blob: 1a1b4ae38313382a3aa680624309c3bdc40fad6e [file] [log] [blame]
use crate::abi::FnAbiLlvmExt;
use crate::attributes;
use crate::common::Funclet;
use crate::context::CodegenCx;
use crate::llvm::{self, AtomicOrdering, AtomicRmwBinOp, BasicBlock, False, True};
use crate::llvm_util;
use crate::type_::Type;
use crate::type_of::LayoutLlvmExt;
use crate::value::Value;
use libc::{c_char, c_uint};
use rustc_codegen_ssa::common::{IntPredicate, RealPredicate, SynchronizationScope, TypeKind};
use rustc_codegen_ssa::mir::operand::{OperandRef, OperandValue};
use rustc_codegen_ssa::mir::place::PlaceRef;
use rustc_codegen_ssa::traits::*;
use rustc_codegen_ssa::MemFlags;
use rustc_data_structures::small_c_str::SmallCStr;
use rustc_hir::def_id::DefId;
use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrs;
use rustc_middle::ty::layout::{
FnAbiError, FnAbiOfHelpers, FnAbiRequest, LayoutError, LayoutOfHelpers, TyAndLayout,
};
use rustc_middle::ty::{self, Instance, Ty, TyCtxt};
use rustc_sanitizers::{cfi, kcfi};
use rustc_session::config::OptLevel;
use rustc_span::Span;
use rustc_target::abi::{self, call::FnAbi, Align, Size, WrappingRange};
use rustc_target::spec::{HasTargetSpec, SanitizerSet, Target};
use smallvec::SmallVec;
use std::borrow::Cow;
use std::iter;
use std::ops::Deref;
use std::ptr;
// All Builders must have an llfn associated with them
#[must_use]
pub struct Builder<'a, 'll, 'tcx> {
pub llbuilder: &'ll mut llvm::Builder<'ll>,
pub cx: &'a CodegenCx<'ll, 'tcx>,
}
impl Drop for Builder<'_, '_, '_> {
fn drop(&mut self) {
unsafe {
llvm::LLVMDisposeBuilder(&mut *(self.llbuilder as *mut _));
}
}
}
/// Empty string, to be used where LLVM expects an instruction name, indicating
/// that the instruction is to be left unnamed (i.e. numbered, in textual IR).
// FIXME(eddyb) pass `&CStr` directly to FFI once it's a thin pointer.
const UNNAMED: *const c_char = c"".as_ptr();
impl<'ll, 'tcx> BackendTypes for Builder<'_, 'll, 'tcx> {
type Value = <CodegenCx<'ll, 'tcx> as BackendTypes>::Value;
type Function = <CodegenCx<'ll, 'tcx> as BackendTypes>::Function;
type BasicBlock = <CodegenCx<'ll, 'tcx> as BackendTypes>::BasicBlock;
type Type = <CodegenCx<'ll, 'tcx> as BackendTypes>::Type;
type Funclet = <CodegenCx<'ll, 'tcx> as BackendTypes>::Funclet;
type DIScope = <CodegenCx<'ll, 'tcx> as BackendTypes>::DIScope;
type DILocation = <CodegenCx<'ll, 'tcx> as BackendTypes>::DILocation;
type DIVariable = <CodegenCx<'ll, 'tcx> as BackendTypes>::DIVariable;
}
impl abi::HasDataLayout for Builder<'_, '_, '_> {
fn data_layout(&self) -> &abi::TargetDataLayout {
self.cx.data_layout()
}
}
impl<'tcx> ty::layout::HasTyCtxt<'tcx> for Builder<'_, '_, 'tcx> {
#[inline]
fn tcx(&self) -> TyCtxt<'tcx> {
self.cx.tcx
}
}
impl<'tcx> ty::layout::HasParamEnv<'tcx> for Builder<'_, '_, 'tcx> {
fn param_env(&self) -> ty::ParamEnv<'tcx> {
self.cx.param_env()
}
}
impl HasTargetSpec for Builder<'_, '_, '_> {
#[inline]
fn target_spec(&self) -> &Target {
self.cx.target_spec()
}
}
impl<'tcx> LayoutOfHelpers<'tcx> for Builder<'_, '_, 'tcx> {
type LayoutOfResult = TyAndLayout<'tcx>;
#[inline]
fn handle_layout_err(&self, err: LayoutError<'tcx>, span: Span, ty: Ty<'tcx>) -> ! {
self.cx.handle_layout_err(err, span, ty)
}
}
impl<'tcx> FnAbiOfHelpers<'tcx> for Builder<'_, '_, 'tcx> {
type FnAbiOfResult = &'tcx FnAbi<'tcx, Ty<'tcx>>;
#[inline]
fn handle_fn_abi_err(
&self,
err: FnAbiError<'tcx>,
span: Span,
fn_abi_request: FnAbiRequest<'tcx>,
) -> ! {
self.cx.handle_fn_abi_err(err, span, fn_abi_request)
}
}
impl<'ll, 'tcx> Deref for Builder<'_, 'll, 'tcx> {
type Target = CodegenCx<'ll, 'tcx>;
#[inline]
fn deref(&self) -> &Self::Target {
self.cx
}
}
impl<'ll, 'tcx> HasCodegen<'tcx> for Builder<'_, 'll, 'tcx> {
type CodegenCx = CodegenCx<'ll, 'tcx>;
}
macro_rules! builder_methods_for_value_instructions {
($($name:ident($($arg:ident),*) => $llvm_capi:ident),+ $(,)?) => {
$(fn $name(&mut self, $($arg: &'ll Value),*) -> &'ll Value {
unsafe {
llvm::$llvm_capi(self.llbuilder, $($arg,)* UNNAMED)
}
})+
}
}
impl<'a, 'll, 'tcx> BuilderMethods<'a, 'tcx> for Builder<'a, 'll, 'tcx> {
fn build(cx: &'a CodegenCx<'ll, 'tcx>, llbb: &'ll BasicBlock) -> Self {
let bx = Builder::with_cx(cx);
unsafe {
llvm::LLVMPositionBuilderAtEnd(bx.llbuilder, llbb);
}
bx
}
fn cx(&self) -> &CodegenCx<'ll, 'tcx> {
self.cx
}
fn llbb(&self) -> &'ll BasicBlock {
unsafe { llvm::LLVMGetInsertBlock(self.llbuilder) }
}
fn set_span(&mut self, _span: Span) {}
fn append_block(cx: &'a CodegenCx<'ll, 'tcx>, llfn: &'ll Value, name: &str) -> &'ll BasicBlock {
unsafe {
let name = SmallCStr::new(name);
llvm::LLVMAppendBasicBlockInContext(cx.llcx, llfn, name.as_ptr())
}
}
fn append_sibling_block(&mut self, name: &str) -> &'ll BasicBlock {
Self::append_block(self.cx, self.llfn(), name)
}
fn switch_to_block(&mut self, llbb: Self::BasicBlock) {
*self = Self::build(self.cx, llbb)
}
fn ret_void(&mut self) {
unsafe {
llvm::LLVMBuildRetVoid(self.llbuilder);
}
}
fn ret(&mut self, v: &'ll Value) {
unsafe {
llvm::LLVMBuildRet(self.llbuilder, v);
}
}
fn br(&mut self, dest: &'ll BasicBlock) {
unsafe {
llvm::LLVMBuildBr(self.llbuilder, dest);
}
}
fn cond_br(
&mut self,
cond: &'ll Value,
then_llbb: &'ll BasicBlock,
else_llbb: &'ll BasicBlock,
) {
unsafe {
llvm::LLVMBuildCondBr(self.llbuilder, cond, then_llbb, else_llbb);
}
}
fn switch(
&mut self,
v: &'ll Value,
else_llbb: &'ll BasicBlock,
cases: impl ExactSizeIterator<Item = (u128, &'ll BasicBlock)>,
) {
let switch =
unsafe { llvm::LLVMBuildSwitch(self.llbuilder, v, else_llbb, cases.len() as c_uint) };
for (on_val, dest) in cases {
let on_val = self.const_uint_big(self.val_ty(v), on_val);
unsafe { llvm::LLVMAddCase(switch, on_val, dest) }
}
}
fn invoke(
&mut self,
llty: &'ll Type,
fn_attrs: Option<&CodegenFnAttrs>,
fn_abi: Option<&FnAbi<'tcx, Ty<'tcx>>>,
llfn: &'ll Value,
args: &[&'ll Value],
then: &'ll BasicBlock,
catch: &'ll BasicBlock,
funclet: Option<&Funclet<'ll>>,
instance: Option<Instance<'tcx>>,
) -> &'ll Value {
debug!("invoke {:?} with args ({:?})", llfn, args);
let args = self.check_call("invoke", llty, llfn, args);
let funclet_bundle = funclet.map(|funclet| funclet.bundle());
let funclet_bundle = funclet_bundle.as_ref().map(|b| &*b.raw);
let mut bundles: SmallVec<[_; 2]> = SmallVec::new();
if let Some(funclet_bundle) = funclet_bundle {
bundles.push(funclet_bundle);
}
// Emit CFI pointer type membership test
self.cfi_type_test(fn_attrs, fn_abi, instance, llfn);
// Emit KCFI operand bundle
let kcfi_bundle = self.kcfi_operand_bundle(fn_attrs, fn_abi, instance, llfn);
let kcfi_bundle = kcfi_bundle.as_ref().map(|b| &*b.raw);
if let Some(kcfi_bundle) = kcfi_bundle {
bundles.push(kcfi_bundle);
}
let invoke = unsafe {
llvm::LLVMRustBuildInvoke(
self.llbuilder,
llty,
llfn,
args.as_ptr(),
args.len() as c_uint,
then,
catch,
bundles.as_ptr(),
bundles.len() as c_uint,
UNNAMED,
)
};
if let Some(fn_abi) = fn_abi {
fn_abi.apply_attrs_callsite(self, invoke);
}
invoke
}
fn unreachable(&mut self) {
unsafe {
llvm::LLVMBuildUnreachable(self.llbuilder);
}
}
builder_methods_for_value_instructions! {
add(a, b) => LLVMBuildAdd,
fadd(a, b) => LLVMBuildFAdd,
sub(a, b) => LLVMBuildSub,
fsub(a, b) => LLVMBuildFSub,
mul(a, b) => LLVMBuildMul,
fmul(a, b) => LLVMBuildFMul,
udiv(a, b) => LLVMBuildUDiv,
exactudiv(a, b) => LLVMBuildExactUDiv,
sdiv(a, b) => LLVMBuildSDiv,
exactsdiv(a, b) => LLVMBuildExactSDiv,
fdiv(a, b) => LLVMBuildFDiv,
urem(a, b) => LLVMBuildURem,
srem(a, b) => LLVMBuildSRem,
frem(a, b) => LLVMBuildFRem,
shl(a, b) => LLVMBuildShl,
lshr(a, b) => LLVMBuildLShr,
ashr(a, b) => LLVMBuildAShr,
and(a, b) => LLVMBuildAnd,
or(a, b) => LLVMBuildOr,
xor(a, b) => LLVMBuildXor,
neg(x) => LLVMBuildNeg,
fneg(x) => LLVMBuildFNeg,
not(x) => LLVMBuildNot,
unchecked_sadd(x, y) => LLVMBuildNSWAdd,
unchecked_uadd(x, y) => LLVMBuildNUWAdd,
unchecked_ssub(x, y) => LLVMBuildNSWSub,
unchecked_usub(x, y) => LLVMBuildNUWSub,
unchecked_smul(x, y) => LLVMBuildNSWMul,
unchecked_umul(x, y) => LLVMBuildNUWMul,
}
fn fadd_fast(&mut self, lhs: &'ll Value, rhs: &'ll Value) -> &'ll Value {
unsafe {
let instr = llvm::LLVMBuildFAdd(self.llbuilder, lhs, rhs, UNNAMED);
llvm::LLVMRustSetFastMath(instr);
instr
}
}
fn fsub_fast(&mut self, lhs: &'ll Value, rhs: &'ll Value) -> &'ll Value {
unsafe {
let instr = llvm::LLVMBuildFSub(self.llbuilder, lhs, rhs, UNNAMED);
llvm::LLVMRustSetFastMath(instr);
instr
}
}
fn fmul_fast(&mut self, lhs: &'ll Value, rhs: &'ll Value) -> &'ll Value {
unsafe {
let instr = llvm::LLVMBuildFMul(self.llbuilder, lhs, rhs, UNNAMED);
llvm::LLVMRustSetFastMath(instr);
instr
}
}
fn fdiv_fast(&mut self, lhs: &'ll Value, rhs: &'ll Value) -> &'ll Value {
unsafe {
let instr = llvm::LLVMBuildFDiv(self.llbuilder, lhs, rhs, UNNAMED);
llvm::LLVMRustSetFastMath(instr);
instr
}
}
fn frem_fast(&mut self, lhs: &'ll Value, rhs: &'ll Value) -> &'ll Value {
unsafe {
let instr = llvm::LLVMBuildFRem(self.llbuilder, lhs, rhs, UNNAMED);
llvm::LLVMRustSetFastMath(instr);
instr
}
}
fn fadd_algebraic(&mut self, lhs: &'ll Value, rhs: &'ll Value) -> &'ll Value {
unsafe {
let instr = llvm::LLVMBuildFAdd(self.llbuilder, lhs, rhs, UNNAMED);
llvm::LLVMRustSetAlgebraicMath(instr);
instr
}
}
fn fsub_algebraic(&mut self, lhs: &'ll Value, rhs: &'ll Value) -> &'ll Value {
unsafe {
let instr = llvm::LLVMBuildFSub(self.llbuilder, lhs, rhs, UNNAMED);
llvm::LLVMRustSetAlgebraicMath(instr);
instr
}
}
fn fmul_algebraic(&mut self, lhs: &'ll Value, rhs: &'ll Value) -> &'ll Value {
unsafe {
let instr = llvm::LLVMBuildFMul(self.llbuilder, lhs, rhs, UNNAMED);
llvm::LLVMRustSetAlgebraicMath(instr);
instr
}
}
fn fdiv_algebraic(&mut self, lhs: &'ll Value, rhs: &'ll Value) -> &'ll Value {
unsafe {
let instr = llvm::LLVMBuildFDiv(self.llbuilder, lhs, rhs, UNNAMED);
llvm::LLVMRustSetAlgebraicMath(instr);
instr
}
}
fn frem_algebraic(&mut self, lhs: &'ll Value, rhs: &'ll Value) -> &'ll Value {
unsafe {
let instr = llvm::LLVMBuildFRem(self.llbuilder, lhs, rhs, UNNAMED);
llvm::LLVMRustSetAlgebraicMath(instr);
instr
}
}
fn checked_binop(
&mut self,
oop: OverflowOp,
ty: Ty<'_>,
lhs: Self::Value,
rhs: Self::Value,
) -> (Self::Value, Self::Value) {
use rustc_middle::ty::{Int, Uint};
use rustc_middle::ty::{IntTy::*, UintTy::*};
let new_kind = match ty.kind() {
Int(t @ Isize) => Int(t.normalize(self.tcx.sess.target.pointer_width)),
Uint(t @ Usize) => Uint(t.normalize(self.tcx.sess.target.pointer_width)),
t @ (Uint(_) | Int(_)) => *t,
_ => panic!("tried to get overflow intrinsic for op applied to non-int type"),
};
let name = match oop {
OverflowOp::Add => match new_kind {
Int(I8) => "llvm.sadd.with.overflow.i8",
Int(I16) => "llvm.sadd.with.overflow.i16",
Int(I32) => "llvm.sadd.with.overflow.i32",
Int(I64) => "llvm.sadd.with.overflow.i64",
Int(I128) => "llvm.sadd.with.overflow.i128",
Uint(U8) => "llvm.uadd.with.overflow.i8",
Uint(U16) => "llvm.uadd.with.overflow.i16",
Uint(U32) => "llvm.uadd.with.overflow.i32",
Uint(U64) => "llvm.uadd.with.overflow.i64",
Uint(U128) => "llvm.uadd.with.overflow.i128",
_ => unreachable!(),
},
OverflowOp::Sub => match new_kind {
Int(I8) => "llvm.ssub.with.overflow.i8",
Int(I16) => "llvm.ssub.with.overflow.i16",
Int(I32) => "llvm.ssub.with.overflow.i32",
Int(I64) => "llvm.ssub.with.overflow.i64",
Int(I128) => "llvm.ssub.with.overflow.i128",
Uint(_) => {
// Emit sub and icmp instead of llvm.usub.with.overflow. LLVM considers these
// to be the canonical form. It will attempt to reform llvm.usub.with.overflow
// in the backend if profitable.
let sub = self.sub(lhs, rhs);
let cmp = self.icmp(IntPredicate::IntULT, lhs, rhs);
return (sub, cmp);
}
_ => unreachable!(),
},
OverflowOp::Mul => match new_kind {
Int(I8) => "llvm.smul.with.overflow.i8",
Int(I16) => "llvm.smul.with.overflow.i16",
Int(I32) => "llvm.smul.with.overflow.i32",
Int(I64) => "llvm.smul.with.overflow.i64",
Int(I128) => "llvm.smul.with.overflow.i128",
Uint(U8) => "llvm.umul.with.overflow.i8",
Uint(U16) => "llvm.umul.with.overflow.i16",
Uint(U32) => "llvm.umul.with.overflow.i32",
Uint(U64) => "llvm.umul.with.overflow.i64",
Uint(U128) => "llvm.umul.with.overflow.i128",
_ => unreachable!(),
},
};
let res = self.call_intrinsic(name, &[lhs, rhs]);
(self.extract_value(res, 0), self.extract_value(res, 1))
}
fn from_immediate(&mut self, val: Self::Value) -> Self::Value {
if self.cx().val_ty(val) == self.cx().type_i1() {
self.zext(val, self.cx().type_i8())
} else {
val
}
}
fn to_immediate_scalar(&mut self, val: Self::Value, scalar: abi::Scalar) -> Self::Value {
if scalar.is_bool() {
return self.trunc(val, self.cx().type_i1());
}
val
}
fn alloca(&mut self, size: Size, align: Align) -> &'ll Value {
let mut bx = Builder::with_cx(self.cx);
bx.position_at_start(unsafe { llvm::LLVMGetFirstBasicBlock(self.llfn()) });
let ty = self.cx().type_array(self.cx().type_i8(), size.bytes());
unsafe {
let alloca = llvm::LLVMBuildAlloca(bx.llbuilder, ty, UNNAMED);
llvm::LLVMSetAlignment(alloca, align.bytes() as c_uint);
alloca
}
}
fn dynamic_alloca(&mut self, size: &'ll Value, align: Align) -> &'ll Value {
unsafe {
let alloca =
llvm::LLVMBuildArrayAlloca(self.llbuilder, self.cx().type_i8(), size, UNNAMED);
llvm::LLVMSetAlignment(alloca, align.bytes() as c_uint);
alloca
}
}
fn load(&mut self, ty: &'ll Type, ptr: &'ll Value, align: Align) -> &'ll Value {
unsafe {
let load = llvm::LLVMBuildLoad2(self.llbuilder, ty, ptr, UNNAMED);
llvm::LLVMSetAlignment(load, align.bytes() as c_uint);
load
}
}
fn volatile_load(&mut self, ty: &'ll Type, ptr: &'ll Value) -> &'ll Value {
unsafe {
let load = llvm::LLVMBuildLoad2(self.llbuilder, ty, ptr, UNNAMED);
llvm::LLVMSetVolatile(load, llvm::True);
load
}
}
fn atomic_load(
&mut self,
ty: &'ll Type,
ptr: &'ll Value,
order: rustc_codegen_ssa::common::AtomicOrdering,
size: Size,
) -> &'ll Value {
unsafe {
let load = llvm::LLVMRustBuildAtomicLoad(
self.llbuilder,
ty,
ptr,
UNNAMED,
AtomicOrdering::from_generic(order),
);
// LLVM requires the alignment of atomic loads to be at least the size of the type.
llvm::LLVMSetAlignment(load, size.bytes() as c_uint);
load
}
}
#[instrument(level = "trace", skip(self))]
fn load_operand(&mut self, place: PlaceRef<'tcx, &'ll Value>) -> OperandRef<'tcx, &'ll Value> {
if place.layout.is_unsized() {
let tail = self.tcx.struct_tail_with_normalize(place.layout.ty, |ty| ty, || {});
if matches!(tail.kind(), ty::Foreign(..)) {
// Unsized locals and, at least conceptually, even unsized arguments must be copied
// around, which requires dynamically determining their size. Therefore, we cannot
// allow `extern` types here. Consult t-opsem before removing this check.
panic!("unsized locals must not be `extern` types");
}
}
assert_eq!(place.val.llextra.is_some(), place.layout.is_unsized());
if place.layout.is_zst() {
return OperandRef::zero_sized(place.layout);
}
#[instrument(level = "trace", skip(bx))]
fn scalar_load_metadata<'a, 'll, 'tcx>(
bx: &mut Builder<'a, 'll, 'tcx>,
load: &'ll Value,
scalar: abi::Scalar,
layout: TyAndLayout<'tcx>,
offset: Size,
) {
if bx.cx.sess().opts.optimize == OptLevel::No {
// Don't emit metadata we're not going to use
return;
}
if !scalar.is_uninit_valid() {
bx.noundef_metadata(load);
}
match scalar.primitive() {
abi::Int(..) => {
if !scalar.is_always_valid(bx) {
bx.range_metadata(load, scalar.valid_range(bx));
}
}
abi::Pointer(_) => {
if !scalar.valid_range(bx).contains(0) {
bx.nonnull_metadata(load);
}
if let Some(pointee) = layout.pointee_info_at(bx, offset) {
if let Some(_) = pointee.safe {
bx.align_metadata(load, pointee.align);
}
}
}
abi::F16 | abi::F32 | abi::F64 | abi::F128 => {}
}
}
let val = if let Some(_) = place.val.llextra {
// FIXME: Merge with the `else` below?
OperandValue::Ref(place.val)
} else if place.layout.is_llvm_immediate() {
let mut const_llval = None;
let llty = place.layout.llvm_type(self);
unsafe {
if let Some(global) = llvm::LLVMIsAGlobalVariable(place.val.llval) {
if llvm::LLVMIsGlobalConstant(global) == llvm::True {
if let Some(init) = llvm::LLVMGetInitializer(global) {
if self.val_ty(init) == llty {
const_llval = Some(init);
}
}
}
}
}
let llval = const_llval.unwrap_or_else(|| {
let load = self.load(llty, place.val.llval, place.val.align);
if let abi::Abi::Scalar(scalar) = place.layout.abi {
scalar_load_metadata(self, load, scalar, place.layout, Size::ZERO);
}
load
});
OperandValue::Immediate(self.to_immediate(llval, place.layout))
} else if let abi::Abi::ScalarPair(a, b) = place.layout.abi {
let b_offset = a.size(self).align_to(b.align(self).abi);
let mut load = |i, scalar: abi::Scalar, layout, align, offset| {
let llptr = if i == 0 {
place.val.llval
} else {
self.inbounds_ptradd(place.val.llval, self.const_usize(b_offset.bytes()))
};
let llty = place.layout.scalar_pair_element_llvm_type(self, i, false);
let load = self.load(llty, llptr, align);
scalar_load_metadata(self, load, scalar, layout, offset);
self.to_immediate_scalar(load, scalar)
};
OperandValue::Pair(
load(0, a, place.layout, place.val.align, Size::ZERO),
load(1, b, place.layout, place.val.align.restrict_for_offset(b_offset), b_offset),
)
} else {
OperandValue::Ref(place.val)
};
OperandRef { val, layout: place.layout }
}
fn write_operand_repeatedly(
&mut self,
cg_elem: OperandRef<'tcx, &'ll Value>,
count: u64,
dest: PlaceRef<'tcx, &'ll Value>,
) {
let zero = self.const_usize(0);
let count = self.const_usize(count);
let header_bb = self.append_sibling_block("repeat_loop_header");
let body_bb = self.append_sibling_block("repeat_loop_body");
let next_bb = self.append_sibling_block("repeat_loop_next");
self.br(header_bb);
let mut header_bx = Self::build(self.cx, header_bb);
let i = header_bx.phi(self.val_ty(zero), &[zero], &[self.llbb()]);
let keep_going = header_bx.icmp(IntPredicate::IntULT, i, count);
header_bx.cond_br(keep_going, body_bb, next_bb);
let mut body_bx = Self::build(self.cx, body_bb);
let dest_elem = dest.project_index(&mut body_bx, i);
cg_elem.val.store(&mut body_bx, dest_elem);
let next = body_bx.unchecked_uadd(i, self.const_usize(1));
body_bx.br(header_bb);
header_bx.add_incoming_to_phi(i, next, body_bb);
*self = Self::build(self.cx, next_bb);
}
fn range_metadata(&mut self, load: &'ll Value, range: WrappingRange) {
if self.sess().target.arch == "amdgpu" {
// amdgpu/LLVM does something weird and thinks an i64 value is
// split into a v2i32, halving the bitwidth LLVM expects,
// tripping an assertion. So, for now, just disable this
// optimization.
return;
}
if self.cx.sess().opts.optimize == OptLevel::No {
// Don't emit metadata we're not going to use
return;
}
unsafe {
let llty = self.cx.val_ty(load);
let v = [
self.cx.const_uint_big(llty, range.start),
self.cx.const_uint_big(llty, range.end.wrapping_add(1)),
];
llvm::LLVMSetMetadata(
load,
llvm::MD_range as c_uint,
llvm::LLVMMDNodeInContext(self.cx.llcx, v.as_ptr(), v.len() as c_uint),
);
}
}
fn nonnull_metadata(&mut self, load: &'ll Value) {
unsafe {
llvm::LLVMSetMetadata(
load,
llvm::MD_nonnull as c_uint,
llvm::LLVMMDNodeInContext(self.cx.llcx, ptr::null(), 0),
);
}
}
fn store(&mut self, val: &'ll Value, ptr: &'ll Value, align: Align) -> &'ll Value {
self.store_with_flags(val, ptr, align, MemFlags::empty())
}
fn store_with_flags(
&mut self,
val: &'ll Value,
ptr: &'ll Value,
align: Align,
flags: MemFlags,
) -> &'ll Value {
debug!("Store {:?} -> {:?} ({:?})", val, ptr, flags);
assert_eq!(self.cx.type_kind(self.cx.val_ty(ptr)), TypeKind::Pointer);
unsafe {
let store = llvm::LLVMBuildStore(self.llbuilder, val, ptr);
let align =
if flags.contains(MemFlags::UNALIGNED) { 1 } else { align.bytes() as c_uint };
llvm::LLVMSetAlignment(store, align);
if flags.contains(MemFlags::VOLATILE) {
llvm::LLVMSetVolatile(store, llvm::True);
}
if flags.contains(MemFlags::NONTEMPORAL) {
// According to LLVM [1] building a nontemporal store must
// *always* point to a metadata value of the integer 1.
//
// [1]: https://llvm.org/docs/LangRef.html#store-instruction
let one = self.cx.const_i32(1);
let node = llvm::LLVMMDNodeInContext(self.cx.llcx, &one, 1);
llvm::LLVMSetMetadata(store, llvm::MD_nontemporal as c_uint, node);
}
store
}
}
fn atomic_store(
&mut self,
val: &'ll Value,
ptr: &'ll Value,
order: rustc_codegen_ssa::common::AtomicOrdering,
size: Size,
) {
debug!("Store {:?} -> {:?}", val, ptr);
assert_eq!(self.cx.type_kind(self.cx.val_ty(ptr)), TypeKind::Pointer);
unsafe {
let store = llvm::LLVMRustBuildAtomicStore(
self.llbuilder,
val,
ptr,
AtomicOrdering::from_generic(order),
);
// LLVM requires the alignment of atomic stores to be at least the size of the type.
llvm::LLVMSetAlignment(store, size.bytes() as c_uint);
}
}
fn gep(&mut self, ty: &'ll Type, ptr: &'ll Value, indices: &[&'ll Value]) -> &'ll Value {
unsafe {
llvm::LLVMBuildGEP2(
self.llbuilder,
ty,
ptr,
indices.as_ptr(),
indices.len() as c_uint,
UNNAMED,
)
}
}
fn inbounds_gep(
&mut self,
ty: &'ll Type,
ptr: &'ll Value,
indices: &[&'ll Value],
) -> &'ll Value {
unsafe {
llvm::LLVMBuildInBoundsGEP2(
self.llbuilder,
ty,
ptr,
indices.as_ptr(),
indices.len() as c_uint,
UNNAMED,
)
}
}
/* Casts */
fn trunc(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
unsafe { llvm::LLVMBuildTrunc(self.llbuilder, val, dest_ty, UNNAMED) }
}
fn sext(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
unsafe { llvm::LLVMBuildSExt(self.llbuilder, val, dest_ty, UNNAMED) }
}
fn fptoui_sat(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
self.fptoint_sat(false, val, dest_ty)
}
fn fptosi_sat(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
self.fptoint_sat(true, val, dest_ty)
}
fn fptoui(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
// On WebAssembly the `fptoui` and `fptosi` instructions currently have
// poor codegen. The reason for this is that the corresponding wasm
// instructions, `i32.trunc_f32_s` for example, will trap when the float
// is out-of-bounds, infinity, or nan. This means that LLVM
// automatically inserts control flow around `fptoui` and `fptosi`
// because the LLVM instruction `fptoui` is defined as producing a
// poison value, not having UB on out-of-bounds values.
//
// This method, however, is only used with non-saturating casts that
// have UB on out-of-bounds values. This means that it's ok if we use
// the raw wasm instruction since out-of-bounds values can do whatever
// we like. To ensure that LLVM picks the right instruction we choose
// the raw wasm intrinsic functions which avoid LLVM inserting all the
// other control flow automatically.
if self.sess().target.is_like_wasm {
let src_ty = self.cx.val_ty(val);
if self.cx.type_kind(src_ty) != TypeKind::Vector {
let float_width = self.cx.float_width(src_ty);
let int_width = self.cx.int_width(dest_ty);
let name = match (int_width, float_width) {
(32, 32) => Some("llvm.wasm.trunc.unsigned.i32.f32"),
(32, 64) => Some("llvm.wasm.trunc.unsigned.i32.f64"),
(64, 32) => Some("llvm.wasm.trunc.unsigned.i64.f32"),
(64, 64) => Some("llvm.wasm.trunc.unsigned.i64.f64"),
_ => None,
};
if let Some(name) = name {
return self.call_intrinsic(name, &[val]);
}
}
}
unsafe { llvm::LLVMBuildFPToUI(self.llbuilder, val, dest_ty, UNNAMED) }
}
fn fptosi(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
// see `fptoui` above for why wasm is different here
if self.sess().target.is_like_wasm {
let src_ty = self.cx.val_ty(val);
if self.cx.type_kind(src_ty) != TypeKind::Vector {
let float_width = self.cx.float_width(src_ty);
let int_width = self.cx.int_width(dest_ty);
let name = match (int_width, float_width) {
(32, 32) => Some("llvm.wasm.trunc.signed.i32.f32"),
(32, 64) => Some("llvm.wasm.trunc.signed.i32.f64"),
(64, 32) => Some("llvm.wasm.trunc.signed.i64.f32"),
(64, 64) => Some("llvm.wasm.trunc.signed.i64.f64"),
_ => None,
};
if let Some(name) = name {
return self.call_intrinsic(name, &[val]);
}
}
}
unsafe { llvm::LLVMBuildFPToSI(self.llbuilder, val, dest_ty, UNNAMED) }
}
fn uitofp(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
unsafe { llvm::LLVMBuildUIToFP(self.llbuilder, val, dest_ty, UNNAMED) }
}
fn sitofp(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
unsafe { llvm::LLVMBuildSIToFP(self.llbuilder, val, dest_ty, UNNAMED) }
}
fn fptrunc(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
unsafe { llvm::LLVMBuildFPTrunc(self.llbuilder, val, dest_ty, UNNAMED) }
}
fn fpext(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
unsafe { llvm::LLVMBuildFPExt(self.llbuilder, val, dest_ty, UNNAMED) }
}
fn ptrtoint(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
unsafe { llvm::LLVMBuildPtrToInt(self.llbuilder, val, dest_ty, UNNAMED) }
}
fn inttoptr(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
unsafe { llvm::LLVMBuildIntToPtr(self.llbuilder, val, dest_ty, UNNAMED) }
}
fn bitcast(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
unsafe { llvm::LLVMBuildBitCast(self.llbuilder, val, dest_ty, UNNAMED) }
}
fn intcast(&mut self, val: &'ll Value, dest_ty: &'ll Type, is_signed: bool) -> &'ll Value {
unsafe {
llvm::LLVMBuildIntCast2(
self.llbuilder,
val,
dest_ty,
if is_signed { True } else { False },
UNNAMED,
)
}
}
fn pointercast(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
unsafe { llvm::LLVMBuildPointerCast(self.llbuilder, val, dest_ty, UNNAMED) }
}
/* Comparisons */
fn icmp(&mut self, op: IntPredicate, lhs: &'ll Value, rhs: &'ll Value) -> &'ll Value {
let op = llvm::IntPredicate::from_generic(op);
unsafe { llvm::LLVMBuildICmp(self.llbuilder, op as c_uint, lhs, rhs, UNNAMED) }
}
fn fcmp(&mut self, op: RealPredicate, lhs: &'ll Value, rhs: &'ll Value) -> &'ll Value {
let op = llvm::RealPredicate::from_generic(op);
unsafe { llvm::LLVMBuildFCmp(self.llbuilder, op as c_uint, lhs, rhs, UNNAMED) }
}
/* Miscellaneous instructions */
fn memcpy(
&mut self,
dst: &'ll Value,
dst_align: Align,
src: &'ll Value,
src_align: Align,
size: &'ll Value,
flags: MemFlags,
) {
assert!(!flags.contains(MemFlags::NONTEMPORAL), "non-temporal memcpy not supported");
let size = self.intcast(size, self.type_isize(), false);
let is_volatile = flags.contains(MemFlags::VOLATILE);
unsafe {
llvm::LLVMRustBuildMemCpy(
self.llbuilder,
dst,
dst_align.bytes() as c_uint,
src,
src_align.bytes() as c_uint,
size,
is_volatile,
);
}
}
fn memmove(
&mut self,
dst: &'ll Value,
dst_align: Align,
src: &'ll Value,
src_align: Align,
size: &'ll Value,
flags: MemFlags,
) {
assert!(!flags.contains(MemFlags::NONTEMPORAL), "non-temporal memmove not supported");
let size = self.intcast(size, self.type_isize(), false);
let is_volatile = flags.contains(MemFlags::VOLATILE);
unsafe {
llvm::LLVMRustBuildMemMove(
self.llbuilder,
dst,
dst_align.bytes() as c_uint,
src,
src_align.bytes() as c_uint,
size,
is_volatile,
);
}
}
fn memset(
&mut self,
ptr: &'ll Value,
fill_byte: &'ll Value,
size: &'ll Value,
align: Align,
flags: MemFlags,
) {
let is_volatile = flags.contains(MemFlags::VOLATILE);
unsafe {
llvm::LLVMRustBuildMemSet(
self.llbuilder,
ptr,
align.bytes() as c_uint,
fill_byte,
size,
is_volatile,
);
}
}
fn select(
&mut self,
cond: &'ll Value,
then_val: &'ll Value,
else_val: &'ll Value,
) -> &'ll Value {
unsafe { llvm::LLVMBuildSelect(self.llbuilder, cond, then_val, else_val, UNNAMED) }
}
fn va_arg(&mut self, list: &'ll Value, ty: &'ll Type) -> &'ll Value {
unsafe { llvm::LLVMBuildVAArg(self.llbuilder, list, ty, UNNAMED) }
}
fn extract_element(&mut self, vec: &'ll Value, idx: &'ll Value) -> &'ll Value {
unsafe { llvm::LLVMBuildExtractElement(self.llbuilder, vec, idx, UNNAMED) }
}
fn vector_splat(&mut self, num_elts: usize, elt: &'ll Value) -> &'ll Value {
unsafe {
let elt_ty = self.cx.val_ty(elt);
let undef = llvm::LLVMGetUndef(self.type_vector(elt_ty, num_elts as u64));
let vec = self.insert_element(undef, elt, self.cx.const_i32(0));
let vec_i32_ty = self.type_vector(self.type_i32(), num_elts as u64);
self.shuffle_vector(vec, undef, self.const_null(vec_i32_ty))
}
}
fn extract_value(&mut self, agg_val: &'ll Value, idx: u64) -> &'ll Value {
assert_eq!(idx as c_uint as u64, idx);
unsafe { llvm::LLVMBuildExtractValue(self.llbuilder, agg_val, idx as c_uint, UNNAMED) }
}
fn insert_value(&mut self, agg_val: &'ll Value, elt: &'ll Value, idx: u64) -> &'ll Value {
assert_eq!(idx as c_uint as u64, idx);
unsafe { llvm::LLVMBuildInsertValue(self.llbuilder, agg_val, elt, idx as c_uint, UNNAMED) }
}
fn set_personality_fn(&mut self, personality: &'ll Value) {
unsafe {
llvm::LLVMSetPersonalityFn(self.llfn(), personality);
}
}
fn cleanup_landing_pad(&mut self, pers_fn: &'ll Value) -> (&'ll Value, &'ll Value) {
let ty = self.type_struct(&[self.type_ptr(), self.type_i32()], false);
let landing_pad = self.landing_pad(ty, pers_fn, 0);
unsafe {
llvm::LLVMSetCleanup(landing_pad, llvm::True);
}
(self.extract_value(landing_pad, 0), self.extract_value(landing_pad, 1))
}
fn filter_landing_pad(&mut self, pers_fn: &'ll Value) -> (&'ll Value, &'ll Value) {
let ty = self.type_struct(&[self.type_ptr(), self.type_i32()], false);
let landing_pad = self.landing_pad(ty, pers_fn, 1);
self.add_clause(landing_pad, self.const_array(self.type_ptr(), &[]));
(self.extract_value(landing_pad, 0), self.extract_value(landing_pad, 1))
}
fn resume(&mut self, exn0: &'ll Value, exn1: &'ll Value) {
let ty = self.type_struct(&[self.type_ptr(), self.type_i32()], false);
let mut exn = self.const_poison(ty);
exn = self.insert_value(exn, exn0, 0);
exn = self.insert_value(exn, exn1, 1);
unsafe {
llvm::LLVMBuildResume(self.llbuilder, exn);
}
}
fn cleanup_pad(&mut self, parent: Option<&'ll Value>, args: &[&'ll Value]) -> Funclet<'ll> {
let ret = unsafe {
llvm::LLVMBuildCleanupPad(
self.llbuilder,
parent,
args.as_ptr(),
args.len() as c_uint,
c"cleanuppad".as_ptr(),
)
};
Funclet::new(ret.expect("LLVM does not have support for cleanuppad"))
}
fn cleanup_ret(&mut self, funclet: &Funclet<'ll>, unwind: Option<&'ll BasicBlock>) {
unsafe {
llvm::LLVMBuildCleanupRet(self.llbuilder, funclet.cleanuppad(), unwind)
.expect("LLVM does not have support for cleanupret");
}
}
fn catch_pad(&mut self, parent: &'ll Value, args: &[&'ll Value]) -> Funclet<'ll> {
let ret = unsafe {
llvm::LLVMBuildCatchPad(
self.llbuilder,
parent,
args.as_ptr(),
args.len() as c_uint,
c"catchpad".as_ptr(),
)
};
Funclet::new(ret.expect("LLVM does not have support for catchpad"))
}
fn catch_switch(
&mut self,
parent: Option<&'ll Value>,
unwind: Option<&'ll BasicBlock>,
handlers: &[&'ll BasicBlock],
) -> &'ll Value {
let ret = unsafe {
llvm::LLVMBuildCatchSwitch(
self.llbuilder,
parent,
unwind,
handlers.len() as c_uint,
c"catchswitch".as_ptr(),
)
};
let ret = ret.expect("LLVM does not have support for catchswitch");
for handler in handlers {
unsafe {
llvm::LLVMAddHandler(ret, handler);
}
}
ret
}
// Atomic Operations
fn atomic_cmpxchg(
&mut self,
dst: &'ll Value,
cmp: &'ll Value,
src: &'ll Value,
order: rustc_codegen_ssa::common::AtomicOrdering,
failure_order: rustc_codegen_ssa::common::AtomicOrdering,
weak: bool,
) -> (&'ll Value, &'ll Value) {
let weak = if weak { llvm::True } else { llvm::False };
unsafe {
let value = llvm::LLVMBuildAtomicCmpXchg(
self.llbuilder,
dst,
cmp,
src,
AtomicOrdering::from_generic(order),
AtomicOrdering::from_generic(failure_order),
llvm::False, // SingleThreaded
);
llvm::LLVMSetWeak(value, weak);
let val = self.extract_value(value, 0);
let success = self.extract_value(value, 1);
(val, success)
}
}
fn atomic_rmw(
&mut self,
op: rustc_codegen_ssa::common::AtomicRmwBinOp,
dst: &'ll Value,
mut src: &'ll Value,
order: rustc_codegen_ssa::common::AtomicOrdering,
) -> &'ll Value {
// The only RMW operation that LLVM supports on pointers is compare-exchange.
let requires_cast_to_int = self.val_ty(src) == self.type_ptr()
&& op != rustc_codegen_ssa::common::AtomicRmwBinOp::AtomicXchg;
if requires_cast_to_int {
src = self.ptrtoint(src, self.type_isize());
}
let mut res = unsafe {
llvm::LLVMBuildAtomicRMW(
self.llbuilder,
AtomicRmwBinOp::from_generic(op),
dst,
src,
AtomicOrdering::from_generic(order),
llvm::False, // SingleThreaded
)
};
if requires_cast_to_int {
res = self.inttoptr(res, self.type_ptr());
}
res
}
fn atomic_fence(
&mut self,
order: rustc_codegen_ssa::common::AtomicOrdering,
scope: SynchronizationScope,
) {
let single_threaded = match scope {
SynchronizationScope::SingleThread => llvm::True,
SynchronizationScope::CrossThread => llvm::False,
};
unsafe {
llvm::LLVMBuildFence(
self.llbuilder,
AtomicOrdering::from_generic(order),
single_threaded,
UNNAMED,
);
}
}
fn set_invariant_load(&mut self, load: &'ll Value) {
unsafe {
llvm::LLVMSetMetadata(
load,
llvm::MD_invariant_load as c_uint,
llvm::LLVMMDNodeInContext(self.cx.llcx, ptr::null(), 0),
);
}
}
fn lifetime_start(&mut self, ptr: &'ll Value, size: Size) {
self.call_lifetime_intrinsic("llvm.lifetime.start.p0i8", ptr, size);
}
fn lifetime_end(&mut self, ptr: &'ll Value, size: Size) {
self.call_lifetime_intrinsic("llvm.lifetime.end.p0i8", ptr, size);
}
fn instrprof_increment(
&mut self,
fn_name: &'ll Value,
hash: &'ll Value,
num_counters: &'ll Value,
index: &'ll Value,
) {
debug!(
"instrprof_increment() with args ({:?}, {:?}, {:?}, {:?})",
fn_name, hash, num_counters, index
);
let llfn = unsafe { llvm::LLVMRustGetInstrProfIncrementIntrinsic(self.cx().llmod) };
let llty = self.cx.type_func(
&[self.cx.type_ptr(), self.cx.type_i64(), self.cx.type_i32(), self.cx.type_i32()],
self.cx.type_void(),
);
let args = &[fn_name, hash, num_counters, index];
let args = self.check_call("call", llty, llfn, args);
unsafe {
let _ = llvm::LLVMRustBuildCall(
self.llbuilder,
llty,
llfn,
args.as_ptr() as *const &llvm::Value,
args.len() as c_uint,
[].as_ptr(),
0 as c_uint,
);
}
}
fn call(
&mut self,
llty: &'ll Type,
fn_attrs: Option<&CodegenFnAttrs>,
fn_abi: Option<&FnAbi<'tcx, Ty<'tcx>>>,
llfn: &'ll Value,
args: &[&'ll Value],
funclet: Option<&Funclet<'ll>>,
instance: Option<Instance<'tcx>>,
) -> &'ll Value {
debug!("call {:?} with args ({:?})", llfn, args);
let args = self.check_call("call", llty, llfn, args);
let funclet_bundle = funclet.map(|funclet| funclet.bundle());
let funclet_bundle = funclet_bundle.as_ref().map(|b| &*b.raw);
let mut bundles: SmallVec<[_; 2]> = SmallVec::new();
if let Some(funclet_bundle) = funclet_bundle {
bundles.push(funclet_bundle);
}
// Emit CFI pointer type membership test
self.cfi_type_test(fn_attrs, fn_abi, instance, llfn);
// Emit KCFI operand bundle
let kcfi_bundle = self.kcfi_operand_bundle(fn_attrs, fn_abi, instance, llfn);
let kcfi_bundle = kcfi_bundle.as_ref().map(|b| &*b.raw);
if let Some(kcfi_bundle) = kcfi_bundle {
bundles.push(kcfi_bundle);
}
let call = unsafe {
llvm::LLVMRustBuildCall(
self.llbuilder,
llty,
llfn,
args.as_ptr() as *const &llvm::Value,
args.len() as c_uint,
bundles.as_ptr(),
bundles.len() as c_uint,
)
};
if let Some(fn_abi) = fn_abi {
fn_abi.apply_attrs_callsite(self, call);
}
call
}
fn zext(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
unsafe { llvm::LLVMBuildZExt(self.llbuilder, val, dest_ty, UNNAMED) }
}
fn apply_attrs_to_cleanup_callsite(&mut self, llret: &'ll Value) {
if llvm_util::get_version() < (17, 0, 2) {
// Work around https://github.com/llvm/llvm-project/issues/66984.
let noinline = llvm::AttributeKind::NoInline.create_attr(self.llcx);
attributes::apply_to_callsite(llret, llvm::AttributePlace::Function, &[noinline]);
} else {
// Cleanup is always the cold path.
let cold_inline = llvm::AttributeKind::Cold.create_attr(self.llcx);
attributes::apply_to_callsite(llret, llvm::AttributePlace::Function, &[cold_inline]);
}
}
}
impl<'ll> StaticBuilderMethods for Builder<'_, 'll, '_> {
fn get_static(&mut self, def_id: DefId) -> &'ll Value {
// Forward to the `get_static` method of `CodegenCx`
self.cx().get_static(def_id)
}
}
impl<'a, 'll, 'tcx> Builder<'a, 'll, 'tcx> {
fn with_cx(cx: &'a CodegenCx<'ll, 'tcx>) -> Self {
// Create a fresh builder from the crate context.
let llbuilder = unsafe { llvm::LLVMCreateBuilderInContext(cx.llcx) };
Builder { llbuilder, cx }
}
pub fn llfn(&self) -> &'ll Value {
unsafe { llvm::LLVMGetBasicBlockParent(self.llbb()) }
}
fn position_at_start(&mut self, llbb: &'ll BasicBlock) {
unsafe {
llvm::LLVMRustPositionBuilderAtStart(self.llbuilder, llbb);
}
}
fn align_metadata(&mut self, load: &'ll Value, align: Align) {
unsafe {
let v = [self.cx.const_u64(align.bytes())];
llvm::LLVMSetMetadata(
load,
llvm::MD_align as c_uint,
llvm::LLVMMDNodeInContext(self.cx.llcx, v.as_ptr(), v.len() as c_uint),
);
}
}
fn noundef_metadata(&mut self, load: &'ll Value) {
unsafe {
llvm::LLVMSetMetadata(
load,
llvm::MD_noundef as c_uint,
llvm::LLVMMDNodeInContext(self.cx.llcx, ptr::null(), 0),
);
}
}
pub fn minnum(&mut self, lhs: &'ll Value, rhs: &'ll Value) -> &'ll Value {
unsafe { llvm::LLVMRustBuildMinNum(self.llbuilder, lhs, rhs) }
}
pub fn maxnum(&mut self, lhs: &'ll Value, rhs: &'ll Value) -> &'ll Value {
unsafe { llvm::LLVMRustBuildMaxNum(self.llbuilder, lhs, rhs) }
}
pub fn insert_element(
&mut self,
vec: &'ll Value,
elt: &'ll Value,
idx: &'ll Value,
) -> &'ll Value {
unsafe { llvm::LLVMBuildInsertElement(self.llbuilder, vec, elt, idx, UNNAMED) }
}
pub fn shuffle_vector(
&mut self,
v1: &'ll Value,
v2: &'ll Value,
mask: &'ll Value,
) -> &'ll Value {
unsafe { llvm::LLVMBuildShuffleVector(self.llbuilder, v1, v2, mask, UNNAMED) }
}
pub fn vector_reduce_fadd(&mut self, acc: &'ll Value, src: &'ll Value) -> &'ll Value {
unsafe { llvm::LLVMRustBuildVectorReduceFAdd(self.llbuilder, acc, src) }
}
pub fn vector_reduce_fmul(&mut self, acc: &'ll Value, src: &'ll Value) -> &'ll Value {
unsafe { llvm::LLVMRustBuildVectorReduceFMul(self.llbuilder, acc, src) }
}
pub fn vector_reduce_fadd_reassoc(&mut self, acc: &'ll Value, src: &'ll Value) -> &'ll Value {
unsafe {
let instr = llvm::LLVMRustBuildVectorReduceFAdd(self.llbuilder, acc, src);
llvm::LLVMRustSetAllowReassoc(instr);
instr
}
}
pub fn vector_reduce_fmul_reassoc(&mut self, acc: &'ll Value, src: &'ll Value) -> &'ll Value {
unsafe {
let instr = llvm::LLVMRustBuildVectorReduceFMul(self.llbuilder, acc, src);
llvm::LLVMRustSetAllowReassoc(instr);
instr
}
}
pub fn vector_reduce_add(&mut self, src: &'ll Value) -> &'ll Value {
unsafe { llvm::LLVMRustBuildVectorReduceAdd(self.llbuilder, src) }
}
pub fn vector_reduce_mul(&mut self, src: &'ll Value) -> &'ll Value {
unsafe { llvm::LLVMRustBuildVectorReduceMul(self.llbuilder, src) }
}
pub fn vector_reduce_and(&mut self, src: &'ll Value) -> &'ll Value {
unsafe { llvm::LLVMRustBuildVectorReduceAnd(self.llbuilder, src) }
}
pub fn vector_reduce_or(&mut self, src: &'ll Value) -> &'ll Value {
unsafe { llvm::LLVMRustBuildVectorReduceOr(self.llbuilder, src) }
}
pub fn vector_reduce_xor(&mut self, src: &'ll Value) -> &'ll Value {
unsafe { llvm::LLVMRustBuildVectorReduceXor(self.llbuilder, src) }
}
pub fn vector_reduce_fmin(&mut self, src: &'ll Value) -> &'ll Value {
unsafe {
llvm::LLVMRustBuildVectorReduceFMin(self.llbuilder, src, /*NoNaNs:*/ false)
}
}
pub fn vector_reduce_fmax(&mut self, src: &'ll Value) -> &'ll Value {
unsafe {
llvm::LLVMRustBuildVectorReduceFMax(self.llbuilder, src, /*NoNaNs:*/ false)
}
}
pub fn vector_reduce_min(&mut self, src: &'ll Value, is_signed: bool) -> &'ll Value {
unsafe { llvm::LLVMRustBuildVectorReduceMin(self.llbuilder, src, is_signed) }
}
pub fn vector_reduce_max(&mut self, src: &'ll Value, is_signed: bool) -> &'ll Value {
unsafe { llvm::LLVMRustBuildVectorReduceMax(self.llbuilder, src, is_signed) }
}
pub fn add_clause(&mut self, landing_pad: &'ll Value, clause: &'ll Value) {
unsafe {
llvm::LLVMAddClause(landing_pad, clause);
}
}
pub fn catch_ret(&mut self, funclet: &Funclet<'ll>, unwind: &'ll BasicBlock) -> &'ll Value {
let ret = unsafe { llvm::LLVMBuildCatchRet(self.llbuilder, funclet.cleanuppad(), unwind) };
ret.expect("LLVM does not have support for catchret")
}
fn check_call<'b>(
&mut self,
typ: &str,
fn_ty: &'ll Type,
llfn: &'ll Value,
args: &'b [&'ll Value],
) -> Cow<'b, [&'ll Value]> {
assert!(
self.cx.type_kind(fn_ty) == TypeKind::Function,
"builder::{typ} not passed a function, but {fn_ty:?}"
);
let param_tys = self.cx.func_params_types(fn_ty);
let all_args_match = iter::zip(&param_tys, args.iter().map(|&v| self.val_ty(v)))
.all(|(expected_ty, actual_ty)| *expected_ty == actual_ty);
if all_args_match {
return Cow::Borrowed(args);
}
let casted_args: Vec<_> = iter::zip(param_tys, args)
.enumerate()
.map(|(i, (expected_ty, &actual_val))| {
let actual_ty = self.val_ty(actual_val);
if expected_ty != actual_ty {
debug!(
"type mismatch in function call of {:?}. \
Expected {:?} for param {}, got {:?}; injecting bitcast",
llfn, expected_ty, i, actual_ty
);
self.bitcast(actual_val, expected_ty)
} else {
actual_val
}
})
.collect();
Cow::Owned(casted_args)
}
pub fn va_arg(&mut self, list: &'ll Value, ty: &'ll Type) -> &'ll Value {
unsafe { llvm::LLVMBuildVAArg(self.llbuilder, list, ty, UNNAMED) }
}
pub(crate) fn call_intrinsic(&mut self, intrinsic: &str, args: &[&'ll Value]) -> &'ll Value {
let (ty, f) = self.cx.get_intrinsic(intrinsic);
self.call(ty, None, None, f, args, None, None)
}
fn call_lifetime_intrinsic(&mut self, intrinsic: &str, ptr: &'ll Value, size: Size) {
let size = size.bytes();
if size == 0 {
return;
}
if !self.cx().sess().emit_lifetime_markers() {
return;
}
self.call_intrinsic(intrinsic, &[self.cx.const_u64(size), ptr]);
}
pub(crate) fn phi(
&mut self,
ty: &'ll Type,
vals: &[&'ll Value],
bbs: &[&'ll BasicBlock],
) -> &'ll Value {
assert_eq!(vals.len(), bbs.len());
let phi = unsafe { llvm::LLVMBuildPhi(self.llbuilder, ty, UNNAMED) };
unsafe {
llvm::LLVMAddIncoming(phi, vals.as_ptr(), bbs.as_ptr(), vals.len() as c_uint);
phi
}
}
fn add_incoming_to_phi(&mut self, phi: &'ll Value, val: &'ll Value, bb: &'ll BasicBlock) {
unsafe {
llvm::LLVMAddIncoming(phi, &val, &bb, 1 as c_uint);
}
}
fn fptoint_sat(&mut self, signed: bool, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
let src_ty = self.cx.val_ty(val);
let (float_ty, int_ty, vector_length) = if self.cx.type_kind(src_ty) == TypeKind::Vector {
assert_eq!(self.cx.vector_length(src_ty), self.cx.vector_length(dest_ty));
(
self.cx.element_type(src_ty),
self.cx.element_type(dest_ty),
Some(self.cx.vector_length(src_ty)),
)
} else {
(src_ty, dest_ty, None)
};
let float_width = self.cx.float_width(float_ty);
let int_width = self.cx.int_width(int_ty);
let instr = if signed { "fptosi" } else { "fptoui" };
let name = if let Some(vector_length) = vector_length {
format!("llvm.{instr}.sat.v{vector_length}i{int_width}.v{vector_length}f{float_width}")
} else {
format!("llvm.{instr}.sat.i{int_width}.f{float_width}")
};
let f = self.declare_cfn(&name, llvm::UnnamedAddr::No, self.type_func(&[src_ty], dest_ty));
self.call(self.type_func(&[src_ty], dest_ty), None, None, f, &[val], None, None)
}
pub(crate) fn landing_pad(
&mut self,
ty: &'ll Type,
pers_fn: &'ll Value,
num_clauses: usize,
) -> &'ll Value {
// Use LLVMSetPersonalityFn to set the personality. It supports arbitrary Consts while,
// LLVMBuildLandingPad requires the argument to be a Function (as of LLVM 12). The
// personality lives on the parent function anyway.
self.set_personality_fn(pers_fn);
unsafe {
llvm::LLVMBuildLandingPad(self.llbuilder, ty, None, num_clauses as c_uint, UNNAMED)
}
}
pub(crate) fn callbr(
&mut self,
llty: &'ll Type,
fn_attrs: Option<&CodegenFnAttrs>,
fn_abi: Option<&FnAbi<'tcx, Ty<'tcx>>>,
llfn: &'ll Value,
args: &[&'ll Value],
default_dest: &'ll BasicBlock,
indirect_dest: &[&'ll BasicBlock],
funclet: Option<&Funclet<'ll>>,
instance: Option<Instance<'tcx>>,
) -> &'ll Value {
debug!("invoke {:?} with args ({:?})", llfn, args);
let args = self.check_call("callbr", llty, llfn, args);
let funclet_bundle = funclet.map(|funclet| funclet.bundle());
let funclet_bundle = funclet_bundle.as_ref().map(|b| &*b.raw);
let mut bundles: SmallVec<[_; 2]> = SmallVec::new();
if let Some(funclet_bundle) = funclet_bundle {
bundles.push(funclet_bundle);
}
// Emit CFI pointer type membership test
self.cfi_type_test(fn_attrs, fn_abi, instance, llfn);
// Emit KCFI operand bundle
let kcfi_bundle = self.kcfi_operand_bundle(fn_attrs, fn_abi, instance, llfn);
let kcfi_bundle = kcfi_bundle.as_ref().map(|b| &*b.raw);
if let Some(kcfi_bundle) = kcfi_bundle {
bundles.push(kcfi_bundle);
}
let callbr = unsafe {
llvm::LLVMRustBuildCallBr(
self.llbuilder,
llty,
llfn,
default_dest,
indirect_dest.as_ptr(),
indirect_dest.len() as c_uint,
args.as_ptr(),
args.len() as c_uint,
bundles.as_ptr(),
bundles.len() as c_uint,
UNNAMED,
)
};
if let Some(fn_abi) = fn_abi {
fn_abi.apply_attrs_callsite(self, callbr);
}
callbr
}
// Emits CFI pointer type membership tests.
fn cfi_type_test(
&mut self,
fn_attrs: Option<&CodegenFnAttrs>,
fn_abi: Option<&FnAbi<'tcx, Ty<'tcx>>>,
instance: Option<Instance<'tcx>>,
llfn: &'ll Value,
) {
let is_indirect_call = unsafe { llvm::LLVMRustIsNonGVFunctionPointerTy(llfn) };
if self.tcx.sess.is_sanitizer_cfi_enabled()
&& let Some(fn_abi) = fn_abi
&& is_indirect_call
{
if let Some(fn_attrs) = fn_attrs
&& fn_attrs.no_sanitize.contains(SanitizerSet::CFI)
{
return;
}
let mut options = cfi::TypeIdOptions::empty();
if self.tcx.sess.is_sanitizer_cfi_generalize_pointers_enabled() {
options.insert(cfi::TypeIdOptions::GENERALIZE_POINTERS);
}
if self.tcx.sess.is_sanitizer_cfi_normalize_integers_enabled() {
options.insert(cfi::TypeIdOptions::NORMALIZE_INTEGERS);
}
let typeid = if let Some(instance) = instance {
cfi::typeid_for_instance(self.tcx, instance, options)
} else {
cfi::typeid_for_fnabi(self.tcx, fn_abi, options)
};
let typeid_metadata = self.cx.typeid_metadata(typeid).unwrap();
// Test whether the function pointer is associated with the type identifier.
let cond = self.type_test(llfn, typeid_metadata);
let bb_pass = self.append_sibling_block("type_test.pass");
let bb_fail = self.append_sibling_block("type_test.fail");
self.cond_br(cond, bb_pass, bb_fail);
self.switch_to_block(bb_fail);
self.abort();
self.unreachable();
self.switch_to_block(bb_pass);
}
}
// Emits KCFI operand bundles.
fn kcfi_operand_bundle(
&mut self,
fn_attrs: Option<&CodegenFnAttrs>,
fn_abi: Option<&FnAbi<'tcx, Ty<'tcx>>>,
instance: Option<Instance<'tcx>>,
llfn: &'ll Value,
) -> Option<llvm::OperandBundleDef<'ll>> {
let is_indirect_call = unsafe { llvm::LLVMRustIsNonGVFunctionPointerTy(llfn) };
let kcfi_bundle = if self.tcx.sess.is_sanitizer_kcfi_enabled()
&& let Some(fn_abi) = fn_abi
&& is_indirect_call
{
if let Some(fn_attrs) = fn_attrs
&& fn_attrs.no_sanitize.contains(SanitizerSet::KCFI)
{
return None;
}
let mut options = kcfi::TypeIdOptions::empty();
if self.tcx.sess.is_sanitizer_cfi_generalize_pointers_enabled() {
options.insert(kcfi::TypeIdOptions::GENERALIZE_POINTERS);
}
if self.tcx.sess.is_sanitizer_cfi_normalize_integers_enabled() {
options.insert(kcfi::TypeIdOptions::NORMALIZE_INTEGERS);
}
let kcfi_typeid = if let Some(instance) = instance {
kcfi::typeid_for_instance(self.tcx, instance, options)
} else {
kcfi::typeid_for_fnabi(self.tcx, fn_abi, options)
};
Some(llvm::OperandBundleDef::new("kcfi", &[self.const_u32(kcfi_typeid)]))
} else {
None
};
kcfi_bundle
}
/// Emits a call to `llvm.instrprof.mcdc.parameters`.
///
/// This doesn't produce any code directly, but is used as input by
/// the LLVM pass that handles coverage instrumentation.
///
/// (See clang's [`CodeGenPGO::emitMCDCParameters`] for comparison.)
///
/// [`CodeGenPGO::emitMCDCParameters`]:
/// https://github.com/rust-lang/llvm-project/blob/5399a24/clang/lib/CodeGen/CodeGenPGO.cpp#L1124
pub(crate) fn mcdc_parameters(
&mut self,
fn_name: &'ll Value,
hash: &'ll Value,
bitmap_bytes: &'ll Value,
) {
debug!("mcdc_parameters() with args ({:?}, {:?}, {:?})", fn_name, hash, bitmap_bytes);
assert!(llvm_util::get_version() >= (18, 0, 0), "MCDC intrinsics require LLVM 18 or later");
let llfn = unsafe { llvm::LLVMRustGetInstrProfMCDCParametersIntrinsic(self.cx().llmod) };
let llty = self.cx.type_func(
&[self.cx.type_ptr(), self.cx.type_i64(), self.cx.type_i32()],
self.cx.type_void(),
);
let args = &[fn_name, hash, bitmap_bytes];
let args = self.check_call("call", llty, llfn, args);
unsafe {
let _ = llvm::LLVMRustBuildCall(
self.llbuilder,
llty,
llfn,
args.as_ptr() as *const &llvm::Value,
args.len() as c_uint,
[].as_ptr(),
0 as c_uint,
);
}
}
pub(crate) fn mcdc_tvbitmap_update(
&mut self,
fn_name: &'ll Value,
hash: &'ll Value,
bitmap_bytes: &'ll Value,
bitmap_index: &'ll Value,
mcdc_temp: &'ll Value,
) {
debug!(
"mcdc_tvbitmap_update() with args ({:?}, {:?}, {:?}, {:?}, {:?})",
fn_name, hash, bitmap_bytes, bitmap_index, mcdc_temp
);
assert!(llvm_util::get_version() >= (18, 0, 0), "MCDC intrinsics require LLVM 18 or later");
let llfn =
unsafe { llvm::LLVMRustGetInstrProfMCDCTVBitmapUpdateIntrinsic(self.cx().llmod) };
let llty = self.cx.type_func(
&[
self.cx.type_ptr(),
self.cx.type_i64(),
self.cx.type_i32(),
self.cx.type_i32(),
self.cx.type_ptr(),
],
self.cx.type_void(),
);
let args = &[fn_name, hash, bitmap_bytes, bitmap_index, mcdc_temp];
let args = self.check_call("call", llty, llfn, args);
unsafe {
let _ = llvm::LLVMRustBuildCall(
self.llbuilder,
llty,
llfn,
args.as_ptr() as *const &llvm::Value,
args.len() as c_uint,
[].as_ptr(),
0 as c_uint,
);
}
self.store(self.const_i32(0), mcdc_temp, self.tcx.data_layout.i32_align.abi);
}
pub(crate) fn mcdc_condbitmap_update(
&mut self,
fn_name: &'ll Value,
hash: &'ll Value,
cond_loc: &'ll Value,
mcdc_temp: &'ll Value,
bool_value: &'ll Value,
) {
debug!(
"mcdc_condbitmap_update() with args ({:?}, {:?}, {:?}, {:?}, {:?})",
fn_name, hash, cond_loc, mcdc_temp, bool_value
);
assert!(llvm_util::get_version() >= (18, 0, 0), "MCDC intrinsics require LLVM 18 or later");
let llfn = unsafe { llvm::LLVMRustGetInstrProfMCDCCondBitmapIntrinsic(self.cx().llmod) };
let llty = self.cx.type_func(
&[
self.cx.type_ptr(),
self.cx.type_i64(),
self.cx.type_i32(),
self.cx.type_ptr(),
self.cx.type_i1(),
],
self.cx.type_void(),
);
let args = &[fn_name, hash, cond_loc, mcdc_temp, bool_value];
self.check_call("call", llty, llfn, args);
unsafe {
let _ = llvm::LLVMRustBuildCall(
self.llbuilder,
llty,
llfn,
args.as_ptr() as *const &llvm::Value,
args.len() as c_uint,
[].as_ptr(),
0 as c_uint,
);
}
}
}