blob: 8652692e7f7210264fa47cab8adc8457147983f2 [file] [log] [blame]
//! Code for type-checking closure expressions.
use super::{check_fn, CoroutineTypes, Expectation, FnCtxt};
use rustc_errors::ErrorGuaranteed;
use rustc_hir as hir;
use rustc_hir::lang_items::LangItem;
use rustc_hir_analysis::hir_ty_lowering::HirTyLowerer;
use rustc_infer::infer::type_variable::TypeVariableOrigin;
use rustc_infer::infer::{BoundRegionConversionTime, DefineOpaqueTypes};
use rustc_infer::infer::{InferOk, InferResult};
use rustc_macros::{TypeFoldable, TypeVisitable};
use rustc_middle::ty::visit::{TypeVisitable, TypeVisitableExt};
use rustc_middle::ty::GenericArgs;
use rustc_middle::ty::{self, Ty, TyCtxt, TypeSuperVisitable, TypeVisitor};
use rustc_span::def_id::LocalDefId;
use rustc_span::Span;
use rustc_target::spec::abi::Abi;
use rustc_trait_selection::traits;
use rustc_trait_selection::traits::error_reporting::ArgKind;
use rustc_trait_selection::traits::error_reporting::InferCtxtExt as _;
use rustc_type_ir::ClosureKind;
use std::iter;
use std::ops::ControlFlow;
/// What signature do we *expect* the closure to have from context?
#[derive(Debug, Clone, TypeFoldable, TypeVisitable)]
struct ExpectedSig<'tcx> {
/// Span that gave us this expectation, if we know that.
cause_span: Option<Span>,
sig: ty::PolyFnSig<'tcx>,
}
#[derive(Debug)]
struct ClosureSignatures<'tcx> {
/// The signature users of the closure see.
bound_sig: ty::PolyFnSig<'tcx>,
/// The signature within the function body.
/// This mostly differs in the sense that lifetimes are now early bound and any
/// opaque types from the signature expectation are overridden in case there are
/// explicit hidden types written by the user in the closure signature.
liberated_sig: ty::FnSig<'tcx>,
}
impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
#[instrument(skip(self, closure), level = "debug")]
pub fn check_expr_closure(
&self,
closure: &hir::Closure<'tcx>,
expr_span: Span,
expected: Expectation<'tcx>,
) -> Ty<'tcx> {
let tcx = self.tcx;
let body = tcx.hir().body(closure.body);
let expr_def_id = closure.def_id;
// It's always helpful for inference if we know the kind of
// closure sooner rather than later, so first examine the expected
// type, and see if can glean a closure kind from there.
let (expected_sig, expected_kind) = match expected.to_option(self) {
Some(ty) => self.deduce_closure_signature(
self.try_structurally_resolve_type(expr_span, ty),
closure.kind,
),
None => (None, None),
};
let ClosureSignatures { bound_sig, mut liberated_sig } =
self.sig_of_closure(expr_def_id, closure.fn_decl, closure.kind, expected_sig);
debug!(?bound_sig, ?liberated_sig);
let parent_args =
GenericArgs::identity_for_item(tcx, tcx.typeck_root_def_id(expr_def_id.to_def_id()));
let tupled_upvars_ty =
self.next_ty_var(TypeVariableOrigin { param_def_id: None, span: expr_span });
// FIXME: We could probably actually just unify this further --
// instead of having a `FnSig` and a `Option<CoroutineTypes>`,
// we can have a `ClosureSignature { Coroutine { .. }, Closure { .. } }`,
// similar to how `ty::GenSig` is a distinct data structure.
let (closure_ty, coroutine_types) = match closure.kind {
hir::ClosureKind::Closure => {
// Tuple up the arguments and insert the resulting function type into
// the `closures` table.
let sig = bound_sig.map_bound(|sig| {
tcx.mk_fn_sig(
[Ty::new_tup(tcx, sig.inputs())],
sig.output(),
sig.c_variadic,
sig.unsafety,
sig.abi,
)
});
debug!(?sig, ?expected_kind);
let closure_kind_ty = match expected_kind {
Some(kind) => Ty::from_closure_kind(tcx, kind),
// Create a type variable (for now) to represent the closure kind.
// It will be unified during the upvar inference phase (`upvar.rs`)
None => {
self.next_ty_var(TypeVariableOrigin { param_def_id: None, span: expr_span })
}
};
let closure_args = ty::ClosureArgs::new(
tcx,
ty::ClosureArgsParts {
parent_args,
closure_kind_ty,
closure_sig_as_fn_ptr_ty: Ty::new_fn_ptr(tcx, sig),
tupled_upvars_ty,
},
);
(Ty::new_closure(tcx, expr_def_id.to_def_id(), closure_args.args), None)
}
hir::ClosureKind::Coroutine(kind) => {
let yield_ty = match kind {
hir::CoroutineKind::Desugared(hir::CoroutineDesugaring::Gen, _)
| hir::CoroutineKind::Coroutine(_) => {
let yield_ty = self.next_ty_var(TypeVariableOrigin {
param_def_id: None,
span: expr_span,
});
self.require_type_is_sized(yield_ty, expr_span, traits::SizedYieldType);
yield_ty
}
// HACK(-Ztrait-solver=next): In the *old* trait solver, we must eagerly
// guide inference on the yield type so that we can handle `AsyncIterator`
// in this block in projection correctly. In the new trait solver, it is
// not a problem.
hir::CoroutineKind::Desugared(hir::CoroutineDesugaring::AsyncGen, _) => {
let yield_ty = self.next_ty_var(TypeVariableOrigin {
param_def_id: None,
span: expr_span,
});
self.require_type_is_sized(yield_ty, expr_span, traits::SizedYieldType);
Ty::new_adt(
tcx,
tcx.adt_def(
tcx.require_lang_item(hir::LangItem::Poll, Some(expr_span)),
),
tcx.mk_args(&[Ty::new_adt(
tcx,
tcx.adt_def(
tcx.require_lang_item(hir::LangItem::Option, Some(expr_span)),
),
tcx.mk_args(&[yield_ty.into()]),
)
.into()]),
)
}
hir::CoroutineKind::Desugared(hir::CoroutineDesugaring::Async, _) => {
tcx.types.unit
}
};
// Resume type defaults to `()` if the coroutine has no argument.
let resume_ty = liberated_sig.inputs().get(0).copied().unwrap_or(tcx.types.unit);
let interior =
self.next_ty_var(TypeVariableOrigin { param_def_id: None, span: expr_span });
self.deferred_coroutine_interiors.borrow_mut().push((
expr_def_id,
body.id(),
interior,
));
// Coroutines that come from coroutine closures have not yet determined
// their kind ty, so make a fresh infer var which will be constrained
// later during upvar analysis. Regular coroutines always have the kind
// ty of `().`
let kind_ty = match kind {
hir::CoroutineKind::Desugared(_, hir::CoroutineSource::Closure) => {
self.next_ty_var(TypeVariableOrigin { param_def_id: None, span: expr_span })
}
_ => tcx.types.unit,
};
let coroutine_args = ty::CoroutineArgs::new(
tcx,
ty::CoroutineArgsParts {
parent_args,
kind_ty,
resume_ty,
yield_ty,
return_ty: liberated_sig.output(),
witness: interior,
tupled_upvars_ty,
},
);
(
Ty::new_coroutine(tcx, expr_def_id.to_def_id(), coroutine_args.args),
Some(CoroutineTypes { resume_ty, yield_ty }),
)
}
hir::ClosureKind::CoroutineClosure(kind) => {
// async closures always return the type ascribed after the `->` (if present),
// and yield `()`.
let (bound_return_ty, bound_yield_ty) = match kind {
hir::CoroutineDesugaring::Async => {
(bound_sig.skip_binder().output(), tcx.types.unit)
}
hir::CoroutineDesugaring::Gen | hir::CoroutineDesugaring::AsyncGen => {
todo!("`gen` and `async gen` closures not supported yet")
}
};
// Compute all of the variables that will be used to populate the coroutine.
let resume_ty =
self.next_ty_var(TypeVariableOrigin { param_def_id: None, span: expr_span });
let interior =
self.next_ty_var(TypeVariableOrigin { param_def_id: None, span: expr_span });
let closure_kind_ty = match expected_kind {
Some(kind) => Ty::from_closure_kind(tcx, kind),
// Create a type variable (for now) to represent the closure kind.
// It will be unified during the upvar inference phase (`upvar.rs`)
None => {
self.next_ty_var(TypeVariableOrigin { param_def_id: None, span: expr_span })
}
};
let coroutine_captures_by_ref_ty =
self.next_ty_var(TypeVariableOrigin { param_def_id: None, span: expr_span });
let closure_args = ty::CoroutineClosureArgs::new(
tcx,
ty::CoroutineClosureArgsParts {
parent_args,
closure_kind_ty,
signature_parts_ty: Ty::new_fn_ptr(
tcx,
bound_sig.map_bound(|sig| {
tcx.mk_fn_sig(
[
resume_ty,
Ty::new_tup_from_iter(tcx, sig.inputs().iter().copied()),
],
Ty::new_tup(tcx, &[bound_yield_ty, bound_return_ty]),
sig.c_variadic,
sig.unsafety,
sig.abi,
)
}),
),
tupled_upvars_ty,
coroutine_captures_by_ref_ty,
coroutine_witness_ty: interior,
},
);
let coroutine_kind_ty = match expected_kind {
Some(kind) => Ty::from_coroutine_closure_kind(tcx, kind),
// Create a type variable (for now) to represent the closure kind.
// It will be unified during the upvar inference phase (`upvar.rs`)
None => {
self.next_ty_var(TypeVariableOrigin { param_def_id: None, span: expr_span })
}
};
let coroutine_upvars_ty =
self.next_ty_var(TypeVariableOrigin { param_def_id: None, span: expr_span });
// We need to turn the liberated signature that we got from HIR, which
// looks something like `|Args...| -> T`, into a signature that is suitable
// for type checking the inner body of the closure, which always returns a
// coroutine. To do so, we use the `CoroutineClosureSignature` to compute
// the coroutine type, filling in the tupled_upvars_ty and kind_ty with infer
// vars which will get constrained during upvar analysis.
let coroutine_output_ty = tcx.liberate_late_bound_regions(
expr_def_id.to_def_id(),
closure_args.coroutine_closure_sig().map_bound(|sig| {
sig.to_coroutine(
tcx,
parent_args,
coroutine_kind_ty,
tcx.coroutine_for_closure(expr_def_id),
coroutine_upvars_ty,
)
}),
);
liberated_sig = tcx.mk_fn_sig(
liberated_sig.inputs().iter().copied(),
coroutine_output_ty,
liberated_sig.c_variadic,
liberated_sig.unsafety,
liberated_sig.abi,
);
(Ty::new_coroutine_closure(tcx, expr_def_id.to_def_id(), closure_args.args), None)
}
};
check_fn(
&mut FnCtxt::new(self, self.param_env, closure.def_id),
liberated_sig,
coroutine_types,
closure.fn_decl,
expr_def_id,
body,
// Closure "rust-call" ABI doesn't support unsized params
false,
);
closure_ty
}
/// Given the expected type, figures out what it can about this closure we
/// are about to type check:
#[instrument(skip(self), level = "debug")]
fn deduce_closure_signature(
&self,
expected_ty: Ty<'tcx>,
closure_kind: hir::ClosureKind,
) -> (Option<ExpectedSig<'tcx>>, Option<ty::ClosureKind>) {
match *expected_ty.kind() {
ty::Alias(ty::Opaque, ty::AliasTy { def_id, args, .. }) => self
.deduce_closure_signature_from_predicates(
expected_ty,
closure_kind,
self.tcx
.explicit_item_super_predicates(def_id)
.iter_instantiated_copied(self.tcx, args)
.map(|(c, s)| (c.as_predicate(), s)),
),
ty::Dynamic(object_type, ..) => {
let sig = object_type.projection_bounds().find_map(|pb| {
let pb = pb.with_self_ty(self.tcx, self.tcx.types.trait_object_dummy_self);
self.deduce_sig_from_projection(None, closure_kind, pb)
});
let kind = object_type
.principal_def_id()
.and_then(|did| self.tcx.fn_trait_kind_from_def_id(did));
(sig, kind)
}
ty::Infer(ty::TyVar(vid)) => self.deduce_closure_signature_from_predicates(
Ty::new_var(self.tcx, self.root_var(vid)),
closure_kind,
self.obligations_for_self_ty(vid)
.into_iter()
.map(|obl| (obl.predicate, obl.cause.span)),
),
ty::FnPtr(sig) => match closure_kind {
hir::ClosureKind::Closure => {
let expected_sig = ExpectedSig { cause_span: None, sig };
(Some(expected_sig), Some(ty::ClosureKind::Fn))
}
hir::ClosureKind::Coroutine(_) | hir::ClosureKind::CoroutineClosure(_) => {
(None, None)
}
},
_ => (None, None),
}
}
fn deduce_closure_signature_from_predicates(
&self,
expected_ty: Ty<'tcx>,
closure_kind: hir::ClosureKind,
predicates: impl DoubleEndedIterator<Item = (ty::Predicate<'tcx>, Span)>,
) -> (Option<ExpectedSig<'tcx>>, Option<ty::ClosureKind>) {
let mut expected_sig = None;
let mut expected_kind = None;
for (pred, span) in traits::elaborate(
self.tcx,
// Reverse the obligations here, since `elaborate_*` uses a stack,
// and we want to keep inference generally in the same order of
// the registered obligations.
predicates.rev(),
)
// We only care about self bounds
.filter_only_self()
{
debug!(?pred);
let bound_predicate = pred.kind();
// Given a Projection predicate, we can potentially infer
// the complete signature.
if expected_sig.is_none()
&& let ty::PredicateKind::Clause(ty::ClauseKind::Projection(proj_predicate)) =
bound_predicate.skip_binder()
{
let inferred_sig = self.normalize(
span,
self.deduce_sig_from_projection(
Some(span),
closure_kind,
bound_predicate.rebind(proj_predicate),
),
);
// Make sure that we didn't infer a signature that mentions itself.
// This can happen when we elaborate certain supertrait bounds that
// mention projections containing the `Self` type. See #105401.
struct MentionsTy<'tcx> {
expected_ty: Ty<'tcx>,
}
impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for MentionsTy<'tcx> {
type Result = ControlFlow<()>;
fn visit_ty(&mut self, t: Ty<'tcx>) -> Self::Result {
if t == self.expected_ty {
ControlFlow::Break(())
} else {
t.super_visit_with(self)
}
}
}
if inferred_sig.visit_with(&mut MentionsTy { expected_ty }).is_continue() {
expected_sig = inferred_sig;
}
}
// Even if we can't infer the full signature, we may be able to
// infer the kind. This can occur when we elaborate a predicate
// like `F : Fn<A>`. Note that due to subtyping we could encounter
// many viable options, so pick the most restrictive.
let trait_def_id = match bound_predicate.skip_binder() {
ty::PredicateKind::Clause(ty::ClauseKind::Projection(data)) => {
Some(data.projection_ty.trait_def_id(self.tcx))
}
ty::PredicateKind::Clause(ty::ClauseKind::Trait(data)) => Some(data.def_id()),
_ => None,
};
if let Some(trait_def_id) = trait_def_id {
let found_kind = match closure_kind {
hir::ClosureKind::Closure => self.tcx.fn_trait_kind_from_def_id(trait_def_id),
hir::ClosureKind::CoroutineClosure(hir::CoroutineDesugaring::Async) => {
self.tcx.async_fn_trait_kind_from_def_id(trait_def_id)
}
_ => None,
};
if let Some(found_kind) = found_kind {
// always use the closure kind that is more permissive.
match (expected_kind, found_kind) {
(None, _) => expected_kind = Some(found_kind),
(Some(ClosureKind::FnMut), ClosureKind::Fn) => {
expected_kind = Some(ClosureKind::Fn)
}
(Some(ClosureKind::FnOnce), ClosureKind::Fn | ClosureKind::FnMut) => {
expected_kind = Some(found_kind)
}
_ => {}
}
}
}
}
(expected_sig, expected_kind)
}
/// Given a projection like "<F as Fn(X)>::Result == Y", we can deduce
/// everything we need to know about a closure or coroutine.
///
/// The `cause_span` should be the span that caused us to
/// have this expected signature, or `None` if we can't readily
/// know that.
#[instrument(level = "debug", skip(self, cause_span), ret)]
fn deduce_sig_from_projection(
&self,
cause_span: Option<Span>,
closure_kind: hir::ClosureKind,
projection: ty::PolyProjectionPredicate<'tcx>,
) -> Option<ExpectedSig<'tcx>> {
let tcx = self.tcx;
let trait_def_id = projection.trait_def_id(tcx);
// For now, we only do signature deduction based off of the `Fn` and `AsyncFn` traits,
// for closures and async closures, respectively.
match closure_kind {
hir::ClosureKind::Closure
if self.tcx.fn_trait_kind_from_def_id(trait_def_id).is_some() => {}
hir::ClosureKind::CoroutineClosure(hir::CoroutineDesugaring::Async)
if self.tcx.async_fn_trait_kind_from_def_id(trait_def_id).is_some() => {}
_ => return None,
}
let arg_param_ty = projection.skip_binder().projection_ty.args.type_at(1);
let arg_param_ty = self.resolve_vars_if_possible(arg_param_ty);
debug!(?arg_param_ty);
let ty::Tuple(input_tys) = *arg_param_ty.kind() else {
return None;
};
// Since this is a return parameter type it is safe to unwrap.
let ret_param_ty = projection.skip_binder().term.ty().unwrap();
let ret_param_ty = self.resolve_vars_if_possible(ret_param_ty);
debug!(?ret_param_ty);
let sig = projection.rebind(self.tcx.mk_fn_sig(
input_tys,
ret_param_ty,
false,
hir::Unsafety::Normal,
Abi::Rust,
));
Some(ExpectedSig { cause_span, sig })
}
fn sig_of_closure(
&self,
expr_def_id: LocalDefId,
decl: &hir::FnDecl<'tcx>,
closure_kind: hir::ClosureKind,
expected_sig: Option<ExpectedSig<'tcx>>,
) -> ClosureSignatures<'tcx> {
if let Some(e) = expected_sig {
self.sig_of_closure_with_expectation(expr_def_id, decl, closure_kind, e)
} else {
self.sig_of_closure_no_expectation(expr_def_id, decl, closure_kind)
}
}
/// If there is no expected signature, then we will convert the
/// types that the user gave into a signature.
#[instrument(skip(self, expr_def_id, decl), level = "debug")]
fn sig_of_closure_no_expectation(
&self,
expr_def_id: LocalDefId,
decl: &hir::FnDecl<'tcx>,
closure_kind: hir::ClosureKind,
) -> ClosureSignatures<'tcx> {
let bound_sig = self.supplied_sig_of_closure(expr_def_id, decl, closure_kind);
self.closure_sigs(expr_def_id, bound_sig)
}
/// Invoked to compute the signature of a closure expression. This
/// combines any user-provided type annotations (e.g., `|x: u32|
/// -> u32 { .. }`) with the expected signature.
///
/// The approach is as follows:
///
/// - Let `S` be the (higher-ranked) signature that we derive from the user's annotations.
/// - Let `E` be the (higher-ranked) signature that we derive from the expectations, if any.
/// - If we have no expectation `E`, then the signature of the closure is `S`.
/// - Otherwise, the signature of the closure is E. Moreover:
/// - Skolemize the late-bound regions in `E`, yielding `E'`.
/// - Instantiate all the late-bound regions bound in the closure within `S`
/// with fresh (existential) variables, yielding `S'`
/// - Require that `E' = S'`
/// - We could use some kind of subtyping relationship here,
/// I imagine, but equality is easier and works fine for
/// our purposes.
///
/// The key intuition here is that the user's types must be valid
/// from "the inside" of the closure, but the expectation
/// ultimately drives the overall signature.
///
/// # Examples
///
/// ```ignore (illustrative)
/// fn with_closure<F>(_: F)
/// where F: Fn(&u32) -> &u32 { .. }
///
/// with_closure(|x: &u32| { ... })
/// ```
///
/// Here:
/// - E would be `fn(&u32) -> &u32`.
/// - S would be `fn(&u32) -> ?T`
/// - E' is `&'!0 u32 -> &'!0 u32`
/// - S' is `&'?0 u32 -> ?T`
///
/// S' can be unified with E' with `['?0 = '!0, ?T = &'!10 u32]`.
///
/// # Arguments
///
/// - `expr_def_id`: the `LocalDefId` of the closure expression
/// - `decl`: the HIR declaration of the closure
/// - `body`: the body of the closure
/// - `expected_sig`: the expected signature (if any). Note that
/// this is missing a binder: that is, there may be late-bound
/// regions with depth 1, which are bound then by the closure.
#[instrument(skip(self, expr_def_id, decl), level = "debug")]
fn sig_of_closure_with_expectation(
&self,
expr_def_id: LocalDefId,
decl: &hir::FnDecl<'tcx>,
closure_kind: hir::ClosureKind,
expected_sig: ExpectedSig<'tcx>,
) -> ClosureSignatures<'tcx> {
// Watch out for some surprises and just ignore the
// expectation if things don't see to match up with what we
// expect.
if expected_sig.sig.c_variadic() != decl.c_variadic {
return self.sig_of_closure_no_expectation(expr_def_id, decl, closure_kind);
} else if expected_sig.sig.skip_binder().inputs_and_output.len() != decl.inputs.len() + 1 {
return self.sig_of_closure_with_mismatched_number_of_arguments(
expr_def_id,
decl,
expected_sig,
);
}
// Create a `PolyFnSig`. Note the oddity that late bound
// regions appearing free in `expected_sig` are now bound up
// in this binder we are creating.
assert!(!expected_sig.sig.skip_binder().has_vars_bound_above(ty::INNERMOST));
let bound_sig = expected_sig.sig.map_bound(|sig| {
self.tcx.mk_fn_sig(
sig.inputs().iter().cloned(),
sig.output(),
sig.c_variadic,
hir::Unsafety::Normal,
Abi::RustCall,
)
});
// `deduce_expectations_from_expected_type` introduces
// late-bound lifetimes defined elsewhere, which we now
// anonymize away, so as not to confuse the user.
let bound_sig = self.tcx.anonymize_bound_vars(bound_sig);
let closure_sigs = self.closure_sigs(expr_def_id, bound_sig);
// Up till this point, we have ignored the annotations that the user
// gave. This function will check that they unify successfully.
// Along the way, it also writes out entries for types that the user
// wrote into our typeck results, which are then later used by the privacy
// check.
match self.merge_supplied_sig_with_expectation(
expr_def_id,
decl,
closure_kind,
closure_sigs,
) {
Ok(infer_ok) => self.register_infer_ok_obligations(infer_ok),
Err(_) => self.sig_of_closure_no_expectation(expr_def_id, decl, closure_kind),
}
}
fn sig_of_closure_with_mismatched_number_of_arguments(
&self,
expr_def_id: LocalDefId,
decl: &hir::FnDecl<'tcx>,
expected_sig: ExpectedSig<'tcx>,
) -> ClosureSignatures<'tcx> {
let expr_map_node = self.tcx.hir_node_by_def_id(expr_def_id);
let expected_args: Vec<_> = expected_sig
.sig
.skip_binder()
.inputs()
.iter()
.map(|ty| ArgKind::from_expected_ty(*ty, None))
.collect();
let (closure_span, closure_arg_span, found_args) =
match self.get_fn_like_arguments(expr_map_node) {
Some((sp, arg_sp, args)) => (Some(sp), arg_sp, args),
None => (None, None, Vec::new()),
};
let expected_span =
expected_sig.cause_span.unwrap_or_else(|| self.tcx.def_span(expr_def_id));
let guar = self
.report_arg_count_mismatch(
expected_span,
closure_span,
expected_args,
found_args,
true,
closure_arg_span,
)
.emit();
let error_sig = self.error_sig_of_closure(decl, guar);
self.closure_sigs(expr_def_id, error_sig)
}
/// Enforce the user's types against the expectation. See
/// `sig_of_closure_with_expectation` for details on the overall
/// strategy.
#[instrument(level = "debug", skip(self, expr_def_id, decl, expected_sigs))]
fn merge_supplied_sig_with_expectation(
&self,
expr_def_id: LocalDefId,
decl: &hir::FnDecl<'tcx>,
closure_kind: hir::ClosureKind,
mut expected_sigs: ClosureSignatures<'tcx>,
) -> InferResult<'tcx, ClosureSignatures<'tcx>> {
// Get the signature S that the user gave.
//
// (See comment on `sig_of_closure_with_expectation` for the
// meaning of these letters.)
let supplied_sig = self.supplied_sig_of_closure(expr_def_id, decl, closure_kind);
debug!(?supplied_sig);
// FIXME(#45727): As discussed in [this comment][c1], naively
// forcing equality here actually results in suboptimal error
// messages in some cases. For now, if there would have been
// an obvious error, we fallback to declaring the type of the
// closure to be the one the user gave, which allows other
// error message code to trigger.
//
// However, I think [there is potential to do even better
// here][c2], since in *this* code we have the precise span of
// the type parameter in question in hand when we report the
// error.
//
// [c1]: https://github.com/rust-lang/rust/pull/45072#issuecomment-341089706
// [c2]: https://github.com/rust-lang/rust/pull/45072#issuecomment-341096796
self.commit_if_ok(|_| {
let mut all_obligations = vec![];
let supplied_sig = self.instantiate_binder_with_fresh_vars(
self.tcx.def_span(expr_def_id),
BoundRegionConversionTime::FnCall,
supplied_sig,
);
// The liberated version of this signature should be a subtype
// of the liberated form of the expectation.
for ((hir_ty, &supplied_ty), expected_ty) in iter::zip(
iter::zip(decl.inputs, supplied_sig.inputs()),
expected_sigs.liberated_sig.inputs(), // `liberated_sig` is E'.
) {
// Check that E' = S'.
let cause = self.misc(hir_ty.span);
let InferOk { value: (), obligations } = self.at(&cause, self.param_env).eq(
DefineOpaqueTypes::Yes,
*expected_ty,
supplied_ty,
)?;
all_obligations.extend(obligations);
}
let supplied_output_ty = supplied_sig.output();
let cause = &self.misc(decl.output.span());
let InferOk { value: (), obligations } = self.at(cause, self.param_env).eq(
DefineOpaqueTypes::Yes,
expected_sigs.liberated_sig.output(),
supplied_output_ty,
)?;
all_obligations.extend(obligations);
let inputs =
supplied_sig.inputs().into_iter().map(|&ty| self.resolve_vars_if_possible(ty));
expected_sigs.liberated_sig = self.tcx.mk_fn_sig(
inputs,
supplied_output_ty,
expected_sigs.liberated_sig.c_variadic,
hir::Unsafety::Normal,
Abi::RustCall,
);
Ok(InferOk { value: expected_sigs, obligations: all_obligations })
})
}
/// If there is no expected signature, then we will convert the
/// types that the user gave into a signature.
///
/// Also, record this closure signature for later.
#[instrument(skip(self, decl), level = "debug", ret)]
fn supplied_sig_of_closure(
&self,
expr_def_id: LocalDefId,
decl: &hir::FnDecl<'tcx>,
closure_kind: hir::ClosureKind,
) -> ty::PolyFnSig<'tcx> {
let lowerer = self.lowerer();
trace!("decl = {:#?}", decl);
debug!(?closure_kind);
let hir_id = self.tcx.local_def_id_to_hir_id(expr_def_id);
let bound_vars = self.tcx.late_bound_vars(hir_id);
// First, convert the types that the user supplied (if any).
let supplied_arguments = decl.inputs.iter().map(|a| lowerer.lower_ty(a));
let supplied_return = match decl.output {
hir::FnRetTy::Return(ref output) => lowerer.lower_ty(output),
hir::FnRetTy::DefaultReturn(_) => match closure_kind {
// In the case of the async block that we create for a function body,
// we expect the return type of the block to match that of the enclosing
// function.
hir::ClosureKind::Coroutine(hir::CoroutineKind::Desugared(
hir::CoroutineDesugaring::Async,
hir::CoroutineSource::Fn,
)) => {
debug!("closure is async fn body");
self.deduce_future_output_from_obligations(expr_def_id).unwrap_or_else(|| {
// AFAIK, deducing the future output
// always succeeds *except* in error cases
// like #65159. I'd like to return Error
// here, but I can't because I can't
// easily (and locally) prove that we
// *have* reported an
// error. --nikomatsakis
lowerer.ty_infer(None, decl.output.span())
})
}
// All `gen {}` and `async gen {}` must return unit.
hir::ClosureKind::Coroutine(hir::CoroutineKind::Desugared(
hir::CoroutineDesugaring::Gen | hir::CoroutineDesugaring::AsyncGen,
_,
)) => self.tcx.types.unit,
// For async blocks, we just fall back to `_` here.
// For closures/coroutines, we know nothing about the return
// type unless it was supplied.
hir::ClosureKind::Coroutine(hir::CoroutineKind::Desugared(
hir::CoroutineDesugaring::Async,
_,
))
| hir::ClosureKind::Coroutine(hir::CoroutineKind::Coroutine(_))
| hir::ClosureKind::Closure
| hir::ClosureKind::CoroutineClosure(_) => {
lowerer.ty_infer(None, decl.output.span())
}
},
};
let result = ty::Binder::bind_with_vars(
self.tcx.mk_fn_sig(
supplied_arguments,
supplied_return,
decl.c_variadic,
hir::Unsafety::Normal,
Abi::RustCall,
),
bound_vars,
);
let c_result = self.infcx.canonicalize_response(result);
self.typeck_results.borrow_mut().user_provided_sigs.insert(expr_def_id, c_result);
// Normalize only after registering in `user_provided_sigs`.
self.normalize(self.tcx.hir().span(hir_id), result)
}
/// Invoked when we are translating the coroutine that results
/// from desugaring an `async fn`. Returns the "sugared" return
/// type of the `async fn` -- that is, the return type that the
/// user specified. The "desugared" return type is an `impl
/// Future<Output = T>`, so we do this by searching through the
/// obligations to extract the `T`.
#[instrument(skip(self), level = "debug", ret)]
fn deduce_future_output_from_obligations(&self, body_def_id: LocalDefId) -> Option<Ty<'tcx>> {
let ret_coercion = self.ret_coercion.as_ref().unwrap_or_else(|| {
span_bug!(self.tcx.def_span(body_def_id), "async fn coroutine outside of a fn")
});
let closure_span = self.tcx.def_span(body_def_id);
let ret_ty = ret_coercion.borrow().expected_ty();
let ret_ty = self.try_structurally_resolve_type(closure_span, ret_ty);
let get_future_output = |predicate: ty::Predicate<'tcx>, span| {
// Search for a pending obligation like
//
// `<R as Future>::Output = T`
//
// where R is the return type we are expecting. This type `T`
// will be our output.
let bound_predicate = predicate.kind();
if let ty::PredicateKind::Clause(ty::ClauseKind::Projection(proj_predicate)) =
bound_predicate.skip_binder()
{
self.deduce_future_output_from_projection(
span,
bound_predicate.rebind(proj_predicate),
)
} else {
None
}
};
let output_ty = match *ret_ty.kind() {
ty::Infer(ty::TyVar(ret_vid)) => {
self.obligations_for_self_ty(ret_vid).into_iter().find_map(|obligation| {
get_future_output(obligation.predicate, obligation.cause.span)
})?
}
ty::Alias(ty::Projection, _) => {
return Some(Ty::new_error_with_message(
self.tcx,
closure_span,
"this projection should have been projected to an opaque type",
));
}
ty::Alias(ty::Opaque, ty::AliasTy { def_id, args, .. }) => self
.tcx
.explicit_item_super_predicates(def_id)
.iter_instantiated_copied(self.tcx, args)
.find_map(|(p, s)| get_future_output(p.as_predicate(), s))?,
ty::Error(_) => return Some(ret_ty),
_ => {
span_bug!(closure_span, "invalid async fn coroutine return type: {ret_ty:?}")
}
};
let output_ty = self.normalize(closure_span, output_ty);
// async fn that have opaque types in their return type need to redo the conversion to inference variables
// as they fetch the still opaque version from the signature.
let InferOk { value: output_ty, obligations } = self
.replace_opaque_types_with_inference_vars(
output_ty,
body_def_id,
closure_span,
self.param_env,
);
self.register_predicates(obligations);
Some(output_ty)
}
/// Given a projection like
///
/// `<X as Future>::Output = T`
///
/// where `X` is some type that has no late-bound regions, returns
/// `Some(T)`. If the projection is for some other trait, returns
/// `None`.
fn deduce_future_output_from_projection(
&self,
cause_span: Span,
predicate: ty::PolyProjectionPredicate<'tcx>,
) -> Option<Ty<'tcx>> {
debug!("deduce_future_output_from_projection(predicate={:?})", predicate);
// We do not expect any bound regions in our predicate, so
// skip past the bound vars.
let Some(predicate) = predicate.no_bound_vars() else {
debug!("deduce_future_output_from_projection: has late-bound regions");
return None;
};
// Check that this is a projection from the `Future` trait.
let trait_def_id = predicate.projection_ty.trait_def_id(self.tcx);
let future_trait = self.tcx.require_lang_item(LangItem::Future, Some(cause_span));
if trait_def_id != future_trait {
debug!("deduce_future_output_from_projection: not a future");
return None;
}
// The `Future` trait has only one associated item, `Output`,
// so check that this is what we see.
let output_assoc_item = self.tcx.associated_item_def_ids(future_trait)[0];
if output_assoc_item != predicate.projection_ty.def_id {
span_bug!(
cause_span,
"projecting associated item `{:?}` from future, which is not Output `{:?}`",
predicate.projection_ty.def_id,
output_assoc_item,
);
}
// Extract the type from the projection. Note that there can
// be no bound variables in this type because the "self type"
// does not have any regions in it.
let output_ty = self.resolve_vars_if_possible(predicate.term);
debug!("deduce_future_output_from_projection: output_ty={:?}", output_ty);
// This is a projection on a Fn trait so will always be a type.
Some(output_ty.ty().unwrap())
}
/// Converts the types that the user supplied, in case that doing
/// so should yield an error, but returns back a signature where
/// all parameters are of type `ty::Error`.
fn error_sig_of_closure(
&self,
decl: &hir::FnDecl<'tcx>,
guar: ErrorGuaranteed,
) -> ty::PolyFnSig<'tcx> {
let lowerer = self.lowerer();
let err_ty = Ty::new_error(self.tcx, guar);
let supplied_arguments = decl.inputs.iter().map(|a| {
// Convert the types that the user supplied (if any), but ignore them.
lowerer.lower_ty(a);
err_ty
});
if let hir::FnRetTy::Return(ref output) = decl.output {
lowerer.lower_ty(output);
}
let result = ty::Binder::dummy(self.tcx.mk_fn_sig(
supplied_arguments,
err_ty,
decl.c_variadic,
hir::Unsafety::Normal,
Abi::RustCall,
));
debug!("supplied_sig_of_closure: result={:?}", result);
result
}
#[instrument(level = "debug", skip(self), ret)]
fn closure_sigs(
&self,
expr_def_id: LocalDefId,
bound_sig: ty::PolyFnSig<'tcx>,
) -> ClosureSignatures<'tcx> {
let liberated_sig =
self.tcx().liberate_late_bound_regions(expr_def_id.to_def_id(), bound_sig);
let liberated_sig = self.normalize(self.tcx.def_span(expr_def_id), liberated_sig);
ClosureSignatures { bound_sig, liberated_sig }
}
}