blob: 40ed6baa61072f867f9f1591452e099a6225fdc6 [file] [log] [blame]
use crate::common::*;
use crate::type_::Type;
use rustc_codegen_ssa::traits::*;
use rustc_middle::bug;
use rustc_middle::ty::layout::{LayoutOf, TyAndLayout};
use rustc_middle::ty::print::{with_no_trimmed_paths, with_no_visible_paths};
use rustc_middle::ty::{self, Ty, TypeVisitableExt};
use rustc_target::abi::{Abi, Align, FieldsShape};
use rustc_target::abi::{Int, Pointer, F128, F16, F32, F64};
use rustc_target::abi::{Scalar, Size, Variants};
use std::fmt::Write;
fn uncached_llvm_type<'a, 'tcx>(
cx: &CodegenCx<'a, 'tcx>,
layout: TyAndLayout<'tcx>,
defer: &mut Option<(&'a Type, TyAndLayout<'tcx>)>,
) -> &'a Type {
match layout.abi {
Abi::Scalar(_) => bug!("handled elsewhere"),
Abi::Vector { element, count } => {
let element = layout.scalar_llvm_type_at(cx, element);
return cx.type_vector(element, count);
}
Abi::Uninhabited | Abi::Aggregate { .. } | Abi::ScalarPair(..) => {}
}
let name = match layout.ty.kind() {
// FIXME(eddyb) producing readable type names for trait objects can result
// in problematically distinct types due to HRTB and subtyping (see #47638).
// ty::Dynamic(..) |
ty::Adt(..) | ty::Closure(..) | ty::CoroutineClosure(..) | ty::Foreign(..) | ty::Coroutine(..) | ty::Str
// For performance reasons we use names only when emitting LLVM IR.
if !cx.sess().fewer_names() =>
{
let mut name = with_no_visible_paths!(with_no_trimmed_paths!(layout.ty.to_string()));
if let (&ty::Adt(def, _), &Variants::Single { index }) =
(layout.ty.kind(), &layout.variants)
{
if def.is_enum() && !def.variants().is_empty() {
write!(&mut name, "::{}", def.variant(index).name).unwrap();
}
}
if let (&ty::Coroutine(_, _), &Variants::Single { index }) =
(layout.ty.kind(), &layout.variants)
{
write!(&mut name, "::{}", ty::CoroutineArgs::variant_name(index)).unwrap();
}
Some(name)
}
_ => None,
};
match layout.fields {
FieldsShape::Primitive | FieldsShape::Union(_) => {
let fill = cx.type_padding_filler(layout.size, layout.align.abi);
let packed = false;
match name {
None => cx.type_struct(&[fill], packed),
Some(ref name) => {
let llty = cx.type_named_struct(name);
cx.set_struct_body(llty, &[fill], packed);
llty
}
}
}
FieldsShape::Array { count, .. } => cx.type_array(layout.field(cx, 0).llvm_type(cx), count),
FieldsShape::Arbitrary { .. } => match name {
None => {
let (llfields, packed) = struct_llfields(cx, layout);
cx.type_struct(&llfields, packed)
}
Some(ref name) => {
let llty = cx.type_named_struct(name);
*defer = Some((llty, layout));
llty
}
},
}
}
fn struct_llfields<'a, 'tcx>(
cx: &CodegenCx<'a, 'tcx>,
layout: TyAndLayout<'tcx>,
) -> (Vec<&'a Type>, bool) {
debug!("struct_llfields: {:#?}", layout);
let field_count = layout.fields.count();
let mut packed = false;
let mut offset = Size::ZERO;
let mut prev_effective_align = layout.align.abi;
let mut result: Vec<_> = Vec::with_capacity(1 + field_count * 2);
for i in layout.fields.index_by_increasing_offset() {
let target_offset = layout.fields.offset(i as usize);
let field = layout.field(cx, i);
let effective_field_align =
layout.align.abi.min(field.align.abi).restrict_for_offset(target_offset);
packed |= effective_field_align < field.align.abi;
debug!(
"struct_llfields: {}: {:?} offset: {:?} target_offset: {:?} \
effective_field_align: {}",
i,
field,
offset,
target_offset,
effective_field_align.bytes()
);
assert!(target_offset >= offset);
let padding = target_offset - offset;
if padding != Size::ZERO {
let padding_align = prev_effective_align.min(effective_field_align);
assert_eq!(offset.align_to(padding_align) + padding, target_offset);
result.push(cx.type_padding_filler(padding, padding_align));
debug!(" padding before: {:?}", padding);
}
result.push(field.llvm_type(cx));
offset = target_offset + field.size;
prev_effective_align = effective_field_align;
}
if layout.is_sized() && field_count > 0 {
if offset > layout.size {
bug!("layout: {:#?} stride: {:?} offset: {:?}", layout, layout.size, offset);
}
let padding = layout.size - offset;
if padding != Size::ZERO {
let padding_align = prev_effective_align;
assert_eq!(offset.align_to(padding_align) + padding, layout.size);
debug!(
"struct_llfields: pad_bytes: {:?} offset: {:?} stride: {:?}",
padding, offset, layout.size
);
result.push(cx.type_padding_filler(padding, padding_align));
}
} else {
debug!("struct_llfields: offset: {:?} stride: {:?}", offset, layout.size);
}
(result, packed)
}
impl<'a, 'tcx> CodegenCx<'a, 'tcx> {
pub fn align_of(&self, ty: Ty<'tcx>) -> Align {
self.layout_of(ty).align.abi
}
pub fn size_of(&self, ty: Ty<'tcx>) -> Size {
self.layout_of(ty).size
}
pub fn size_and_align_of(&self, ty: Ty<'tcx>) -> (Size, Align) {
let layout = self.layout_of(ty);
(layout.size, layout.align.abi)
}
}
pub trait LayoutLlvmExt<'tcx> {
fn is_llvm_immediate(&self) -> bool;
fn is_llvm_scalar_pair(&self) -> bool;
fn llvm_type<'a>(&self, cx: &CodegenCx<'a, 'tcx>) -> &'a Type;
fn immediate_llvm_type<'a>(&self, cx: &CodegenCx<'a, 'tcx>) -> &'a Type;
fn scalar_llvm_type_at<'a>(&self, cx: &CodegenCx<'a, 'tcx>, scalar: Scalar) -> &'a Type;
fn scalar_pair_element_llvm_type<'a>(
&self,
cx: &CodegenCx<'a, 'tcx>,
index: usize,
immediate: bool,
) -> &'a Type;
}
impl<'tcx> LayoutLlvmExt<'tcx> for TyAndLayout<'tcx> {
fn is_llvm_immediate(&self) -> bool {
match self.abi {
Abi::Scalar(_) | Abi::Vector { .. } => true,
Abi::ScalarPair(..) | Abi::Uninhabited | Abi::Aggregate { .. } => false,
}
}
fn is_llvm_scalar_pair(&self) -> bool {
match self.abi {
Abi::ScalarPair(..) => true,
Abi::Uninhabited | Abi::Scalar(_) | Abi::Vector { .. } | Abi::Aggregate { .. } => false,
}
}
/// Gets the LLVM type corresponding to a Rust type, i.e., `rustc_middle::ty::Ty`.
/// The pointee type of the pointer in `PlaceRef` is always this type.
/// For sized types, it is also the right LLVM type for an `alloca`
/// containing a value of that type, and most immediates (except `bool`).
/// Unsized types, however, are represented by a "minimal unit", e.g.
/// `[T]` becomes `T`, while `str` and `Trait` turn into `i8` - this
/// is useful for indexing slices, as `&[T]`'s data pointer is `T*`.
/// If the type is an unsized struct, the regular layout is generated,
/// with the inner-most trailing unsized field using the "minimal unit"
/// of that field's type - this is useful for taking the address of
/// that field and ensuring the struct has the right alignment.
fn llvm_type<'a>(&self, cx: &CodegenCx<'a, 'tcx>) -> &'a Type {
// This must produce the same result for `repr(transparent)` wrappers as for the inner type!
// In other words, this should generally not look at the type at all, but only at the
// layout.
if let Abi::Scalar(scalar) = self.abi {
// Use a different cache for scalars because pointers to DSTs
// can be either fat or thin (data pointers of fat pointers).
if let Some(&llty) = cx.scalar_lltypes.borrow().get(&self.ty) {
return llty;
}
let llty = self.scalar_llvm_type_at(cx, scalar);
cx.scalar_lltypes.borrow_mut().insert(self.ty, llty);
return llty;
}
// Check the cache.
let variant_index = match self.variants {
Variants::Single { index } => Some(index),
_ => None,
};
if let Some(llty) = cx.type_lowering.borrow().get(&(self.ty, variant_index)) {
return llty;
}
debug!("llvm_type({:#?})", self);
assert!(!self.ty.has_escaping_bound_vars(), "{:?} has escaping bound vars", self.ty);
// Make sure lifetimes are erased, to avoid generating distinct LLVM
// types for Rust types that only differ in the choice of lifetimes.
let normal_ty = cx.tcx.erase_regions(self.ty);
let mut defer = None;
let llty = if self.ty != normal_ty {
let mut layout = cx.layout_of(normal_ty);
if let Some(v) = variant_index {
layout = layout.for_variant(cx, v);
}
layout.llvm_type(cx)
} else {
uncached_llvm_type(cx, *self, &mut defer)
};
debug!("--> mapped {:#?} to llty={:?}", self, llty);
cx.type_lowering.borrow_mut().insert((self.ty, variant_index), llty);
if let Some((llty, layout)) = defer {
let (llfields, packed) = struct_llfields(cx, layout);
cx.set_struct_body(llty, &llfields, packed);
}
llty
}
fn immediate_llvm_type<'a>(&self, cx: &CodegenCx<'a, 'tcx>) -> &'a Type {
match self.abi {
Abi::Scalar(scalar) => {
if scalar.is_bool() {
return cx.type_i1();
}
}
Abi::ScalarPair(..) => {
// An immediate pair always contains just the two elements, without any padding
// filler, as it should never be stored to memory.
return cx.type_struct(
&[
self.scalar_pair_element_llvm_type(cx, 0, true),
self.scalar_pair_element_llvm_type(cx, 1, true),
],
false,
);
}
_ => {}
};
self.llvm_type(cx)
}
fn scalar_llvm_type_at<'a>(&self, cx: &CodegenCx<'a, 'tcx>, scalar: Scalar) -> &'a Type {
match scalar.primitive() {
Int(i, _) => cx.type_from_integer(i),
F16 => cx.type_f16(),
F32 => cx.type_f32(),
F64 => cx.type_f64(),
F128 => cx.type_f128(),
Pointer(address_space) => cx.type_ptr_ext(address_space),
}
}
fn scalar_pair_element_llvm_type<'a>(
&self,
cx: &CodegenCx<'a, 'tcx>,
index: usize,
immediate: bool,
) -> &'a Type {
// This must produce the same result for `repr(transparent)` wrappers as for the inner type!
// In other words, this should generally not look at the type at all, but only at the
// layout.
let Abi::ScalarPair(a, b) = self.abi else {
bug!("TyAndLayout::scalar_pair_element_llty({:?}): not applicable", self);
};
let scalar = [a, b][index];
// Make sure to return the same type `immediate_llvm_type` would when
// dealing with an immediate pair. This means that `(bool, bool)` is
// effectively represented as `{i8, i8}` in memory and two `i1`s as an
// immediate, just like `bool` is typically `i8` in memory and only `i1`
// when immediate. We need to load/store `bool` as `i8` to avoid
// crippling LLVM optimizations or triggering other LLVM bugs with `i1`.
if immediate && scalar.is_bool() {
return cx.type_i1();
}
self.scalar_llvm_type_at(cx, scalar)
}
}