tcx.types.u16)
|| found_assoc(tcx.types.u32)
|| found_assoc(tcx.types.u64)
|| found_assoc(tcx.types.u128)
|| found_assoc(tcx.types.f32)
|| found_assoc(tcx.types.f64);
if found_candidate
&& actual.is_numeric()
&& !actual.has_concrete_skeleton()
&& let SelfSource::MethodCall(expr) = source
{
let mut err = struct_span_code_err!(
tcx.dcx(),
span,
E0689,
"can't call {} `{}` on ambiguous numeric type `{}`",
item_kind,
item_name,
ty_str
);
let concrete_type = if actual.is_integral() { "i32" } else { "f32" };
match expr.kind {
ExprKind::Lit(lit) => {
// numeric literal
let snippet = tcx
.sess
.source_map()
.span_to_snippet(lit.span)
.unwrap_or_else(|_| "<numeric literal>".to_owned());
// If this is a floating point literal that ends with '.',
// get rid of it to stop this from becoming a member access.
let snippet = snippet.strip_suffix('.').unwrap_or(&snippet);
err.span_suggestion(
lit.span,
format!(
"you must specify a concrete type for this numeric value, \
like `{concrete_type}`"
),
format!("{snippet}_{concrete_type}"),
Applicability::MaybeIncorrect,
);
}
ExprKind::Path(QPath::Resolved(_, path)) => {
// local binding
if let hir::def::Res::Local(hir_id) = path.res {
let span = tcx.hir().span(hir_id);
let filename = tcx.sess.source_map().span_to_filename(span);
let parent_node = self.tcx.parent_hir_node(hir_id);
let msg = format!(
"you must specify a type for this binding, like `{concrete_type}`",
);
match (filename, parent_node) {
(
FileName::Real(_),
Node::LetStmt(hir::LetStmt {
source: hir::LocalSource::Normal,
ty,
..
}),
) => {
let type_span = ty
.map(|ty| ty.span.with_lo(span.hi()))
.unwrap_or(span.shrink_to_hi());
err.span_suggestion(
// account for `let x: _ = 42;`
// ^^^
type_span,
msg,
format!(": {concrete_type}"),
Applicability::MaybeIncorrect,
);
}
_ => {
err.span_label(span, msg);
}
}
}
}
_ => {}
}
err.emit();
return true;
}
false
}
/// For code `rect::area(...)`,
/// if `rect` is a local variable and `area` is a valid assoc method for it,
/// we try to suggest `rect.area()`
pub(crate) fn suggest_assoc_method_call(&self, segs: &[PathSegment<'_>]) {
debug!("suggest_assoc_method_call segs: {:?}", segs);
let [seg1, seg2] = segs else {
return;
};
self.dcx().try_steal_modify_and_emit_err(
seg1.ident.span,
StashKey::CallAssocMethod,
|err| {
let map = self.infcx.tcx.hir();
let body_id = self.tcx.hir().body_owned_by(self.body_id);
let body = map.body(body_id);
struct LetVisitor {
ident_name: Symbol,
}
// FIXME: This really should be taking scoping, etc into account.
impl<'v> Visitor<'v> for LetVisitor {
type Result = ControlFlow<Option<&'v hir::Expr<'v>>>;
fn visit_stmt(&mut self, ex: &'v hir::Stmt<'v>) -> Self::Result {
if let hir::StmtKind::Let(&hir::LetStmt { pat, init, .. }) = ex.kind
&& let Binding(_, _, ident, ..) = pat.kind
&& ident.name == self.ident_name
{
ControlFlow::Break(init)
} else {
hir::intravisit::walk_stmt(self, ex)
}
}
}
if let Node::Expr(call_expr) = self.tcx.parent_hir_node(seg1.hir_id)
&& let ControlFlow::Break(Some(expr)) =
(LetVisitor { ident_name: seg1.ident.name }).visit_body(body)
&& let Some(self_ty) = self.node_ty_opt(expr.hir_id)
{
let probe = self.lookup_probe_for_diagnostic(
seg2.ident,
self_ty,
call_expr,
ProbeScope::TraitsInScope,
None,
);
if probe.is_ok() {
let sm = self.infcx.tcx.sess.source_map();
err.span_suggestion_verbose(
sm.span_extend_while(seg1.ident.span.shrink_to_hi(), |c| c == ':')
.unwrap(),
"you may have meant to call an instance method",
".",
Applicability::MaybeIncorrect,
);
}
}
},
);
}
/// Suggest calling a method on a field i.e. `a.field.bar()` instead of `a.bar()`
fn suggest_calling_method_on_field(
&self,
err: &mut Diag<'_>,
source: SelfSource<'tcx>,
span: Span,
actual: Ty<'tcx>,
item_name: Ident,
return_type: Option<Ty<'tcx>>,
) {
if let SelfSource::MethodCall(expr) = source {
let mod_id = self.tcx.parent_module(expr.hir_id).to_def_id();
for (fields, args) in
self.get_field_candidates_considering_privacy(span, actual, mod_id, expr.hir_id)
{
let call_expr = self.tcx.hir().expect_expr(self.tcx.parent_hir_id(expr.hir_id));
let lang_items = self.tcx.lang_items();
let never_mention_traits = [
lang_items.clone_trait(),
lang_items.deref_trait(),
lang_items.deref_mut_trait(),
self.tcx.get_diagnostic_item(sym::AsRef),
self.tcx.get_diagnostic_item(sym::AsMut),
self.tcx.get_diagnostic_item(sym::Borrow),
self.tcx.get_diagnostic_item(sym::BorrowMut),
];
let mut candidate_fields: Vec<_> = fields
.into_iter()
.filter_map(|candidate_field| {
self.check_for_nested_field_satisfying(
span,
&|_, field_ty| {
self.lookup_probe_for_diagnostic(
item_name,
field_ty,
call_expr,
ProbeScope::TraitsInScope,
return_type,
)
.is_ok_and(|pick| {
!never_mention_traits
.iter()
.flatten()
.any(|def_id| self.tcx.parent(pick.item.def_id) == *def_id)
})
},
candidate_field,
args,
vec![],
mod_id,
expr.hir_id,
)
})
.map(|field_path| {
field_path
.iter()
.map(|id| id.name.to_ident_string())
.collect::<Vec<String>>()
.join(".")
})
.collect();
candidate_fields.sort();
let len = candidate_fields.len();
if len > 0 {
err.span_suggestions(
item_name.span.shrink_to_lo(),
format!(
"{} of the expressions' fields {} a method of the same name",
if len > 1 { "some" } else { "one" },
if len > 1 { "have" } else { "has" },
),
candidate_fields.iter().map(|path| format!("{path}.")),
Applicability::MaybeIncorrect,
);
}
}
}
}
fn suggest_unwrapping_inner_self(
&self,
err: &mut Diag<'_>,
source: SelfSource<'tcx>,
actual: Ty<'tcx>,
item_name: Ident,
) {
let tcx = self.tcx;
let SelfSource::MethodCall(expr) = source else {
return;
};
let call_expr = tcx.hir().expect_expr(tcx.parent_hir_id(expr.hir_id));
let ty::Adt(kind, args) = actual.kind() else {
return;
};
match kind.adt_kind() {
ty::AdtKind::Enum => {
let matching_variants: Vec<_> = kind
.variants()
.iter()
.flat_map(|variant| {
let [field] = &variant.fields.raw[..] else {
return None;
};
let field_ty = field.ty(tcx, args);
// Skip `_`, since that'll just lead to ambiguity.
if self.resolve_vars_if_possible(field_ty).is_ty_var() {
return None;
}
self.lookup_probe_for_diagnostic(
item_name,
field_ty,
call_expr,
ProbeScope::TraitsInScope,
None,
)
.ok()
.map(|pick| (variant, field, pick))
})
.collect();
let ret_ty_matches = |diagnostic_item| {
if let Some(ret_ty) = self
.ret_coercion
.as_ref()
.map(|c| self.resolve_vars_if_possible(c.borrow().expected_ty()))
&& let ty::Adt(kind, _) = ret_ty.kind()
&& tcx.get_diagnostic_item(diagnostic_item) == Some(kind.did())
{
true
} else {
false
}
};
match &matching_variants[..] {
[(_, field, pick)] => {
let self_ty = field.ty(tcx, args);
err.span_note(
tcx.def_span(pick.item.def_id),
format!("the method `{item_name}` exists on the type `{self_ty}`"),
);
let (article, kind, variant, question) =
if tcx.is_diagnostic_item(sym::Result, kind.did()) {
("a", "Result", "Err", ret_ty_matches(sym::Result))
} else if tcx.is_diagnostic_item(sym::Option, kind.did()) {
("an", "Option", "None", ret_ty_matches(sym::Option))
} else {
return;
};
if question {
err.span_suggestion_verbose(
expr.span.shrink_to_hi(),
format!(
"use the `?` operator to extract the `{self_ty}` value, propagating \
{article} `{kind}::{variant}` value to the caller"
),
"?",
Applicability::MachineApplicable,
);
} else {
err.span_suggestion_verbose(
expr.span.shrink_to_hi(),
format!(
"consider using `{kind}::expect` to unwrap the `{self_ty}` value, \
panicking if the value is {article} `{kind}::{variant}`"
),
".expect(\"REASON\")",
Applicability::HasPlaceholders,
);
}
}
// FIXME(compiler-errors): Support suggestions for other matching enum variants
_ => {}
}
}
// Target wrapper types - types that wrap or pretend to wrap another type,
// perhaps this inner type is meant to be called?
ty::AdtKind::Struct | ty::AdtKind::Union => {
let [first] = ***args else {
return;
};
let ty::GenericArgKind::Type(ty) = first.unpack() else {
return;
};
let Ok(pick) = self.lookup_probe_for_diagnostic(
item_name,
ty,
call_expr,
ProbeScope::TraitsInScope,
None,
) else {
return;
};
let name = self.ty_to_value_string(actual);
let inner_id = kind.did();
let mutable = if let Some(AutorefOrPtrAdjustment::Autoref { mutbl, .. }) =
pick.autoref_or_ptr_adjustment
{
Some(mutbl)
} else {
None
};
if tcx.is_diagnostic_item(sym::LocalKey, inner_id) {
err.help("use `with` or `try_with` to access thread local storage");
} else if Some(kind.did()) == tcx.lang_items().maybe_uninit() {
err.help(format!(
"if this `{name}` has been initialized, \
use one of the `assume_init` methods to access the inner value"
));
} else if tcx.is_diagnostic_item(sym::RefCell, inner_id) {
let (suggestion, borrow_kind, panic_if) = match mutable {
Some(Mutability::Not) => (".borrow()", "borrow", "a mutable borrow exists"),
Some(Mutability::Mut) => {
(".borrow_mut()", "mutably borrow", "any borrows exist")
}
None => return,
};
err.span_suggestion_verbose(
expr.span.shrink_to_hi(),
format!(
"use `{suggestion}` to {borrow_kind} the `{ty}`, \
panicking if {panic_if}"
),
suggestion,
Applicability::MaybeIncorrect,
);
} else if tcx.is_diagnostic_item(sym::Mutex, inner_id) {
err.span_suggestion_verbose(
expr.span.shrink_to_hi(),
format!(
"use `.lock().unwrap()` to borrow the `{ty}`, \
blocking the current thread until it can be acquired"
),
".lock().unwrap()",
Applicability::MaybeIncorrect,
);
} else if tcx.is_diagnostic_item(sym::RwLock, inner_id) {
let (suggestion, borrow_kind) = match mutable {
Some(Mutability::Not) => (".read().unwrap()", "borrow"),
Some(Mutability::Mut) => (".write().unwrap()", "mutably borrow"),
None => return,
};
err.span_suggestion_verbose(
expr.span.shrink_to_hi(),
format!(
"use `{suggestion}` to {borrow_kind} the `{ty}`, \
blocking the current thread until it can be acquired"
),
suggestion,
Applicability::MaybeIncorrect,
);
} else {
return;
};
err.span_note(
tcx.def_span(pick.item.def_id),
format!("the method `{item_name}` exists on the type `{ty}`"),
);
}
}
}
pub(crate) fn note_unmet_impls_on_type(
&self,
err: &mut Diag<'_>,
errors: Vec<FulfillmentError<'tcx>>,
suggest_derive: bool,
) {
let all_local_types_needing_impls =
errors.iter().all(|e| match e.obligation.predicate.kind().skip_binder() {
ty::PredicateKind::Clause(ty::ClauseKind::Trait(pred)) => {
match pred.self_ty().kind() {
ty::Adt(def, _) => def.did().is_local(),
_ => false,
}
}
_ => false,
});
let mut preds: Vec<_> = errors
.iter()
.filter_map(|e| match e.obligation.predicate.kind().skip_binder() {
ty::PredicateKind::Clause(ty::ClauseKind::Trait(pred)) => Some(pred),
_ => None,
})
.collect();
preds.sort_by_key(|pred| pred.trait_ref.to_string());
let def_ids = preds
.iter()
.filter_map(|pred| match pred.self_ty().kind() {
ty::Adt(def, _) => Some(def.did()),
_ => None,
})
.collect::<FxIndexSet<_>>();
let mut spans: MultiSpan = def_ids
.iter()
.filter_map(|def_id| {
let span = self.tcx.def_span(*def_id);
if span.is_dummy() { None } else { Some(span) }
})
.collect::<Vec<_>>()
.into();
for pred in &preds {
match pred.self_ty().kind() {
ty::Adt(def, _) if def.did().is_local() => {
spans.push_span_label(
self.tcx.def_span(def.did()),
format!("must implement `{}`", pred.trait_ref.print_trait_sugared()),
);
}
_ => {}
}
}
if all_local_types_needing_impls && spans.primary_span().is_some() {
let msg = if preds.len() == 1 {
format!(
"an implementation of `{}` might be missing for `{}`",
preds[0].trait_ref.print_trait_sugared(),
preds[0].self_ty()
)
} else {
format!(
"the following type{} would have to `impl` {} required trait{} for this \
operation to be valid",
pluralize!(def_ids.len()),
if def_ids.len() == 1 { "its" } else { "their" },
pluralize!(preds.len()),
)
};
err.span_note(spans, msg);
}
let preds: Vec<_> = errors
.iter()
.map(|e| (e.obligation.predicate, None, Some(e.obligation.cause.clone())))
.collect();
if suggest_derive {
self.suggest_derive(err, &preds);
} else {
// The predicate comes from a binop where the lhs and rhs have different types.
let _ = self.note_predicate_source_and_get_derives(err, &preds);
}
}
fn note_predicate_source_and_get_derives(
&self,
err: &mut Diag<'_>,
unsatisfied_predicates: &[(
ty::Predicate<'tcx>,
Option<ty::Predicate<'tcx>>,
Option<ObligationCause<'tcx>>,
)],
) -> Vec<(String, Span, Symbol)> {
let mut derives = Vec::<(String, Span, Symbol)>::new();
let mut traits = Vec::new();
for (pred, _, _) in unsatisfied_predicates {
let Some(ty::PredicateKind::Clause(ty::ClauseKind::Trait(trait_pred))) =
pred.kind().no_bound_vars()
else {
continue;
};
let adt = match trait_pred.self_ty().ty_adt_def() {
Some(adt) if adt.did().is_local() => adt,
_ => continue,
};
if let Some(diagnostic_name) = self.tcx.get_diagnostic_name(trait_pred.def_id()) {
let can_derive = match diagnostic_name {
sym::Default => !adt.is_enum(),
sym::Eq
| sym::PartialEq
| sym::Ord
| sym::PartialOrd
| sym::Clone
| sym::Copy
| sym::Hash
| sym::Debug => true,
_ => false,
};
if can_derive {
let self_name = trait_pred.self_ty().to_string();
let self_span = self.tcx.def_span(adt.did());
for super_trait in
supertraits(self.tcx, ty::Binder::dummy(trait_pred.trait_ref))
{
if let Some(parent_diagnostic_name) =
self.tcx.get_diagnostic_name(super_trait.def_id())
{
derives.push((self_name.clone(), self_span, parent_diagnostic_name));
}
}
derives.push((self_name, self_span, diagnostic_name));
} else {
traits.push(trait_pred.def_id());
}
} else {
traits.push(trait_pred.def_id());
}
}
traits.sort_by_key(|id| self.tcx.def_path_str(id));
traits.dedup();
let len = traits.len();
if len > 0 {
let span =
MultiSpan::from_spans(traits.iter().map(|&did| self.tcx.def_span(did)).collect());
let mut names = format!("`{}`", self.tcx.def_path_str(traits[0]));
for (i, &did) in traits.iter().enumerate().skip(1) {
if len > 2 {
names.push_str(", ");
}
if i == len - 1 {
names.push_str(" and ");
}
names.push('`');
names.push_str(&self.tcx.def_path_str(did));
names.push('`');
}
err.span_note(
span,
format!("the trait{} {} must be implemented", pluralize!(len), names),
);
}
derives
}
pub(crate) fn suggest_derive(
&self,
err: &mut Diag<'_>,
unsatisfied_predicates: &[(
ty::Predicate<'tcx>,
Option<ty::Predicate<'tcx>>,
Option<ObligationCause<'tcx>>,
)],
) -> bool {
let mut derives = self.note_predicate_source_and_get_derives(err, unsatisfied_predicates);
derives.sort();
derives.dedup();
let mut derives_grouped = Vec::<(String, Span, String)>::new();
for (self_name, self_span, trait_name) in derives.into_iter() {
if let Some((last_self_name, _, ref mut last_trait_names)) = derives_grouped.last_mut()
{
if last_self_name == &self_name {
last_trait_names.push_str(format!(", {trait_name}").as_str());
continue;
}
}
derives_grouped.push((self_name, self_span, trait_name.to_string()));
}
for (self_name, self_span, traits) in &derives_grouped {
err.span_suggestion_verbose(
self_span.shrink_to_lo(),
format!("consider annotating `{self_name}` with `#[derive({traits})]`"),
format!("#[derive({traits})]\n"),
Applicability::MaybeIncorrect,
);
}
!derives_grouped.is_empty()
}
fn note_derefed_ty_has_method(
&self,
err: &mut Diag<'_>,
self_source: SelfSource<'tcx>,
rcvr_ty: Ty<'tcx>,
item_name: Ident,
expected: Expectation<'tcx>,
) {
let SelfSource::QPath(ty) = self_source else {
return;
};
for (deref_ty, _) in self.autoderef(DUMMY_SP, rcvr_ty).skip(1) {
if let Ok(pick) = self.probe_for_name(
Mode::Path,
item_name,
expected.only_has_type(self),
IsSuggestion(true),
deref_ty,
ty.hir_id,
ProbeScope::TraitsInScope,
) {
if deref_ty.is_suggestable(self.tcx, true)
// If this method receives `&self`, then the provided
// argument _should_ coerce, so it's valid to suggest
// just changing the path.
&& pick.item.fn_has_self_parameter
&& let Some(self_ty) =
self.tcx.fn_sig(pick.item.def_id).instantiate_identity().inputs().skip_binder().get(0)
&& self_ty.is_ref()
{
let suggested_path = match deref_ty.kind() {
ty::Bool
| ty::Char
| ty::Int(_)
| ty::Uint(_)
| ty::Float(_)
| ty::Adt(_, _)
| ty::Str
| ty::Alias(ty::Projection | ty::Inherent, _)
| ty::Param(_) => format!("{deref_ty}"),
// we need to test something like <&[_]>::len or <(&[u32])>::len
// and Vec::function();
// <&[_]>::len or <&[u32]>::len doesn't need an extra "<>" between
// but for Adt type like Vec::function()
// we would suggest <[_]>::function();
_ if self
.tcx
.sess
.source_map()
.span_wrapped_by_angle_or_parentheses(ty.span) =>
{
format!("{deref_ty}")
}
_ => format!("<{deref_ty}>"),
};
err.span_suggestion_verbose(
ty.span,
format!("the function `{item_name}` is implemented on `{deref_ty}`"),
suggested_path,
Applicability::MaybeIncorrect,
);
} else {
err.span_note(
ty.span,
format!("the function `{item_name}` is implemented on `{deref_ty}`"),
);
}
return;
}
}
}
/// Print out the type for use in value namespace.
fn ty_to_value_string(&self, ty: Ty<'tcx>) -> String {
match ty.kind() {
ty::Adt(def, args) => self.tcx.def_path_str_with_args(def.did(), args),
_ => self.ty_to_string(ty),
}
}
fn suggest_await_before_method(
&self,
err: &mut Diag<'_>,
item_name: Ident,
ty: Ty<'tcx>,
call: &hir::Expr<'_>,
span: Span,
return_type: Option<Ty<'tcx>>,
) {
let output_ty = match self.get_impl_future_output_ty(ty) {
Some(output_ty) => self.resolve_vars_if_possible(output_ty),
_ => return,
};
let method_exists = self.method_exists(item_name, output_ty, call.hir_id, return_type);
debug!("suggest_await_before_method: is_method_exist={}", method_exists);
if method_exists {
err.span_suggestion_verbose(
span.shrink_to_lo(),
"consider `await`ing on the `Future` and calling the method on its `Output`",
"await.",
Applicability::MaybeIncorrect,
);
}
}
fn suggest_use_candidates(&self, err: &mut Diag<'_>, msg: String, candidates: Vec<DefId>) {
let parent_map = self.tcx.visible_parent_map(());
// Separate out candidates that must be imported with a glob, because they are named `_`
// and cannot be referred with their identifier.
let (candidates, globs): (Vec<_>, Vec<_>) = candidates.into_iter().partition(|trait_did| {
if let Some(parent_did) = parent_map.get(trait_did) {
// If the item is re-exported as `_`, we should suggest a glob-import instead.
if *parent_did != self.tcx.parent(*trait_did)
&& self
.tcx
.module_children(*parent_did)
.iter()
.filter(|child| child.res.opt_def_id() == Some(*trait_did))
.all(|child| child.ident.name == kw::Underscore)
{
return false;
}
}
true
});
let module_did = self.tcx.parent_module_from_def_id(self.body_id);
let (module, _, _) = self.tcx.hir().get_module(module_did);
let span = module.spans.inject_use_span;
let path_strings = candidates.iter().map(|trait_did| {
format!("use {};\n", with_crate_prefix!(self.tcx.def_path_str(*trait_did)),)
});
let glob_path_strings = globs.iter().map(|trait_did| {
let parent_did = parent_map.get(trait_did).unwrap();
format!(
"use {}::*; // trait {}\n",
with_crate_prefix!(self.tcx.def_path_str(*parent_did)),
self.tcx.item_name(*trait_did),
)
});
let mut sugg: Vec<_> = path_strings.chain(glob_path_strings).collect();
sugg.sort();
err.span_suggestions(span, msg, sugg, Applicability::MaybeIncorrect);
}
fn suggest_valid_traits(
&self,
err: &mut Diag<'_>,
item_name: Ident,
valid_out_of_scope_traits: Vec<DefId>,
explain: bool,
) -> bool {
if !valid_out_of_scope_traits.is_empty() {
let mut candidates = valid_out_of_scope_traits;
candidates.sort_by_key(|id| self.tcx.def_path_str(id));
candidates.dedup();
// `TryFrom` and `FromIterator` have no methods
let edition_fix = candidates
.iter()
.find(|did| self.tcx.is_diagnostic_item(sym::TryInto, **did))
.copied();
if explain {
err.help("items from traits can only be used if the trait is in scope");
}
let msg = format!(
"{this_trait_is} implemented but not in scope; perhaps you want to import \
{one_of_them}",
this_trait_is = if candidates.len() == 1 {
format!(
"trait `{}` which provides `{item_name}` is",
self.tcx.item_name(candidates[0]),
)
} else {
format!("the following traits which provide `{item_name}` are")
},
one_of_them = if candidates.len() == 1 { "it" } else { "one of them" },
);
self.suggest_use_candidates(err, msg, candidates);
if let Some(did) = edition_fix {
err.note(format!(
"'{}' is included in the prelude starting in Edition 2021",
with_crate_prefix!(self.tcx.def_path_str(did))
));
}
true
} else {
false
}
}
fn suggest_traits_to_import(
&self,
err: &mut Diag<'_>,
span: Span,
rcvr_ty: Ty<'tcx>,
item_name: Ident,
inputs_len: Option<usize>,
source: SelfSource<'tcx>,
valid_out_of_scope_traits: Vec<DefId>,
static_candidates: &[CandidateSource],
unsatisfied_bounds: bool,
return_type: Option<Ty<'tcx>>,
trait_missing_method: bool,
) {
let mut alt_rcvr_sugg = false;
if let (SelfSource::MethodCall(rcvr), false) = (source, unsatisfied_bounds) {
debug!(
"suggest_traits_to_import: span={:?}, item_name={:?}, rcvr_ty={:?}, rcvr={:?}",
span, item_name, rcvr_ty, rcvr
);
let skippable = [
self.tcx.lang_items().clone_trait(),
self.tcx.lang_items().deref_trait(),
self.tcx.lang_items().deref_mut_trait(),
self.tcx.lang_items().drop_trait(),
self.tcx.get_diagnostic_item(sym::AsRef),
];
// Try alternative arbitrary self types that could fulfill this call.
// FIXME: probe for all types that *could* be arbitrary self-types, not
// just this list.
for (rcvr_ty, post, pin_call) in &[
(rcvr_ty, "", None),
(
Ty::new_mut_ref(self.tcx, self.tcx.lifetimes.re_erased, rcvr_ty),
"&mut ",
Some("as_mut"),
),
(
Ty::new_imm_ref(self.tcx, self.tcx.lifetimes.re_erased, rcvr_ty),
"&",
Some("as_ref"),
),
] {
match self.lookup_probe_for_diagnostic(
item_name,
*rcvr_ty,
rcvr,
ProbeScope::AllTraits,
return_type,
) {
Ok(pick) => {
// If the method is defined for the receiver we have, it likely wasn't `use`d.
// We point at the method, but we just skip the rest of the check for arbitrary
// self types and rely on the suggestion to `use` the trait from
// `suggest_valid_traits`.
let did = Some(pick.item.container_id(self.tcx));
let skip = skippable.contains(&did);
if pick.autoderefs == 0 && !skip {
err.span_label(
pick.item.ident(self.tcx).span,
format!("the method is available for `{rcvr_ty}` here"),
);
}
break;
}
Err(MethodError::Ambiguity(_)) => {
// If the method is defined (but ambiguous) for the receiver we have, it is also
// likely we haven't `use`d it. It may be possible that if we `Box`/`Pin`/etc.
// the receiver, then it might disambiguate this method, but I think these
// suggestions are generally misleading (see #94218).
break;
}
Err(_) => (),
}
let Some(unpin_trait) = self.tcx.lang_items().unpin_trait() else {
return;
};
let pred = ty::TraitRef::new(self.tcx, unpin_trait, [*rcvr_ty]);
let unpin = self.predicate_must_hold_considering_regions(&Obligation::new(
self.tcx,
ObligationCause::misc(rcvr.span, self.body_id),
self.param_env,
pred,
));
for (rcvr_ty, pre) in &[
(Ty::new_lang_item(self.tcx, *rcvr_ty, LangItem::OwnedBox), "Box::new"),
(Ty::new_lang_item(self.tcx, *rcvr_ty, LangItem::Pin), "Pin::new"),
(Ty::new_diagnostic_item(self.tcx, *rcvr_ty, sym::Arc), "Arc::new"),
(Ty::new_diagnostic_item(self.tcx, *rcvr_ty, sym::Rc), "Rc::new"),
] {
if let Some(new_rcvr_t) = *rcvr_ty
&& let Ok(pick) = self.lookup_probe_for_diagnostic(
item_name,
new_rcvr_t,
rcvr,
ProbeScope::AllTraits,
return_type,
)
{
debug!("try_alt_rcvr: pick candidate {:?}", pick);
let did = Some(pick.item.container_id(self.tcx));
// We don't want to suggest a container type when the missing
// method is `.clone()` or `.deref()` otherwise we'd suggest
// `Arc::new(foo).clone()`, which is far from what the user wants.
// Explicitly ignore the `Pin::as_ref()` method as `Pin` does not
// implement the `AsRef` trait.
let skip = skippable.contains(&did)
|| (("Pin::new" == *pre)
&& ((sym::as_ref == item_name.name) || !unpin))
|| inputs_len.is_some_and(|inputs_len| {
pick.item.kind == ty::AssocKind::Fn
&& self
.tcx
.fn_sig(pick.item.def_id)
.skip_binder()
.skip_binder()
.inputs()
.len()
!= inputs_len
});
// Make sure the method is defined for the *actual* receiver: we don't
// want to treat `Box<Self>` as a receiver if it only works because of
// an autoderef to `&self`
if pick.autoderefs == 0 && !skip {
err.span_label(
pick.item.ident(self.tcx).span,
format!("the method is available for `{new_rcvr_t}` here"),
);
err.multipart_suggestion(
"consider wrapping the receiver expression with the \
appropriate type",
vec![
(rcvr.span.shrink_to_lo(), format!("{pre}({post}")),
(rcvr.span.shrink_to_hi(), ")".to_string()),
],
Applicability::MaybeIncorrect,
);
// We don't care about the other suggestions.
alt_rcvr_sugg = true;
}
}
}
// We special case the situation where `Pin::new` wouldn't work, and instead
// suggest using the `pin!()` macro instead.
if let Some(new_rcvr_t) = Ty::new_lang_item(self.tcx, *rcvr_ty, LangItem::Pin)
// We didn't find an alternative receiver for the method.
&& !alt_rcvr_sugg
// `T: !Unpin`
&& !unpin
// The method isn't `as_ref`, as it would provide a wrong suggestion for `Pin`.
&& sym::as_ref != item_name.name
// Either `Pin::as_ref` or `Pin::as_mut`.
&& let Some(pin_call) = pin_call
// Search for `item_name` as a method accessible on `Pin<T>`.
&& let Ok(pick) = self.lookup_probe_for_diagnostic(
item_name,
new_rcvr_t,
rcvr,
ProbeScope::AllTraits,
return_type,
)
// We skip some common traits that we don't want to consider because autoderefs
// would take care of them.
&& !skippable.contains(&Some(pick.item.container_id(self.tcx)))
// We don't want to go through derefs.
&& pick.autoderefs == 0
// Check that the method of the same name that was found on the new `Pin<T>`
// receiver has the same number of arguments that appear in the user's code.
&& inputs_len.is_some_and(|inputs_len| pick.item.kind == ty::AssocKind::Fn && self.tcx.fn_sig(pick.item.def_id).skip_binder().skip_binder().inputs().len() == inputs_len)
{
let indent = self
.tcx
.sess
.source_map()
.indentation_before(rcvr.span)
.unwrap_or_else(|| " ".to_string());
err.multipart_suggestion(
"consider pinning the expression",
vec![
(rcvr.span.shrink_to_lo(), format!("let mut pinned = std::pin::pin!(")),
(rcvr.span.shrink_to_hi(), format!(");\n{indent}pinned.{pin_call}()")),
],
Applicability::MaybeIncorrect,
);
// We don't care about the other suggestions.
alt_rcvr_sugg = true;
}
}
}
if self.suggest_valid_traits(err, item_name, valid_out_of_scope_traits, true) {
return;
}
let type_is_local = self.type_derefs_to_local(span, rcvr_ty, source);
let mut arbitrary_rcvr = vec![];
// There are no traits implemented, so lets suggest some traits to
// implement, by finding ones that have the item name, and are
// legal to implement.
let mut candidates = all_traits(self.tcx)
.into_iter()
// Don't issue suggestions for unstable traits since they're
// unlikely to be implementable anyway
.filter(|info| match self.tcx.lookup_stability(info.def_id) {
Some(attr) => attr.level.is_stable(),
None => true,
})
.filter(|info| {
// Static candidates are already implemented, and known not to work
// Do not suggest them again
static_candidates.iter().all(|sc| match *sc {
CandidateSource::Trait(def_id) => def_id != info.def_id,
CandidateSource::Impl(def_id) => {
self.tcx.trait_id_of_impl(def_id) != Some(info.def_id)
}
})
})
.filter(|info| {
// We approximate the coherence rules to only suggest
// traits that are legal to implement by requiring that
// either the type or trait is local. Multi-dispatch means
// this isn't perfect (that is, there are cases when
// implementing a trait would be legal but is rejected
// here).
(type_is_local || info.def_id.is_local())
&& !self.tcx.trait_is_auto(info.def_id)
&& self
.associated_value(info.def_id, item_name)
.filter(|item| {
if let ty::AssocKind::Fn = item.kind {
let id = item
.def_id
.as_local()
.map(|def_id| self.tcx.hir_node_by_def_id(def_id));
if let Some(hir::Node::TraitItem(hir::TraitItem {
kind: hir::TraitItemKind::Fn(fn_sig, method),
..
})) = id
{
let self_first_arg = match method {
hir::TraitFn::Required([ident, ..]) => {
ident.name == kw::SelfLower
}
hir::TraitFn::Provided(body_id) => {
self.tcx.hir().body(*body_id).params.first().map_or(
false,
|param| {
matches!(
param.pat.kind,
hir::PatKind::Binding(_, _, ident, _)
if ident.name == kw::SelfLower
)
},
)
}
_ => false,
};
if !fn_sig.decl.implicit_self.has_implicit_self()
&& self_first_arg
{
if let Some(ty) = fn_sig.decl.inputs.get(0) {
arbitrary_rcvr.push(ty.span);
}
return false;
}
}
}
// We only want to suggest public or local traits (#45781).
item.visibility(self.tcx).is_public() || info.def_id.is_local()
})
.is_some()
})
.collect::<Vec<_>>();
for span in &arbitrary_rcvr {
err.span_label(
*span,
"the method might not be found because of this arbitrary self type",
);
}
if alt_rcvr_sugg {
return;
}
if !candidates.is_empty() {
// Sort local crate results before others
candidates
.sort_by_key(|&info| (!info.def_id.is_local(), self.tcx.def_path_str(info.def_id)));
candidates.dedup();
let param_type = match *rcvr_ty.kind() {
ty::Param(param) => Some(param),
ty::Ref(_, ty, _) => match *ty.kind() {
ty::Param(param) => Some(param),
_ => None,
},
_ => None,
};
if !trait_missing_method {
err.help(if param_type.is_some() {
"items from traits can only be used if the type parameter is bounded by the trait"
} else {
"items from traits can only be used if the trait is implemented and in scope"
});
}
let candidates_len = candidates.len();
let message = |action| {
format!(
"the following {traits_define} an item `{name}`, perhaps you need to {action} \
{one_of_them}:",
traits_define =
if candidates_len == 1 { "trait defines" } else { "traits define" },
action = action,
one_of_them = if candidates_len == 1 { "it" } else { "one of them" },
name = item_name,
)
};
// Obtain the span for `param` and use it for a structured suggestion.
if let Some(param) = param_type {
let generics = self.tcx.generics_of(self.body_id.to_def_id());
let type_param = generics.type_param(param, self.tcx);
let hir = self.tcx.hir();
if let Some(def_id) = type_param.def_id.as_local() {
let id = self.tcx.local_def_id_to_hir_id(def_id);
// Get the `hir::Param` to verify whether it already has any bounds.
// We do this to avoid suggesting code that ends up as `T: FooBar`,
// instead we suggest `T: Foo + Bar` in that case.
match self.tcx.hir_node(id) {
Node::GenericParam(param) => {
enum Introducer {
Plus,
Colon,
Nothing,
}
let hir_generics = hir.get_generics(id.owner.def_id).unwrap();
let trait_def_ids: DefIdSet = hir_generics
.bounds_for_param(def_id)
.flat_map(|bp| bp.bounds.iter())
.filter_map(|bound| bound.trait_ref()?.trait_def_id())
.collect();
if candidates.iter().any(|t| trait_def_ids.contains(&t.def_id)) {
return;
}
let msg = message(format!(
"restrict type parameter `{}` with",
param.name.ident(),
));
let bounds_span = hir_generics.bounds_span_for_suggestions(def_id);
if rcvr_ty.is_ref()
&& param.is_impl_trait()
&& let Some((bounds_span, _)) = bounds_span
{
err.multipart_suggestions(
msg,
candidates.iter().map(|t| {
vec![
(param.span.shrink_to_lo(), "(".to_string()),
(
bounds_span,
format!(" + {})", self.tcx.def_path_str(t.def_id)),
),
]
}),
Applicability::MaybeIncorrect,
);
return;
}
let (sp, introducer, open_paren_sp) =
if let Some((span, open_paren_sp)) = bounds_span {
(span, Introducer::Plus, open_paren_sp)
} else if let Some(colon_span) = param.colon_span {
(colon_span.shrink_to_hi(), Introducer::Nothing, None)
} else if param.is_impl_trait() {
(param.span.shrink_to_hi(), Introducer::Plus, None)
} else {
(param.span.shrink_to_hi(), Introducer::Colon, None)
};
let all_suggs = candidates.iter().map(|cand| {
let suggestion = format!(
"{} {}",
match introducer {
Introducer::Plus => " +",
Introducer::Colon => ":",
Introducer::Nothing => "",
},
self.tcx.def_path_str(cand.def_id)
);
let mut suggs = vec![];
if let Some(open_paren_sp) = open_paren_sp {
suggs.push((open_paren_sp, "(".to_string()));
suggs.push((sp, format!("){suggestion}")));
} else {
suggs.push((sp, suggestion));
}
suggs
});
err.multipart_suggestions(
msg,
all_suggs,
Applicability::MaybeIncorrect,
);
return;
}
Node::Item(hir::Item {
kind: hir::ItemKind::Trait(.., bounds, _),
ident,
..
}) => {
let (sp, sep, article) = if bounds.is_empty() {
(ident.span.shrink_to_hi(), ":", "a")
} else {
(bounds.last().unwrap().span().shrink_to_hi(), " +", "another")
};
err.span_suggestions(
sp,
message(format!("add {article} supertrait for")),
candidates.iter().map(|t| {
format!("{} {}", sep, self.tcx.def_path_str(t.def_id),)
}),
Applicability::MaybeIncorrect,
);
return;
}
_ => {}
}
}
}
let (potential_candidates, explicitly_negative) = if param_type.is_some() {
// FIXME: Even though negative bounds are not implemented, we could maybe handle
// cases where a positive bound implies a negative impl.
(candidates, Vec::new())
} else if let Some(simp_rcvr_ty) =
simplify_type(self.tcx, rcvr_ty, TreatParams::ForLookup)
{
let mut potential_candidates = Vec::new();
let mut explicitly_negative = Vec::new();
for candidate in candidates {
// Check if there's a negative impl of `candidate` for `rcvr_ty`
if self
.tcx
.all_impls(candidate.def_id)
.map(|imp_did| {
self.tcx.impl_trait_header(imp_did).expect(
"inherent impls can't be candidates, only trait impls can be",
)
})
.filter(|header| header.polarity != ty::ImplPolarity::Positive)
.any(|header| {
let imp = header.trait_ref.instantiate_identity();
let imp_simp =
simplify_type(self.tcx, imp.self_ty(), TreatParams::ForLookup);
imp_simp.is_some_and(|s| s == simp_rcvr_ty)
})
{
explicitly_negative.push(candidate);
} else {
potential_candidates.push(candidate);
}
}
(potential_candidates, explicitly_negative)
} else {
// We don't know enough about `recv_ty` to make proper suggestions.
(candidates, Vec::new())
};
let impls_trait = |def_id: DefId| {
let args = ty::GenericArgs::for_item(self.tcx, def_id, |param, _| {
if param.index == 0 {
rcvr_ty.into()
} else {
self.infcx.var_for_def(span, param)
}
});
self.infcx
.type_implements_trait(def_id, args, self.param_env)
.must_apply_modulo_regions()
&& param_type.is_none()
};
match &potential_candidates[..] {
[] => {}
[trait_info] if trait_info.def_id.is_local() => {
if impls_trait(trait_info.def_id) {
self.suggest_valid_traits(err, item_name, vec![trait_info.def_id], false);
} else {
err.subdiagnostic(
self.dcx(),
CandidateTraitNote {
span: self.tcx.def_span(trait_info.def_id),
trait_name: self.tcx.def_path_str(trait_info.def_id),
item_name,
action_or_ty: if trait_missing_method {
"NONE".to_string()
} else {
param_type.map_or_else(
|| "implement".to_string(), // FIXME: it might only need to be imported into scope, not implemented.
|p| p.to_string(),
)
},
},
);
}
}
trait_infos => {
let mut msg = message(param_type.map_or_else(
|| "implement".to_string(), // FIXME: it might only need to be imported into scope, not implemented.
|param| format!("restrict type parameter `{param}` with"),
));
for (i, trait_info) in trait_infos.iter().enumerate() {
if impls_trait(trait_info.def_id) {
self.suggest_valid_traits(
err,
item_name,
vec![trait_info.def_id],
false,
);
}
msg.push_str(&format!(
"\ncandidate #{}: `{}`",
i + 1,
self.tcx.def_path_str(trait_info.def_id),
));
}
err.note(msg);
}
}
match &explicitly_negative[..] {
[] => {}
[trait_info] => {
let msg = format!(
"the trait `{}` defines an item `{}`, but is explicitly unimplemented",
self.tcx.def_path_str(trait_info.def_id),
item_name
);
err.note(msg);
}
trait_infos => {
let mut msg = format!(
"the following traits define an item `{item_name}`, but are explicitly unimplemented:"
);
for trait_info in trait_infos {
msg.push_str(&format!("\n{}", self.tcx.def_path_str(trait_info.def_id)));
}
err.note(msg);
}
}
}
}
/// issue #102320, for `unwrap_or` with closure as argument, suggest `unwrap_or_else`
/// FIXME: currently not working for suggesting `map_or_else`, see #102408
pub(crate) fn suggest_else_fn_with_closure(
&self,
err: &mut Diag<'_>,
expr: &hir::Expr<'_>,
found: Ty<'tcx>,
expected: Ty<'tcx>,
) -> bool {
let Some((_def_id_or_name, output, _inputs)) = self.extract_callable_info(found) else {
return false;
};
if !self.can_coerce(output, expected) {
return false;
}
if let Node::Expr(call_expr) = self.tcx.parent_hir_node(expr.hir_id)
&& let hir::ExprKind::MethodCall(
hir::PathSegment { ident: method_name, .. },
self_expr,
args,
..,
) = call_expr.kind
&& let Some(self_ty) = self.typeck_results.borrow().expr_ty_opt(self_expr)
{
let new_name = Ident {
name: Symbol::intern(&format!("{}_else", method_name.as_str())),
span: method_name.span,
};
let probe = self.lookup_probe_for_diagnostic(
new_name,
self_ty,
self_expr,
ProbeScope::TraitsInScope,
Some(expected),
);
// check the method arguments number
if let Ok(pick) = probe
&& let fn_sig = self.tcx.fn_sig(pick.item.def_id)
&& let fn_args = fn_sig.skip_binder().skip_binder().inputs()
&& fn_args.len() == args.len() + 1
{
err.span_suggestion_verbose(
method_name.span.shrink_to_hi(),
format!("try calling `{}` instead", new_name.name.as_str()),
"_else",
Applicability::MaybeIncorrect,
);
return true;
}
}
false
}
/// Checks whether there is a local type somewhere in the chain of
/// autoderefs of `rcvr_ty`.
fn type_derefs_to_local(
&self,
span: Span,
rcvr_ty: Ty<'tcx>,
source: SelfSource<'tcx>,
) -> bool {
fn is_local(ty: Ty<'_>) -> bool {
match ty.kind() {
ty::Adt(def, _) => def.did().is_local(),
ty::Foreign(did) => did.is_local(),
ty::Dynamic(tr, ..) => tr.principal().is_some_and(|d| d.def_id().is_local()),
ty::Param(_) => true,
// Everything else (primitive types, etc.) is effectively
// non-local (there are "edge" cases, e.g., `(LocalType,)`, but
// the noise from these sort of types is usually just really
// annoying, rather than any sort of help).
_ => false,
}
}
// This occurs for UFCS desugaring of `T::method`, where there is no
// receiver expression for the method call, and thus no autoderef.
if let SelfSource::QPath(_) = source {
return is_local(rcvr_ty);
}
self.autoderef(span, rcvr_ty).any(|(ty, _)| is_local(ty))
}
}
#[derive(Copy, Clone, Debug)]
pub enum SelfSource<'a> {
QPath(&'a hir::Ty<'a>),
MethodCall(&'a hir::Expr<'a> /* rcvr */),
}
#[derive(Copy, Clone, PartialEq, Eq)]
pub struct TraitInfo {
pub def_id: DefId,
}
/// Retrieves all traits in this crate and any dependent crates,
/// and wraps them into `TraitInfo` for custom sorting.
pub fn all_traits(tcx: TyCtxt<'_>) -> Vec<TraitInfo> {
tcx.all_traits().map(|def_id| TraitInfo { def_id }).collect()
}
fn print_disambiguation_help<'tcx>(
tcx: TyCtxt<'tcx>,
err: &mut Diag<'_>,
source: SelfSource<'tcx>,
args: Option<&'tcx [hir::Expr<'tcx>]>,
trait_ref: ty::TraitRef<'tcx>,
candidate_idx: Option<usize>,
span: Span,
item: ty::AssocItem,
) -> Option<String> {
let trait_impl_type = trait_ref.self_ty().peel_refs();
let trait_ref = if item.fn_has_self_parameter {
trait_ref.print_only_trait_name().to_string()
} else {
format!("<{} as {}>", trait_ref.args[0], trait_ref.print_only_trait_name())
};
Some(
if matches!(item.kind, ty::AssocKind::Fn)
&& let SelfSource::MethodCall(receiver) = source
&& let Some(args) = args
{
let def_kind_descr = tcx.def_kind_descr(item.kind.as_def_kind(), item.def_id);
let item_name = item.ident(tcx);
let first_input =
tcx.fn_sig(item.def_id).instantiate_identity().skip_binder().inputs().get(0);
let (first_arg_type, rcvr_ref) = (
first_input.map(|first| first.peel_refs()),
first_input
.and_then(|ty| ty.ref_mutability())
.map_or("", |mutbl| mutbl.ref_prefix_str()),
);
// If the type of first arg of this assoc function is `Self` or current trait impl type or `arbitrary_self_types`, we need to take the receiver as args. Otherwise, we don't.
let args = if let Some(first_arg_type) = first_arg_type
&& (first_arg_type == tcx.types.self_param
|| first_arg_type == trait_impl_type
|| item.fn_has_self_parameter)
{
Some(receiver)
} else {
None
}
.into_iter()
.chain(args)
.map(|arg| {
tcx.sess.source_map().span_to_snippet(arg.span).unwrap_or_else(|_| "_".to_owned())
})
.collect::<Vec<_>>()
.join(", ");
let args = format!("({}{})", rcvr_ref, args);
err.span_suggestion_verbose(
span,
format!(
"disambiguate the {def_kind_descr} for {}",
if let Some(candidate) = candidate_idx {
format!("candidate #{candidate}")
} else {
"the candidate".to_string()
},
),
format!("{trait_ref}::{item_name}{args}"),
Applicability::HasPlaceholders,
);
return None;
} else {
format!("{trait_ref}::")
},
)
}