blob: 88ce5a7cbebba0f3f9bb2d67dcd2001d24a55377 [file] [log] [blame]
//! Intrinsics and other functions that the interpreter executes without
//! looking at their MIR. Intrinsics/functions supported here are shared by CTFE
//! and miri.
use rustc_hir::def_id::DefId;
use rustc_middle::ty;
use rustc_middle::ty::layout::{LayoutOf as _, ValidityRequirement};
use rustc_middle::ty::GenericArgsRef;
use rustc_middle::ty::{Ty, TyCtxt};
use rustc_middle::{
mir::{
self,
interpret::{
Allocation, ConstAllocation, GlobalId, InterpResult, PointerArithmetic, Scalar,
},
BinOp, ConstValue, NonDivergingIntrinsic,
},
ty::layout::TyAndLayout,
};
use rustc_span::symbol::{sym, Symbol};
use rustc_target::abi::Size;
use super::{
memory::MemoryKind, util::ensure_monomorphic_enough, CheckInAllocMsg, ImmTy, InterpCx,
MPlaceTy, Machine, OpTy, Pointer,
};
use crate::fluent_generated as fluent;
/// Directly returns an `Allocation` containing an absolute path representation of the given type.
pub(crate) fn alloc_type_name<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> ConstAllocation<'tcx> {
let path = crate::util::type_name(tcx, ty);
let alloc = Allocation::from_bytes_byte_aligned_immutable(path.into_bytes());
tcx.mk_const_alloc(alloc)
}
/// The logic for all nullary intrinsics is implemented here. These intrinsics don't get evaluated
/// inside an `InterpCx` and instead have their value computed directly from rustc internal info.
pub(crate) fn eval_nullary_intrinsic<'tcx>(
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
def_id: DefId,
args: GenericArgsRef<'tcx>,
) -> InterpResult<'tcx, ConstValue<'tcx>> {
let tp_ty = args.type_at(0);
let name = tcx.item_name(def_id);
Ok(match name {
sym::type_name => {
ensure_monomorphic_enough(tcx, tp_ty)?;
let alloc = alloc_type_name(tcx, tp_ty);
ConstValue::Slice { data: alloc, meta: alloc.inner().size().bytes() }
}
sym::needs_drop => {
ensure_monomorphic_enough(tcx, tp_ty)?;
ConstValue::from_bool(tp_ty.needs_drop(tcx, param_env))
}
sym::pref_align_of => {
// Correctly handles non-monomorphic calls, so there is no need for ensure_monomorphic_enough.
let layout = tcx.layout_of(param_env.and(tp_ty)).map_err(|e| err_inval!(Layout(*e)))?;
ConstValue::from_target_usize(layout.align.pref.bytes(), &tcx)
}
sym::type_id => {
ensure_monomorphic_enough(tcx, tp_ty)?;
ConstValue::from_u128(tcx.type_id_hash(tp_ty).as_u128())
}
sym::variant_count => match tp_ty.kind() {
// Correctly handles non-monomorphic calls, so there is no need for ensure_monomorphic_enough.
ty::Adt(adt, _) => ConstValue::from_target_usize(adt.variants().len() as u64, &tcx),
ty::Alias(..) | ty::Param(_) | ty::Placeholder(_) | ty::Infer(_) => {
throw_inval!(TooGeneric)
}
ty::Pat(_, pat) => match **pat {
ty::PatternKind::Range { .. } => ConstValue::from_target_usize(0u64, &tcx),
// Future pattern kinds may have more variants
},
ty::Bound(_, _) => bug!("bound ty during ctfe"),
ty::Bool
| ty::Char
| ty::Int(_)
| ty::Uint(_)
| ty::Float(_)
| ty::Foreign(_)
| ty::Str
| ty::Array(_, _)
| ty::Slice(_)
| ty::RawPtr(_, _)
| ty::Ref(_, _, _)
| ty::FnDef(_, _)
| ty::FnPtr(_)
| ty::Dynamic(_, _, _)
| ty::Closure(_, _)
| ty::CoroutineClosure(_, _)
| ty::Coroutine(_, _)
| ty::CoroutineWitness(..)
| ty::Never
| ty::Tuple(_)
| ty::Error(_) => ConstValue::from_target_usize(0u64, &tcx),
},
other => bug!("`{}` is not a zero arg intrinsic", other),
})
}
impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
/// Returns `true` if emulation happened.
/// Here we implement the intrinsics that are common to all Miri instances; individual machines can add their own
/// intrinsic handling.
pub fn emulate_intrinsic(
&mut self,
instance: ty::Instance<'tcx>,
args: &[OpTy<'tcx, M::Provenance>],
dest: &MPlaceTy<'tcx, M::Provenance>,
ret: Option<mir::BasicBlock>,
) -> InterpResult<'tcx, bool> {
let instance_args = instance.args;
let intrinsic_name = self.tcx.item_name(instance.def_id());
match intrinsic_name {
sym::caller_location => {
let span = self.find_closest_untracked_caller_location();
let val = self.tcx.span_as_caller_location(span);
let val =
self.const_val_to_op(val, self.tcx.caller_location_ty(), Some(dest.layout))?;
self.copy_op(&val, dest)?;
}
sym::min_align_of_val | sym::size_of_val => {
// Avoid `deref_pointer` -- this is not a deref, the ptr does not have to be
// dereferenceable!
let place = self.ref_to_mplace(&self.read_immediate(&args[0])?)?;
let (size, align) = self
.size_and_align_of_mplace(&place)?
.ok_or_else(|| err_unsup_format!("`extern type` does not have known layout"))?;
let result = match intrinsic_name {
sym::min_align_of_val => align.bytes(),
sym::size_of_val => size.bytes(),
_ => bug!(),
};
self.write_scalar(Scalar::from_target_usize(result, self), dest)?;
}
sym::pref_align_of
| sym::needs_drop
| sym::type_id
| sym::type_name
| sym::variant_count => {
let gid = GlobalId { instance, promoted: None };
let ty = match intrinsic_name {
sym::pref_align_of | sym::variant_count => self.tcx.types.usize,
sym::needs_drop => self.tcx.types.bool,
sym::type_id => self.tcx.types.u128,
sym::type_name => Ty::new_static_str(self.tcx.tcx),
_ => bug!(),
};
let val =
self.ctfe_query(|tcx| tcx.const_eval_global_id(self.param_env, gid, tcx.span))?;
let val = self.const_val_to_op(val, ty, Some(dest.layout))?;
self.copy_op(&val, dest)?;
}
sym::ctpop
| sym::cttz
| sym::cttz_nonzero
| sym::ctlz
| sym::ctlz_nonzero
| sym::bswap
| sym::bitreverse => {
let ty = instance_args.type_at(0);
let layout = self.layout_of(ty)?;
let val = self.read_scalar(&args[0])?;
let out_val = self.numeric_intrinsic(intrinsic_name, val, layout, dest.layout)?;
self.write_scalar(out_val, dest)?;
}
sym::saturating_add | sym::saturating_sub => {
let l = self.read_immediate(&args[0])?;
let r = self.read_immediate(&args[1])?;
let val = self.saturating_arith(
if intrinsic_name == sym::saturating_add { BinOp::Add } else { BinOp::Sub },
&l,
&r,
)?;
self.write_scalar(val, dest)?;
}
sym::discriminant_value => {
let place = self.deref_pointer(&args[0])?;
let variant = self.read_discriminant(&place)?;
let discr = self.discriminant_for_variant(place.layout.ty, variant)?;
self.write_immediate(*discr, dest)?;
}
sym::exact_div => {
let l = self.read_immediate(&args[0])?;
let r = self.read_immediate(&args[1])?;
self.exact_div(&l, &r, dest)?;
}
sym::rotate_left | sym::rotate_right => {
// rotate_left: (X << (S % BW)) | (X >> ((BW - S) % BW))
// rotate_right: (X << ((BW - S) % BW)) | (X >> (S % BW))
let layout_val = self.layout_of(instance_args.type_at(0))?;
let val = self.read_scalar(&args[0])?;
let val_bits = val.to_bits(layout_val.size)?;
let layout_raw_shift = self.layout_of(self.tcx.types.u32)?;
let raw_shift = self.read_scalar(&args[1])?;
let raw_shift_bits = raw_shift.to_bits(layout_raw_shift.size)?;
let width_bits = u128::from(layout_val.size.bits());
let shift_bits = raw_shift_bits % width_bits;
let inv_shift_bits = (width_bits - shift_bits) % width_bits;
let result_bits = if intrinsic_name == sym::rotate_left {
(val_bits << shift_bits) | (val_bits >> inv_shift_bits)
} else {
(val_bits >> shift_bits) | (val_bits << inv_shift_bits)
};
let truncated_bits = self.truncate(result_bits, layout_val);
let result = Scalar::from_uint(truncated_bits, layout_val.size);
self.write_scalar(result, dest)?;
}
sym::copy => {
self.copy_intrinsic(&args[0], &args[1], &args[2], /*nonoverlapping*/ false)?;
}
sym::write_bytes => {
self.write_bytes_intrinsic(&args[0], &args[1], &args[2])?;
}
sym::compare_bytes => {
let result = self.compare_bytes_intrinsic(&args[0], &args[1], &args[2])?;
self.write_scalar(result, dest)?;
}
sym::arith_offset => {
let ptr = self.read_pointer(&args[0])?;
let offset_count = self.read_target_isize(&args[1])?;
let pointee_ty = instance_args.type_at(0);
let pointee_size = i64::try_from(self.layout_of(pointee_ty)?.size.bytes()).unwrap();
let offset_bytes = offset_count.wrapping_mul(pointee_size);
let offset_ptr = ptr.wrapping_signed_offset(offset_bytes, self);
self.write_pointer(offset_ptr, dest)?;
}
sym::ptr_offset_from | sym::ptr_offset_from_unsigned => {
let a = self.read_pointer(&args[0])?;
let b = self.read_pointer(&args[1])?;
let usize_layout = self.layout_of(self.tcx.types.usize)?;
let isize_layout = self.layout_of(self.tcx.types.isize)?;
// Get offsets for both that are at least relative to the same base.
let (a_offset, b_offset) =
match (self.ptr_try_get_alloc_id(a), self.ptr_try_get_alloc_id(b)) {
(Err(a), Err(b)) => {
// Neither pointer points to an allocation.
// If these are inequal or null, this *will* fail the deref check below.
(a, b)
}
(Err(_), _) | (_, Err(_)) => {
// We managed to find a valid allocation for one pointer, but not the other.
// That means they are definitely not pointing to the same allocation.
throw_ub_custom!(
fluent::const_eval_different_allocations,
name = intrinsic_name,
);
}
(Ok((a_alloc_id, a_offset, _)), Ok((b_alloc_id, b_offset, _))) => {
// Found allocation for both. They must be into the same allocation.
if a_alloc_id != b_alloc_id {
throw_ub_custom!(
fluent::const_eval_different_allocations,
name = intrinsic_name,
);
}
// Use these offsets for distance calculation.
(a_offset.bytes(), b_offset.bytes())
}
};
// Compute distance.
let dist = {
// Addresses are unsigned, so this is a `usize` computation. We have to do the
// overflow check separately anyway.
let (val, overflowed) = {
let a_offset = ImmTy::from_uint(a_offset, usize_layout);
let b_offset = ImmTy::from_uint(b_offset, usize_layout);
self.overflowing_binary_op(BinOp::Sub, &a_offset, &b_offset)?
};
if overflowed {
// a < b
if intrinsic_name == sym::ptr_offset_from_unsigned {
throw_ub_custom!(
fluent::const_eval_unsigned_offset_from_overflow,
a_offset = a_offset,
b_offset = b_offset,
);
}
// The signed form of the intrinsic allows this. If we interpret the
// difference as isize, we'll get the proper signed difference. If that
// seems *positive*, they were more than isize::MAX apart.
let dist = val.to_scalar().to_target_isize(self)?;
if dist >= 0 {
throw_ub_custom!(
fluent::const_eval_offset_from_underflow,
name = intrinsic_name,
);
}
dist
} else {
// b >= a
let dist = val.to_scalar().to_target_isize(self)?;
// If converting to isize produced a *negative* result, we had an overflow
// because they were more than isize::MAX apart.
if dist < 0 {
throw_ub_custom!(
fluent::const_eval_offset_from_overflow,
name = intrinsic_name,
);
}
dist
}
};
// Check that the range between them is dereferenceable ("in-bounds or one past the
// end of the same allocation"). This is like the check in ptr_offset_inbounds.
let min_ptr = if dist >= 0 { b } else { a };
self.check_ptr_access(
min_ptr,
Size::from_bytes(dist.unsigned_abs()),
CheckInAllocMsg::OffsetFromTest,
)?;
// Perform division by size to compute return value.
let ret_layout = if intrinsic_name == sym::ptr_offset_from_unsigned {
assert!(0 <= dist && dist <= self.target_isize_max());
usize_layout
} else {
assert!(self.target_isize_min() <= dist && dist <= self.target_isize_max());
isize_layout
};
let pointee_layout = self.layout_of(instance_args.type_at(0))?;
// If ret_layout is unsigned, we checked that so is the distance, so we are good.
let val = ImmTy::from_int(dist, ret_layout);
let size = ImmTy::from_int(pointee_layout.size.bytes(), ret_layout);
self.exact_div(&val, &size, dest)?;
}
sym::assert_inhabited
| sym::assert_zero_valid
| sym::assert_mem_uninitialized_valid => {
let ty = instance.args.type_at(0);
let requirement = ValidityRequirement::from_intrinsic(intrinsic_name).unwrap();
let should_panic = !self
.tcx
.check_validity_requirement((requirement, self.param_env.and(ty)))
.map_err(|_| err_inval!(TooGeneric))?;
if should_panic {
let layout = self.layout_of(ty)?;
let msg = match requirement {
// For *all* intrinsics we first check `is_uninhabited` to give a more specific
// error message.
_ if layout.abi.is_uninhabited() => format!(
"aborted execution: attempted to instantiate uninhabited type `{ty}`"
),
ValidityRequirement::Inhabited => bug!("handled earlier"),
ValidityRequirement::Zero => format!(
"aborted execution: attempted to zero-initialize type `{ty}`, which is invalid"
),
ValidityRequirement::UninitMitigated0x01Fill => format!(
"aborted execution: attempted to leave type `{ty}` uninitialized, which is invalid"
),
ValidityRequirement::Uninit => bug!("assert_uninit_valid doesn't exist"),
};
M::panic_nounwind(self, &msg)?;
// Skip the `return_to_block` at the end (we panicked, we do not return).
return Ok(true);
}
}
sym::simd_insert => {
let index = u64::from(self.read_scalar(&args[1])?.to_u32()?);
let elem = &args[2];
let (input, input_len) = self.operand_to_simd(&args[0])?;
let (dest, dest_len) = self.mplace_to_simd(dest)?;
assert_eq!(input_len, dest_len, "Return vector length must match input length");
// Bounds are not checked by typeck so we have to do it ourselves.
if index >= input_len {
throw_ub_format!(
"`simd_insert` index {index} is out-of-bounds of vector with length {input_len}"
);
}
for i in 0..dest_len {
let place = self.project_index(&dest, i)?;
let value = if i == index {
elem.clone()
} else {
self.project_index(&input, i)?.into()
};
self.copy_op(&value, &place)?;
}
}
sym::simd_extract => {
let index = u64::from(self.read_scalar(&args[1])?.to_u32()?);
let (input, input_len) = self.operand_to_simd(&args[0])?;
// Bounds are not checked by typeck so we have to do it ourselves.
if index >= input_len {
throw_ub_format!(
"`simd_extract` index {index} is out-of-bounds of vector with length {input_len}"
);
}
self.copy_op(&self.project_index(&input, index)?, dest)?;
}
sym::black_box => {
// These just return their argument
self.copy_op(&args[0], dest)?;
}
sym::raw_eq => {
let result = self.raw_eq_intrinsic(&args[0], &args[1])?;
self.write_scalar(result, dest)?;
}
sym::typed_swap => {
self.typed_swap_intrinsic(&args[0], &args[1])?;
}
sym::vtable_size => {
let ptr = self.read_pointer(&args[0])?;
let (size, _align) = self.get_vtable_size_and_align(ptr)?;
self.write_scalar(Scalar::from_target_usize(size.bytes(), self), dest)?;
}
sym::vtable_align => {
let ptr = self.read_pointer(&args[0])?;
let (_size, align) = self.get_vtable_size_and_align(ptr)?;
self.write_scalar(Scalar::from_target_usize(align.bytes(), self), dest)?;
}
// Unsupported intrinsic: skip the return_to_block below.
_ => return Ok(false),
}
trace!("{:?}", self.dump_place(&dest.clone().into()));
self.return_to_block(ret)?;
Ok(true)
}
pub(super) fn emulate_nondiverging_intrinsic(
&mut self,
intrinsic: &NonDivergingIntrinsic<'tcx>,
) -> InterpResult<'tcx> {
match intrinsic {
NonDivergingIntrinsic::Assume(op) => {
let op = self.eval_operand(op, None)?;
let cond = self.read_scalar(&op)?.to_bool()?;
if !cond {
throw_ub_custom!(fluent::const_eval_assume_false);
}
Ok(())
}
NonDivergingIntrinsic::CopyNonOverlapping(mir::CopyNonOverlapping {
count,
src,
dst,
}) => {
let src = self.eval_operand(src, None)?;
let dst = self.eval_operand(dst, None)?;
let count = self.eval_operand(count, None)?;
self.copy_intrinsic(&src, &dst, &count, /* nonoverlapping */ true)
}
}
}
pub fn numeric_intrinsic(
&self,
name: Symbol,
val: Scalar<M::Provenance>,
layout: TyAndLayout<'tcx>,
ret_layout: TyAndLayout<'tcx>,
) -> InterpResult<'tcx, Scalar<M::Provenance>> {
assert!(layout.ty.is_integral(), "invalid type for numeric intrinsic: {}", layout.ty);
let bits = val.to_bits(layout.size)?;
let extra = 128 - u128::from(layout.size.bits());
let bits_out = match name {
sym::ctpop => u128::from(bits.count_ones()),
sym::ctlz_nonzero | sym::cttz_nonzero if bits == 0 => {
throw_ub_custom!(fluent::const_eval_call_nonzero_intrinsic, name = name,);
}
sym::ctlz | sym::ctlz_nonzero => u128::from(bits.leading_zeros()) - extra,
sym::cttz | sym::cttz_nonzero => u128::from((bits << extra).trailing_zeros()) - extra,
sym::bswap => {
assert_eq!(layout, ret_layout);
(bits << extra).swap_bytes()
}
sym::bitreverse => {
assert_eq!(layout, ret_layout);
(bits << extra).reverse_bits()
}
_ => bug!("not a numeric intrinsic: {}", name),
};
Ok(Scalar::from_uint(bits_out, ret_layout.size))
}
pub fn exact_div(
&mut self,
a: &ImmTy<'tcx, M::Provenance>,
b: &ImmTy<'tcx, M::Provenance>,
dest: &MPlaceTy<'tcx, M::Provenance>,
) -> InterpResult<'tcx> {
assert_eq!(a.layout.ty, b.layout.ty);
assert!(matches!(a.layout.ty.kind(), ty::Int(..) | ty::Uint(..)));
// Performs an exact division, resulting in undefined behavior where
// `x % y != 0` or `y == 0` or `x == T::MIN && y == -1`.
// First, check x % y != 0 (or if that computation overflows).
let (res, overflow) = self.overflowing_binary_op(BinOp::Rem, a, b)?;
assert!(!overflow); // All overflow is UB, so this should never return on overflow.
if res.to_scalar().assert_bits(a.layout.size) != 0 {
throw_ub_custom!(
fluent::const_eval_exact_div_has_remainder,
a = format!("{a}"),
b = format!("{b}")
)
}
// `Rem` says this is all right, so we can let `Div` do its job.
self.binop_ignore_overflow(BinOp::Div, a, b, &dest.clone().into())
}
pub fn saturating_arith(
&self,
mir_op: BinOp,
l: &ImmTy<'tcx, M::Provenance>,
r: &ImmTy<'tcx, M::Provenance>,
) -> InterpResult<'tcx, Scalar<M::Provenance>> {
assert_eq!(l.layout.ty, r.layout.ty);
assert!(matches!(l.layout.ty.kind(), ty::Int(..) | ty::Uint(..)));
assert!(matches!(mir_op, BinOp::Add | BinOp::Sub));
let (val, overflowed) = self.overflowing_binary_op(mir_op, l, r)?;
Ok(if overflowed {
let size = l.layout.size;
let num_bits = size.bits();
if l.layout.abi.is_signed() {
// For signed ints the saturated value depends on the sign of the first
// term since the sign of the second term can be inferred from this and
// the fact that the operation has overflowed (if either is 0 no
// overflow can occur)
let first_term: u128 = l.to_scalar().to_bits(l.layout.size)?;
let first_term_positive = first_term & (1 << (num_bits - 1)) == 0;
if first_term_positive {
// Negative overflow not possible since the positive first term
// can only increase an (in range) negative term for addition
// or corresponding negated positive term for subtraction
Scalar::from_int(size.signed_int_max(), size)
} else {
// Positive overflow not possible for similar reason
// max negative
Scalar::from_int(size.signed_int_min(), size)
}
} else {
// unsigned
if matches!(mir_op, BinOp::Add) {
// max unsigned
Scalar::from_uint(size.unsigned_int_max(), size)
} else {
// underflow to 0
Scalar::from_uint(0u128, size)
}
}
} else {
val.to_scalar()
})
}
/// Offsets a pointer by some multiple of its type, returning an error if the pointer leaves its
/// allocation. For integer pointers, we consider each of them their own tiny allocation of size
/// 0, so offset-by-0 (and only 0) is okay -- except that null cannot be offset by _any_ value.
pub fn ptr_offset_inbounds(
&self,
ptr: Pointer<Option<M::Provenance>>,
offset_bytes: i64,
) -> InterpResult<'tcx, Pointer<Option<M::Provenance>>> {
// The offset being in bounds cannot rely on "wrapping around" the address space.
// So, first rule out overflows in the pointer arithmetic.
let offset_ptr = ptr.signed_offset(offset_bytes, self)?;
// ptr and offset_ptr must be in bounds of the same allocated object. This means all of the
// memory between these pointers must be accessible. Note that we do not require the
// pointers to be properly aligned (unlike a read/write operation).
let min_ptr = if offset_bytes >= 0 { ptr } else { offset_ptr };
// This call handles checking for integer/null pointers.
self.check_ptr_access(
min_ptr,
Size::from_bytes(offset_bytes.unsigned_abs()),
CheckInAllocMsg::PointerArithmeticTest,
)?;
Ok(offset_ptr)
}
/// Copy `count*size_of::<T>()` many bytes from `*src` to `*dst`.
pub(crate) fn copy_intrinsic(
&mut self,
src: &OpTy<'tcx, <M as Machine<'mir, 'tcx>>::Provenance>,
dst: &OpTy<'tcx, <M as Machine<'mir, 'tcx>>::Provenance>,
count: &OpTy<'tcx, <M as Machine<'mir, 'tcx>>::Provenance>,
nonoverlapping: bool,
) -> InterpResult<'tcx> {
let count = self.read_target_usize(count)?;
let layout = self.layout_of(src.layout.ty.builtin_deref(true).unwrap().ty)?;
let (size, align) = (layout.size, layout.align.abi);
// `checked_mul` enforces a too small bound (the correct one would probably be target_isize_max),
// but no actual allocation can be big enough for the difference to be noticeable.
let size = size.checked_mul(count, self).ok_or_else(|| {
err_ub_custom!(
fluent::const_eval_size_overflow,
name = if nonoverlapping { "copy_nonoverlapping" } else { "copy" }
)
})?;
let src = self.read_pointer(src)?;
let dst = self.read_pointer(dst)?;
self.check_ptr_align(src, align)?;
self.check_ptr_align(dst, align)?;
self.mem_copy(src, dst, size, nonoverlapping)
}
/// Does a *typed* swap of `*left` and `*right`.
fn typed_swap_intrinsic(
&mut self,
left: &OpTy<'tcx, <M as Machine<'mir, 'tcx>>::Provenance>,
right: &OpTy<'tcx, <M as Machine<'mir, 'tcx>>::Provenance>,
) -> InterpResult<'tcx> {
let left = self.deref_pointer(left)?;
let right = self.deref_pointer(right)?;
debug_assert_eq!(left.layout, right.layout);
let kind = MemoryKind::Stack;
let temp = self.allocate(left.layout, kind)?;
self.copy_op(&left, &temp)?;
self.copy_op(&right, &left)?;
self.copy_op(&temp, &right)?;
self.deallocate_ptr(temp.ptr(), None, kind)?;
Ok(())
}
pub(crate) fn write_bytes_intrinsic(
&mut self,
dst: &OpTy<'tcx, <M as Machine<'mir, 'tcx>>::Provenance>,
byte: &OpTy<'tcx, <M as Machine<'mir, 'tcx>>::Provenance>,
count: &OpTy<'tcx, <M as Machine<'mir, 'tcx>>::Provenance>,
) -> InterpResult<'tcx> {
let layout = self.layout_of(dst.layout.ty.builtin_deref(true).unwrap().ty)?;
let dst = self.read_pointer(dst)?;
let byte = self.read_scalar(byte)?.to_u8()?;
let count = self.read_target_usize(count)?;
// `checked_mul` enforces a too small bound (the correct one would probably be target_isize_max),
// but no actual allocation can be big enough for the difference to be noticeable.
let len = layout.size.checked_mul(count, self).ok_or_else(|| {
err_ub_custom!(fluent::const_eval_size_overflow, name = "write_bytes")
})?;
let bytes = std::iter::repeat(byte).take(len.bytes_usize());
self.write_bytes_ptr(dst, bytes)
}
pub(crate) fn compare_bytes_intrinsic(
&mut self,
left: &OpTy<'tcx, <M as Machine<'mir, 'tcx>>::Provenance>,
right: &OpTy<'tcx, <M as Machine<'mir, 'tcx>>::Provenance>,
byte_count: &OpTy<'tcx, <M as Machine<'mir, 'tcx>>::Provenance>,
) -> InterpResult<'tcx, Scalar<M::Provenance>> {
let left = self.read_pointer(left)?;
let right = self.read_pointer(right)?;
let n = Size::from_bytes(self.read_target_usize(byte_count)?);
let left_bytes = self.read_bytes_ptr_strip_provenance(left, n)?;
let right_bytes = self.read_bytes_ptr_strip_provenance(right, n)?;
// `Ordering`'s discriminants are -1/0/+1, so casting does the right thing.
let result = Ord::cmp(left_bytes, right_bytes) as i32;
Ok(Scalar::from_i32(result))
}
pub(crate) fn raw_eq_intrinsic(
&mut self,
lhs: &OpTy<'tcx, <M as Machine<'mir, 'tcx>>::Provenance>,
rhs: &OpTy<'tcx, <M as Machine<'mir, 'tcx>>::Provenance>,
) -> InterpResult<'tcx, Scalar<M::Provenance>> {
let layout = self.layout_of(lhs.layout.ty.builtin_deref(true).unwrap().ty)?;
assert!(layout.is_sized());
let get_bytes = |this: &InterpCx<'mir, 'tcx, M>,
op: &OpTy<'tcx, <M as Machine<'mir, 'tcx>>::Provenance>,
size|
-> InterpResult<'tcx, &[u8]> {
let ptr = this.read_pointer(op)?;
let Some(alloc_ref) = self.get_ptr_alloc(ptr, size)? else {
// zero-sized access
return Ok(&[]);
};
if alloc_ref.has_provenance() {
throw_ub_custom!(fluent::const_eval_raw_eq_with_provenance);
}
alloc_ref.get_bytes_strip_provenance()
};
let lhs_bytes = get_bytes(self, lhs, layout.size)?;
let rhs_bytes = get_bytes(self, rhs, layout.size)?;
Ok(Scalar::from_bool(lhs_bytes == rhs_bytes))
}
}