blob: 79a90507fa2e1f0fe7478e11a143cb9b926ad44d [file] [log] [blame]
//! Codegen of intrinsics. This includes `extern "rust-intrinsic"`, `extern "platform-intrinsic"`
//! and LLVM intrinsics that have symbol names starting with `llvm.`.
macro_rules! intrinsic_args {
($fx:expr, $args:expr => ($($arg:tt),*); $intrinsic:expr) => {
#[allow(unused_parens)]
let ($($arg),*) = if let [$($arg),*] = $args {
($(codegen_operand($fx, &($arg).node)),*)
} else {
$crate::intrinsics::bug_on_incorrect_arg_count($intrinsic);
};
}
}
mod llvm;
mod llvm_aarch64;
mod llvm_x86;
mod simd;
use cranelift_codegen::ir::AtomicRmwOp;
use rustc_middle::ty;
use rustc_middle::ty::layout::{HasParamEnv, ValidityRequirement};
use rustc_middle::ty::print::{with_no_trimmed_paths, with_no_visible_paths};
use rustc_middle::ty::GenericArgsRef;
use rustc_span::source_map::Spanned;
use rustc_span::symbol::{sym, Symbol};
pub(crate) use self::llvm::codegen_llvm_intrinsic_call;
use crate::cast::clif_intcast;
use crate::prelude::*;
fn bug_on_incorrect_arg_count(intrinsic: impl std::fmt::Display) -> ! {
bug!("wrong number of args for intrinsic {}", intrinsic);
}
fn report_atomic_type_validation_error<'tcx>(
fx: &mut FunctionCx<'_, '_, 'tcx>,
intrinsic: Symbol,
span: Span,
ty: Ty<'tcx>,
) {
fx.tcx.dcx().span_err(
span,
format!(
"`{}` intrinsic: expected basic integer or raw pointer type, found `{:?}`",
intrinsic, ty
),
);
// Prevent verifier error
fx.bcx.ins().trap(TrapCode::UnreachableCodeReached);
}
pub(crate) fn clif_vector_type<'tcx>(tcx: TyCtxt<'tcx>, layout: TyAndLayout<'tcx>) -> Type {
let (element, count) = match layout.abi {
Abi::Vector { element, count } => (element, count),
_ => unreachable!(),
};
scalar_to_clif_type(tcx, element).by(u32::try_from(count).unwrap()).unwrap()
}
fn simd_for_each_lane<'tcx>(
fx: &mut FunctionCx<'_, '_, 'tcx>,
val: CValue<'tcx>,
ret: CPlace<'tcx>,
f: &dyn Fn(&mut FunctionCx<'_, '_, 'tcx>, Ty<'tcx>, Ty<'tcx>, Value) -> Value,
) {
let layout = val.layout();
let (lane_count, lane_ty) = layout.ty.simd_size_and_type(fx.tcx);
let lane_layout = fx.layout_of(lane_ty);
let (ret_lane_count, ret_lane_ty) = ret.layout().ty.simd_size_and_type(fx.tcx);
let ret_lane_layout = fx.layout_of(ret_lane_ty);
assert_eq!(lane_count, ret_lane_count);
for lane_idx in 0..lane_count {
let lane = val.value_lane(fx, lane_idx).load_scalar(fx);
let res_lane = f(fx, lane_layout.ty, ret_lane_layout.ty, lane);
let res_lane = CValue::by_val(res_lane, ret_lane_layout);
ret.place_lane(fx, lane_idx).write_cvalue(fx, res_lane);
}
}
fn simd_pair_for_each_lane_typed<'tcx>(
fx: &mut FunctionCx<'_, '_, 'tcx>,
x: CValue<'tcx>,
y: CValue<'tcx>,
ret: CPlace<'tcx>,
f: &dyn Fn(&mut FunctionCx<'_, '_, 'tcx>, CValue<'tcx>, CValue<'tcx>) -> CValue<'tcx>,
) {
assert_eq!(x.layout(), y.layout());
let layout = x.layout();
let (lane_count, _lane_ty) = layout.ty.simd_size_and_type(fx.tcx);
let (ret_lane_count, _ret_lane_ty) = ret.layout().ty.simd_size_and_type(fx.tcx);
assert_eq!(lane_count, ret_lane_count);
for lane_idx in 0..lane_count {
let x_lane = x.value_lane(fx, lane_idx);
let y_lane = y.value_lane(fx, lane_idx);
let res_lane = f(fx, x_lane, y_lane);
ret.place_lane(fx, lane_idx).write_cvalue(fx, res_lane);
}
}
fn simd_pair_for_each_lane<'tcx>(
fx: &mut FunctionCx<'_, '_, 'tcx>,
x: CValue<'tcx>,
y: CValue<'tcx>,
ret: CPlace<'tcx>,
f: &dyn Fn(&mut FunctionCx<'_, '_, 'tcx>, Ty<'tcx>, Ty<'tcx>, Value, Value) -> Value,
) {
assert_eq!(x.layout(), y.layout());
let layout = x.layout();
let (lane_count, lane_ty) = layout.ty.simd_size_and_type(fx.tcx);
let lane_layout = fx.layout_of(lane_ty);
let (ret_lane_count, ret_lane_ty) = ret.layout().ty.simd_size_and_type(fx.tcx);
let ret_lane_layout = fx.layout_of(ret_lane_ty);
assert_eq!(lane_count, ret_lane_count);
for lane_idx in 0..lane_count {
let x_lane = x.value_lane(fx, lane_idx).load_scalar(fx);
let y_lane = y.value_lane(fx, lane_idx).load_scalar(fx);
let res_lane = f(fx, lane_layout.ty, ret_lane_layout.ty, x_lane, y_lane);
let res_lane = CValue::by_val(res_lane, ret_lane_layout);
ret.place_lane(fx, lane_idx).write_cvalue(fx, res_lane);
}
}
fn simd_horizontal_pair_for_each_lane<'tcx>(
fx: &mut FunctionCx<'_, '_, 'tcx>,
x: CValue<'tcx>,
y: CValue<'tcx>,
ret: CPlace<'tcx>,
f: &dyn Fn(&mut FunctionCx<'_, '_, 'tcx>, Ty<'tcx>, Ty<'tcx>, Value, Value) -> Value,
) {
assert_eq!(x.layout(), y.layout());
let layout = x.layout();
let (lane_count, lane_ty) = layout.ty.simd_size_and_type(fx.tcx);
let lane_layout = fx.layout_of(lane_ty);
let (ret_lane_count, ret_lane_ty) = ret.layout().ty.simd_size_and_type(fx.tcx);
let ret_lane_layout = fx.layout_of(ret_lane_ty);
assert_eq!(lane_count, ret_lane_count);
for lane_idx in 0..lane_count {
let src = if lane_idx < (lane_count / 2) { x } else { y };
let src_idx = lane_idx % (lane_count / 2);
let lhs_lane = src.value_lane(fx, src_idx * 2).load_scalar(fx);
let rhs_lane = src.value_lane(fx, src_idx * 2 + 1).load_scalar(fx);
let res_lane = f(fx, lane_layout.ty, ret_lane_layout.ty, lhs_lane, rhs_lane);
let res_lane = CValue::by_val(res_lane, ret_lane_layout);
ret.place_lane(fx, lane_idx).write_cvalue(fx, res_lane);
}
}
fn simd_trio_for_each_lane<'tcx>(
fx: &mut FunctionCx<'_, '_, 'tcx>,
x: CValue<'tcx>,
y: CValue<'tcx>,
z: CValue<'tcx>,
ret: CPlace<'tcx>,
f: &dyn Fn(&mut FunctionCx<'_, '_, 'tcx>, Ty<'tcx>, Ty<'tcx>, Value, Value, Value) -> Value,
) {
assert_eq!(x.layout(), y.layout());
let layout = x.layout();
let (lane_count, lane_ty) = layout.ty.simd_size_and_type(fx.tcx);
let lane_layout = fx.layout_of(lane_ty);
let (ret_lane_count, ret_lane_ty) = ret.layout().ty.simd_size_and_type(fx.tcx);
let ret_lane_layout = fx.layout_of(ret_lane_ty);
assert_eq!(lane_count, ret_lane_count);
for lane_idx in 0..lane_count {
let x_lane = x.value_lane(fx, lane_idx).load_scalar(fx);
let y_lane = y.value_lane(fx, lane_idx).load_scalar(fx);
let z_lane = z.value_lane(fx, lane_idx).load_scalar(fx);
let res_lane = f(fx, lane_layout.ty, ret_lane_layout.ty, x_lane, y_lane, z_lane);
let res_lane = CValue::by_val(res_lane, ret_lane_layout);
ret.place_lane(fx, lane_idx).write_cvalue(fx, res_lane);
}
}
fn simd_reduce<'tcx>(
fx: &mut FunctionCx<'_, '_, 'tcx>,
val: CValue<'tcx>,
acc: Option<Value>,
ret: CPlace<'tcx>,
f: &dyn Fn(&mut FunctionCx<'_, '_, 'tcx>, Ty<'tcx>, Value, Value) -> Value,
) {
let (lane_count, lane_ty) = val.layout().ty.simd_size_and_type(fx.tcx);
let lane_layout = fx.layout_of(lane_ty);
assert_eq!(lane_layout, ret.layout());
let (mut res_val, start_lane) =
if let Some(acc) = acc { (acc, 0) } else { (val.value_lane(fx, 0).load_scalar(fx), 1) };
for lane_idx in start_lane..lane_count {
let lane = val.value_lane(fx, lane_idx).load_scalar(fx);
res_val = f(fx, lane_layout.ty, res_val, lane);
}
let res = CValue::by_val(res_val, lane_layout);
ret.write_cvalue(fx, res);
}
// FIXME move all uses to `simd_reduce`
fn simd_reduce_bool<'tcx>(
fx: &mut FunctionCx<'_, '_, 'tcx>,
val: CValue<'tcx>,
ret: CPlace<'tcx>,
f: &dyn Fn(&mut FunctionCx<'_, '_, 'tcx>, Value, Value) -> Value,
) {
let (lane_count, _lane_ty) = val.layout().ty.simd_size_and_type(fx.tcx);
assert!(ret.layout().ty.is_bool());
let res_val = val.value_lane(fx, 0).load_scalar(fx);
let mut res_val = fx.bcx.ins().band_imm(res_val, 1); // mask to boolean
for lane_idx in 1..lane_count {
let lane = val.value_lane(fx, lane_idx).load_scalar(fx);
let lane = fx.bcx.ins().band_imm(lane, 1); // mask to boolean
res_val = f(fx, res_val, lane);
}
let res_val = if fx.bcx.func.dfg.value_type(res_val) != types::I8 {
fx.bcx.ins().ireduce(types::I8, res_val)
} else {
res_val
};
let res = CValue::by_val(res_val, ret.layout());
ret.write_cvalue(fx, res);
}
fn bool_to_zero_or_max_uint<'tcx>(
fx: &mut FunctionCx<'_, '_, 'tcx>,
ty: Ty<'tcx>,
val: Value,
) -> Value {
let ty = fx.clif_type(ty).unwrap();
let int_ty = match ty {
types::F32 => types::I32,
types::F64 => types::I64,
ty => ty,
};
let mut res = fx.bcx.ins().bmask(int_ty, val);
if ty.is_float() {
res = codegen_bitcast(fx, ty, res);
}
res
}
pub(crate) fn codegen_intrinsic_call<'tcx>(
fx: &mut FunctionCx<'_, '_, 'tcx>,
instance: Instance<'tcx>,
args: &[Spanned<mir::Operand<'tcx>>],
destination: CPlace<'tcx>,
target: Option<BasicBlock>,
source_info: mir::SourceInfo,
) -> Result<(), Instance<'tcx>> {
let intrinsic = fx.tcx.item_name(instance.def_id());
let instance_args = instance.args;
if intrinsic.as_str().starts_with("simd_") {
self::simd::codegen_simd_intrinsic_call(
fx,
intrinsic,
instance_args,
args,
destination,
target.expect("target for simd intrinsic"),
source_info.span,
);
} else if codegen_float_intrinsic_call(fx, intrinsic, args, destination) {
let ret_block = fx.get_block(target.expect("target for float intrinsic"));
fx.bcx.ins().jump(ret_block, &[]);
} else {
codegen_regular_intrinsic_call(
fx,
instance,
intrinsic,
instance_args,
args,
destination,
target,
source_info,
)?;
}
Ok(())
}
fn codegen_float_intrinsic_call<'tcx>(
fx: &mut FunctionCx<'_, '_, 'tcx>,
intrinsic: Symbol,
args: &[Spanned<mir::Operand<'tcx>>],
ret: CPlace<'tcx>,
) -> bool {
let (name, arg_count, ty, clif_ty) = match intrinsic {
sym::expf32 => ("expf", 1, fx.tcx.types.f32, types::F32),
sym::expf64 => ("exp", 1, fx.tcx.types.f64, types::F64),
sym::exp2f32 => ("exp2f", 1, fx.tcx.types.f32, types::F32),
sym::exp2f64 => ("exp2", 1, fx.tcx.types.f64, types::F64),
sym::sqrtf32 => ("sqrtf", 1, fx.tcx.types.f32, types::F32),
sym::sqrtf64 => ("sqrt", 1, fx.tcx.types.f64, types::F64),
sym::powif32 => ("__powisf2", 2, fx.tcx.types.f32, types::F32), // compiler-builtins
sym::powif64 => ("__powidf2", 2, fx.tcx.types.f64, types::F64), // compiler-builtins
sym::powf32 => ("powf", 2, fx.tcx.types.f32, types::F32),
sym::powf64 => ("pow", 2, fx.tcx.types.f64, types::F64),
sym::logf32 => ("logf", 1, fx.tcx.types.f32, types::F32),
sym::logf64 => ("log", 1, fx.tcx.types.f64, types::F64),
sym::log2f32 => ("log2f", 1, fx.tcx.types.f32, types::F32),
sym::log2f64 => ("log2", 1, fx.tcx.types.f64, types::F64),
sym::log10f32 => ("log10f", 1, fx.tcx.types.f32, types::F32),
sym::log10f64 => ("log10", 1, fx.tcx.types.f64, types::F64),
sym::fabsf32 => ("fabsf", 1, fx.tcx.types.f32, types::F32),
sym::fabsf64 => ("fabs", 1, fx.tcx.types.f64, types::F64),
sym::fmaf32 => ("fmaf", 3, fx.tcx.types.f32, types::F32),
sym::fmaf64 => ("fma", 3, fx.tcx.types.f64, types::F64),
sym::copysignf32 => ("copysignf", 2, fx.tcx.types.f32, types::F32),
sym::copysignf64 => ("copysign", 2, fx.tcx.types.f64, types::F64),
sym::floorf32 => ("floorf", 1, fx.tcx.types.f32, types::F32),
sym::floorf64 => ("floor", 1, fx.tcx.types.f64, types::F64),
sym::ceilf32 => ("ceilf", 1, fx.tcx.types.f32, types::F32),
sym::ceilf64 => ("ceil", 1, fx.tcx.types.f64, types::F64),
sym::truncf32 => ("truncf", 1, fx.tcx.types.f32, types::F32),
sym::truncf64 => ("trunc", 1, fx.tcx.types.f64, types::F64),
sym::rintf32 => ("rintf", 1, fx.tcx.types.f32, types::F32),
sym::rintf64 => ("rint", 1, fx.tcx.types.f64, types::F64),
sym::roundf32 => ("roundf", 1, fx.tcx.types.f32, types::F32),
sym::roundf64 => ("round", 1, fx.tcx.types.f64, types::F64),
sym::roundevenf32 => ("roundevenf", 1, fx.tcx.types.f32, types::F32),
sym::roundevenf64 => ("roundeven", 1, fx.tcx.types.f64, types::F64),
sym::nearbyintf32 => ("nearbyintf", 1, fx.tcx.types.f32, types::F32),
sym::nearbyintf64 => ("nearbyint", 1, fx.tcx.types.f64, types::F64),
sym::sinf32 => ("sinf", 1, fx.tcx.types.f32, types::F32),
sym::sinf64 => ("sin", 1, fx.tcx.types.f64, types::F64),
sym::cosf32 => ("cosf", 1, fx.tcx.types.f32, types::F32),
sym::cosf64 => ("cos", 1, fx.tcx.types.f64, types::F64),
_ => return false,
};
if args.len() != arg_count {
bug!("wrong number of args for intrinsic {:?}", intrinsic);
}
let (a, b, c);
let args = match args {
[x] => {
a = [codegen_operand(fx, &x.node).load_scalar(fx)];
&a as &[_]
}
[x, y] => {
b = [
codegen_operand(fx, &x.node).load_scalar(fx),
codegen_operand(fx, &y.node).load_scalar(fx),
];
&b
}
[x, y, z] => {
c = [
codegen_operand(fx, &x.node).load_scalar(fx),
codegen_operand(fx, &y.node).load_scalar(fx),
codegen_operand(fx, &z.node).load_scalar(fx),
];
&c
}
_ => unreachable!(),
};
let layout = fx.layout_of(ty);
let res = match intrinsic {
sym::fmaf32 | sym::fmaf64 => {
CValue::by_val(fx.bcx.ins().fma(args[0], args[1], args[2]), layout)
}
sym::copysignf32 | sym::copysignf64 => {
CValue::by_val(fx.bcx.ins().fcopysign(args[0], args[1]), layout)
}
sym::fabsf32
| sym::fabsf64
| sym::floorf32
| sym::floorf64
| sym::ceilf32
| sym::ceilf64
| sym::truncf32
| sym::truncf64
| sym::nearbyintf32
| sym::nearbyintf64
| sym::sqrtf32
| sym::sqrtf64 => {
let val = match intrinsic {
sym::fabsf32 | sym::fabsf64 => fx.bcx.ins().fabs(args[0]),
sym::floorf32 | sym::floorf64 => fx.bcx.ins().floor(args[0]),
sym::ceilf32 | sym::ceilf64 => fx.bcx.ins().ceil(args[0]),
sym::truncf32 | sym::truncf64 => fx.bcx.ins().trunc(args[0]),
sym::nearbyintf32 | sym::nearbyintf64 => fx.bcx.ins().nearest(args[0]),
sym::sqrtf32 | sym::sqrtf64 => fx.bcx.ins().sqrt(args[0]),
_ => unreachable!(),
};
CValue::by_val(val, layout)
}
// These intrinsics aren't supported natively by Cranelift.
// Lower them to a libcall.
sym::powif32 | sym::powif64 => {
let input_tys: Vec<_> = vec![AbiParam::new(clif_ty), AbiParam::new(types::I32)];
let ret_val = fx.lib_call(name, input_tys, vec![AbiParam::new(clif_ty)], &args)[0];
CValue::by_val(ret_val, fx.layout_of(ty))
}
_ => {
let input_tys: Vec<_> = args.iter().map(|_| AbiParam::new(clif_ty)).collect();
let ret_val = fx.lib_call(name, input_tys, vec![AbiParam::new(clif_ty)], &args)[0];
CValue::by_val(ret_val, fx.layout_of(ty))
}
};
ret.write_cvalue(fx, res);
true
}
fn codegen_regular_intrinsic_call<'tcx>(
fx: &mut FunctionCx<'_, '_, 'tcx>,
instance: Instance<'tcx>,
intrinsic: Symbol,
generic_args: GenericArgsRef<'tcx>,
args: &[Spanned<mir::Operand<'tcx>>],
ret: CPlace<'tcx>,
destination: Option<BasicBlock>,
source_info: mir::SourceInfo,
) -> Result<(), Instance<'tcx>> {
assert_eq!(generic_args, instance.args);
let usize_layout = fx.layout_of(fx.tcx.types.usize);
match intrinsic {
sym::abort => {
fx.bcx.ins().trap(TrapCode::User(0));
return Ok(());
}
sym::likely | sym::unlikely => {
intrinsic_args!(fx, args => (a); intrinsic);
ret.write_cvalue(fx, a);
}
sym::breakpoint => {
intrinsic_args!(fx, args => (); intrinsic);
fx.bcx.ins().debugtrap();
}
sym::copy => {
intrinsic_args!(fx, args => (src, dst, count); intrinsic);
let src = src.load_scalar(fx);
let dst = dst.load_scalar(fx);
let count = count.load_scalar(fx);
let elem_ty = generic_args.type_at(0);
let elem_size: u64 = fx.layout_of(elem_ty).size.bytes();
assert_eq!(args.len(), 3);
let byte_amount =
if elem_size != 1 { fx.bcx.ins().imul_imm(count, elem_size as i64) } else { count };
// FIXME emit_small_memmove
fx.bcx.call_memmove(fx.target_config, dst, src, byte_amount);
}
sym::volatile_copy_memory | sym::volatile_copy_nonoverlapping_memory => {
// NOTE: the volatile variants have src and dst swapped
intrinsic_args!(fx, args => (dst, src, count); intrinsic);
let dst = dst.load_scalar(fx);
let src = src.load_scalar(fx);
let count = count.load_scalar(fx);
let elem_ty = generic_args.type_at(0);
let elem_size: u64 = fx.layout_of(elem_ty).size.bytes();
assert_eq!(args.len(), 3);
let byte_amount =
if elem_size != 1 { fx.bcx.ins().imul_imm(count, elem_size as i64) } else { count };
// FIXME make the copy actually volatile when using emit_small_mem{cpy,move}
if intrinsic == sym::volatile_copy_nonoverlapping_memory {
// FIXME emit_small_memcpy
fx.bcx.call_memcpy(fx.target_config, dst, src, byte_amount);
} else {
// FIXME emit_small_memmove
fx.bcx.call_memmove(fx.target_config, dst, src, byte_amount);
}
}
sym::size_of_val => {
intrinsic_args!(fx, args => (ptr); intrinsic);
let layout = fx.layout_of(generic_args.type_at(0));
// Note: Can't use is_unsized here as truly unsized types need to take the fixed size
// branch
let meta = if let Abi::ScalarPair(_, _) = ptr.layout().abi {
Some(ptr.load_scalar_pair(fx).1)
} else {
None
};
let (size, _align) = crate::unsize::size_and_align_of(fx, layout, meta);
ret.write_cvalue(fx, CValue::by_val(size, usize_layout));
}
sym::min_align_of_val => {
intrinsic_args!(fx, args => (ptr); intrinsic);
let layout = fx.layout_of(generic_args.type_at(0));
// Note: Can't use is_unsized here as truly unsized types need to take the fixed size
// branch
let meta = if let Abi::ScalarPair(_, _) = ptr.layout().abi {
Some(ptr.load_scalar_pair(fx).1)
} else {
None
};
let (_size, align) = crate::unsize::size_and_align_of(fx, layout, meta);
ret.write_cvalue(fx, CValue::by_val(align, usize_layout));
}
sym::vtable_size => {
intrinsic_args!(fx, args => (vtable); intrinsic);
let vtable = vtable.load_scalar(fx);
let size = crate::vtable::size_of_obj(fx, vtable);
ret.write_cvalue(fx, CValue::by_val(size, usize_layout));
}
sym::vtable_align => {
intrinsic_args!(fx, args => (vtable); intrinsic);
let vtable = vtable.load_scalar(fx);
let align = crate::vtable::min_align_of_obj(fx, vtable);
ret.write_cvalue(fx, CValue::by_val(align, usize_layout));
}
sym::exact_div => {
intrinsic_args!(fx, args => (x, y); intrinsic);
// FIXME trap on inexact
let res = crate::num::codegen_int_binop(fx, BinOp::Div, x, y);
ret.write_cvalue(fx, res);
}
sym::saturating_add | sym::saturating_sub => {
intrinsic_args!(fx, args => (lhs, rhs); intrinsic);
assert_eq!(lhs.layout().ty, rhs.layout().ty);
let bin_op = match intrinsic {
sym::saturating_add => BinOp::Add,
sym::saturating_sub => BinOp::Sub,
_ => unreachable!(),
};
let res = crate::num::codegen_saturating_int_binop(fx, bin_op, lhs, rhs);
ret.write_cvalue(fx, res);
}
sym::rotate_left => {
intrinsic_args!(fx, args => (x, y); intrinsic);
let y = y.load_scalar(fx);
let layout = x.layout();
let x = x.load_scalar(fx);
let res = fx.bcx.ins().rotl(x, y);
ret.write_cvalue(fx, CValue::by_val(res, layout));
}
sym::rotate_right => {
intrinsic_args!(fx, args => (x, y); intrinsic);
let y = y.load_scalar(fx);
let layout = x.layout();
let x = x.load_scalar(fx);
let res = fx.bcx.ins().rotr(x, y);
ret.write_cvalue(fx, CValue::by_val(res, layout));
}
// The only difference between offset and arith_offset is regarding UB. Because Cranelift
// doesn't have UB both are codegen'ed the same way
sym::arith_offset => {
intrinsic_args!(fx, args => (base, offset); intrinsic);
let offset = offset.load_scalar(fx);
let pointee_ty = base.layout().ty.builtin_deref(true).unwrap().ty;
let pointee_size = fx.layout_of(pointee_ty).size.bytes();
let ptr_diff = if pointee_size != 1 {
fx.bcx.ins().imul_imm(offset, pointee_size as i64)
} else {
offset
};
let base_val = base.load_scalar(fx);
let res = fx.bcx.ins().iadd(base_val, ptr_diff);
ret.write_cvalue(fx, CValue::by_val(res, base.layout()));
}
sym::ptr_mask => {
intrinsic_args!(fx, args => (ptr, mask); intrinsic);
let ptr = ptr.load_scalar(fx);
let mask = mask.load_scalar(fx);
fx.bcx.ins().band(ptr, mask);
}
sym::write_bytes | sym::volatile_set_memory => {
intrinsic_args!(fx, args => (dst, val, count); intrinsic);
let val = val.load_scalar(fx);
let count = count.load_scalar(fx);
let pointee_ty = dst.layout().ty.builtin_deref(true).unwrap().ty;
let pointee_size = fx.layout_of(pointee_ty).size.bytes();
let count = if pointee_size != 1 {
fx.bcx.ins().imul_imm(count, pointee_size as i64)
} else {
count
};
let dst_ptr = dst.load_scalar(fx);
// FIXME make the memset actually volatile when switching to emit_small_memset
// FIXME use emit_small_memset
fx.bcx.call_memset(fx.target_config, dst_ptr, val, count);
}
sym::ctlz | sym::ctlz_nonzero => {
intrinsic_args!(fx, args => (arg); intrinsic);
let val = arg.load_scalar(fx);
// FIXME trap on `ctlz_nonzero` with zero arg.
let res = fx.bcx.ins().clz(val);
let res = clif_intcast(fx, res, types::I32, false);
let res = CValue::by_val(res, ret.layout());
ret.write_cvalue(fx, res);
}
sym::cttz | sym::cttz_nonzero => {
intrinsic_args!(fx, args => (arg); intrinsic);
let val = arg.load_scalar(fx);
// FIXME trap on `cttz_nonzero` with zero arg.
let res = fx.bcx.ins().ctz(val);
let res = clif_intcast(fx, res, types::I32, false);
let res = CValue::by_val(res, ret.layout());
ret.write_cvalue(fx, res);
}
sym::ctpop => {
intrinsic_args!(fx, args => (arg); intrinsic);
let val = arg.load_scalar(fx);
let res = fx.bcx.ins().popcnt(val);
let res = clif_intcast(fx, res, types::I32, false);
let res = CValue::by_val(res, ret.layout());
ret.write_cvalue(fx, res);
}
sym::bitreverse => {
intrinsic_args!(fx, args => (arg); intrinsic);
let val = arg.load_scalar(fx);
let res = fx.bcx.ins().bitrev(val);
let res = CValue::by_val(res, arg.layout());
ret.write_cvalue(fx, res);
}
sym::bswap => {
intrinsic_args!(fx, args => (arg); intrinsic);
let val = arg.load_scalar(fx);
let res = if fx.bcx.func.dfg.value_type(val) == types::I8 {
val
} else {
fx.bcx.ins().bswap(val)
};
let res = CValue::by_val(res, arg.layout());
ret.write_cvalue(fx, res);
}
sym::assert_inhabited | sym::assert_zero_valid | sym::assert_mem_uninitialized_valid => {
intrinsic_args!(fx, args => (); intrinsic);
let ty = generic_args.type_at(0);
let requirement = ValidityRequirement::from_intrinsic(intrinsic);
if let Some(requirement) = requirement {
let do_panic = !fx
.tcx
.check_validity_requirement((requirement, fx.param_env().and(ty)))
.expect("expect to have layout during codegen");
if do_panic {
let layout = fx.layout_of(ty);
let msg_str = with_no_visible_paths!({
with_no_trimmed_paths!({
if layout.abi.is_uninhabited() {
// Use this error even for the other intrinsics as it is more precise.
format!("attempted to instantiate uninhabited type `{}`", ty)
} else if intrinsic == sym::assert_zero_valid {
format!(
"attempted to zero-initialize type `{}`, which is invalid",
ty
)
} else {
format!(
"attempted to leave type `{}` uninitialized, which is invalid",
ty
)
}
})
});
crate::base::codegen_panic_nounwind(fx, &msg_str, Some(source_info.span));
return Ok(());
}
}
}
sym::volatile_load | sym::unaligned_volatile_load => {
intrinsic_args!(fx, args => (ptr); intrinsic);
// Cranelift treats loads as volatile by default
// FIXME correctly handle unaligned_volatile_load
let inner_layout = fx.layout_of(ptr.layout().ty.builtin_deref(true).unwrap().ty);
let val = CValue::by_ref(Pointer::new(ptr.load_scalar(fx)), inner_layout);
ret.write_cvalue(fx, val);
}
sym::volatile_store | sym::unaligned_volatile_store | sym::nontemporal_store => {
intrinsic_args!(fx, args => (ptr, val); intrinsic);
let ptr = ptr.load_scalar(fx);
// Cranelift treats stores as volatile by default
// FIXME correctly handle unaligned_volatile_store
// FIXME actually do nontemporal stores if requested
let dest = CPlace::for_ptr(Pointer::new(ptr), val.layout());
dest.write_cvalue(fx, val);
}
sym::pref_align_of
| sym::needs_drop
| sym::type_id
| sym::type_name
| sym::variant_count => {
intrinsic_args!(fx, args => (); intrinsic);
let const_val = fx
.tcx
.const_eval_instance(ParamEnv::reveal_all(), instance, source_info.span)
.unwrap();
let val = crate::constant::codegen_const_value(fx, const_val, ret.layout().ty);
ret.write_cvalue(fx, val);
}
sym::ptr_offset_from | sym::ptr_offset_from_unsigned => {
intrinsic_args!(fx, args => (ptr, base); intrinsic);
let ptr = ptr.load_scalar(fx);
let base = base.load_scalar(fx);
let ty = generic_args.type_at(0);
let pointee_size: u64 = fx.layout_of(ty).size.bytes();
let diff_bytes = fx.bcx.ins().isub(ptr, base);
// FIXME this can be an exact division.
let val = if intrinsic == sym::ptr_offset_from_unsigned {
let usize_layout = fx.layout_of(fx.tcx.types.usize);
// Because diff_bytes ULE isize::MAX, this would be fine as signed,
// but unsigned is slightly easier to codegen, so might as well.
CValue::by_val(fx.bcx.ins().udiv_imm(diff_bytes, pointee_size as i64), usize_layout)
} else {
let isize_layout = fx.layout_of(fx.tcx.types.isize);
CValue::by_val(fx.bcx.ins().sdiv_imm(diff_bytes, pointee_size as i64), isize_layout)
};
ret.write_cvalue(fx, val);
}
sym::caller_location => {
intrinsic_args!(fx, args => (); intrinsic);
let caller_location = fx.get_caller_location(source_info);
ret.write_cvalue(fx, caller_location);
}
_ if intrinsic.as_str().starts_with("atomic_fence") => {
intrinsic_args!(fx, args => (); intrinsic);
fx.bcx.ins().fence();
}
_ if intrinsic.as_str().starts_with("atomic_singlethreadfence") => {
intrinsic_args!(fx, args => (); intrinsic);
// FIXME use a compiler fence once Cranelift supports it
fx.bcx.ins().fence();
}
_ if intrinsic.as_str().starts_with("atomic_load") => {
intrinsic_args!(fx, args => (ptr); intrinsic);
let ptr = ptr.load_scalar(fx);
let ty = generic_args.type_at(0);
match ty.kind() {
ty::Uint(UintTy::U128) | ty::Int(IntTy::I128) => {
// FIXME implement 128bit atomics
if fx.tcx.is_compiler_builtins(LOCAL_CRATE) {
// special case for compiler-builtins to avoid having to patch it
crate::trap::trap_unimplemented(fx, "128bit atomics not yet supported");
return Ok(());
} else {
fx.tcx
.dcx()
.span_fatal(source_info.span, "128bit atomics not yet supported");
}
}
ty::Uint(_) | ty::Int(_) | ty::RawPtr(..) => {}
_ => {
report_atomic_type_validation_error(fx, intrinsic, source_info.span, ty);
return Ok(());
}
}
let clif_ty = fx.clif_type(ty).unwrap();
let val = fx.bcx.ins().atomic_load(clif_ty, MemFlags::trusted(), ptr);
let val = CValue::by_val(val, fx.layout_of(ty));
ret.write_cvalue(fx, val);
}
_ if intrinsic.as_str().starts_with("atomic_store") => {
intrinsic_args!(fx, args => (ptr, val); intrinsic);
let ptr = ptr.load_scalar(fx);
let ty = generic_args.type_at(0);
match ty.kind() {
ty::Uint(UintTy::U128) | ty::Int(IntTy::I128) => {
// FIXME implement 128bit atomics
if fx.tcx.is_compiler_builtins(LOCAL_CRATE) {
// special case for compiler-builtins to avoid having to patch it
crate::trap::trap_unimplemented(fx, "128bit atomics not yet supported");
return Ok(());
} else {
fx.tcx
.dcx()
.span_fatal(source_info.span, "128bit atomics not yet supported");
}
}
ty::Uint(_) | ty::Int(_) | ty::RawPtr(..) => {}
_ => {
report_atomic_type_validation_error(fx, intrinsic, source_info.span, ty);
return Ok(());
}
}
let val = val.load_scalar(fx);
fx.bcx.ins().atomic_store(MemFlags::trusted(), val, ptr);
}
_ if intrinsic.as_str().starts_with("atomic_xchg") => {
intrinsic_args!(fx, args => (ptr, new); intrinsic);
let ptr = ptr.load_scalar(fx);
let layout = new.layout();
match layout.ty.kind() {
ty::Uint(_) | ty::Int(_) | ty::RawPtr(..) => {}
_ => {
report_atomic_type_validation_error(fx, intrinsic, source_info.span, layout.ty);
return Ok(());
}
}
let ty = fx.clif_type(layout.ty).unwrap();
let new = new.load_scalar(fx);
let old = fx.bcx.ins().atomic_rmw(ty, MemFlags::trusted(), AtomicRmwOp::Xchg, ptr, new);
let old = CValue::by_val(old, layout);
ret.write_cvalue(fx, old);
}
_ if intrinsic.as_str().starts_with("atomic_cxchg") => {
// both atomic_cxchg_* and atomic_cxchgweak_*
intrinsic_args!(fx, args => (ptr, test_old, new); intrinsic);
let ptr = ptr.load_scalar(fx);
let layout = new.layout();
match layout.ty.kind() {
ty::Uint(_) | ty::Int(_) | ty::RawPtr(..) => {}
_ => {
report_atomic_type_validation_error(fx, intrinsic, source_info.span, layout.ty);
return Ok(());
}
}
let test_old = test_old.load_scalar(fx);
let new = new.load_scalar(fx);
let old = fx.bcx.ins().atomic_cas(MemFlags::trusted(), ptr, test_old, new);
let is_eq = fx.bcx.ins().icmp(IntCC::Equal, old, test_old);
let ret_val = CValue::by_val_pair(old, is_eq, ret.layout());
ret.write_cvalue(fx, ret_val)
}
_ if intrinsic.as_str().starts_with("atomic_xadd") => {
intrinsic_args!(fx, args => (ptr, amount); intrinsic);
let ptr = ptr.load_scalar(fx);
let layout = amount.layout();
match layout.ty.kind() {
ty::Uint(_) | ty::Int(_) | ty::RawPtr(..) => {}
_ => {
report_atomic_type_validation_error(fx, intrinsic, source_info.span, layout.ty);
return Ok(());
}
}
let ty = fx.clif_type(layout.ty).unwrap();
let amount = amount.load_scalar(fx);
let old =
fx.bcx.ins().atomic_rmw(ty, MemFlags::trusted(), AtomicRmwOp::Add, ptr, amount);
let old = CValue::by_val(old, layout);
ret.write_cvalue(fx, old);
}
_ if intrinsic.as_str().starts_with("atomic_xsub") => {
intrinsic_args!(fx, args => (ptr, amount); intrinsic);
let ptr = ptr.load_scalar(fx);
let layout = amount.layout();
match layout.ty.kind() {
ty::Uint(_) | ty::Int(_) | ty::RawPtr(..) => {}
_ => {
report_atomic_type_validation_error(fx, intrinsic, source_info.span, layout.ty);
return Ok(());
}
}
let ty = fx.clif_type(layout.ty).unwrap();
let amount = amount.load_scalar(fx);
let old =
fx.bcx.ins().atomic_rmw(ty, MemFlags::trusted(), AtomicRmwOp::Sub, ptr, amount);
let old = CValue::by_val(old, layout);
ret.write_cvalue(fx, old);
}
_ if intrinsic.as_str().starts_with("atomic_and") => {
intrinsic_args!(fx, args => (ptr, src); intrinsic);
let ptr = ptr.load_scalar(fx);
let layout = src.layout();
match layout.ty.kind() {
ty::Uint(_) | ty::Int(_) | ty::RawPtr(..) => {}
_ => {
report_atomic_type_validation_error(fx, intrinsic, source_info.span, layout.ty);
return Ok(());
}
}
let ty = fx.clif_type(layout.ty).unwrap();
let src = src.load_scalar(fx);
let old = fx.bcx.ins().atomic_rmw(ty, MemFlags::trusted(), AtomicRmwOp::And, ptr, src);
let old = CValue::by_val(old, layout);
ret.write_cvalue(fx, old);
}
_ if intrinsic.as_str().starts_with("atomic_or") => {
intrinsic_args!(fx, args => (ptr, src); intrinsic);
let ptr = ptr.load_scalar(fx);
let layout = src.layout();
match layout.ty.kind() {
ty::Uint(_) | ty::Int(_) | ty::RawPtr(..) => {}
_ => {
report_atomic_type_validation_error(fx, intrinsic, source_info.span, layout.ty);
return Ok(());
}
}
let ty = fx.clif_type(layout.ty).unwrap();
let src = src.load_scalar(fx);
let old = fx.bcx.ins().atomic_rmw(ty, MemFlags::trusted(), AtomicRmwOp::Or, ptr, src);
let old = CValue::by_val(old, layout);
ret.write_cvalue(fx, old);
}
_ if intrinsic.as_str().starts_with("atomic_xor") => {
intrinsic_args!(fx, args => (ptr, src); intrinsic);
let ptr = ptr.load_scalar(fx);
let layout = src.layout();
match layout.ty.kind() {
ty::Uint(_) | ty::Int(_) | ty::RawPtr(..) => {}
_ => {
report_atomic_type_validation_error(fx, intrinsic, source_info.span, layout.ty);
return Ok(());
}
}
let ty = fx.clif_type(layout.ty).unwrap();
let src = src.load_scalar(fx);
let old = fx.bcx.ins().atomic_rmw(ty, MemFlags::trusted(), AtomicRmwOp::Xor, ptr, src);
let old = CValue::by_val(old, layout);
ret.write_cvalue(fx, old);
}
_ if intrinsic.as_str().starts_with("atomic_nand") => {
intrinsic_args!(fx, args => (ptr, src); intrinsic);
let ptr = ptr.load_scalar(fx);
let layout = src.layout();
match layout.ty.kind() {
ty::Uint(_) | ty::Int(_) | ty::RawPtr(..) => {}
_ => {
report_atomic_type_validation_error(fx, intrinsic, source_info.span, layout.ty);
return Ok(());
}
}
let ty = fx.clif_type(layout.ty).unwrap();
let src = src.load_scalar(fx);
let old = fx.bcx.ins().atomic_rmw(ty, MemFlags::trusted(), AtomicRmwOp::Nand, ptr, src);
let old = CValue::by_val(old, layout);
ret.write_cvalue(fx, old);
}
_ if intrinsic.as_str().starts_with("atomic_max") => {
intrinsic_args!(fx, args => (ptr, src); intrinsic);
let ptr = ptr.load_scalar(fx);
let layout = src.layout();
match layout.ty.kind() {
ty::Uint(_) | ty::Int(_) | ty::RawPtr(..) => {}
_ => {
report_atomic_type_validation_error(fx, intrinsic, source_info.span, layout.ty);
return Ok(());
}
}
let ty = fx.clif_type(layout.ty).unwrap();
let src = src.load_scalar(fx);
let old = fx.bcx.ins().atomic_rmw(ty, MemFlags::trusted(), AtomicRmwOp::Smax, ptr, src);
let old = CValue::by_val(old, layout);
ret.write_cvalue(fx, old);
}
_ if intrinsic.as_str().starts_with("atomic_umax") => {
intrinsic_args!(fx, args => (ptr, src); intrinsic);
let ptr = ptr.load_scalar(fx);
let layout = src.layout();
match layout.ty.kind() {
ty::Uint(_) | ty::Int(_) | ty::RawPtr(..) => {}
_ => {
report_atomic_type_validation_error(fx, intrinsic, source_info.span, layout.ty);
return Ok(());
}
}
let ty = fx.clif_type(layout.ty).unwrap();
let src = src.load_scalar(fx);
let old = fx.bcx.ins().atomic_rmw(ty, MemFlags::trusted(), AtomicRmwOp::Umax, ptr, src);
let old = CValue::by_val(old, layout);
ret.write_cvalue(fx, old);
}
_ if intrinsic.as_str().starts_with("atomic_min") => {
intrinsic_args!(fx, args => (ptr, src); intrinsic);
let ptr = ptr.load_scalar(fx);
let layout = src.layout();
match layout.ty.kind() {
ty::Uint(_) | ty::Int(_) | ty::RawPtr(..) => {}
_ => {
report_atomic_type_validation_error(fx, intrinsic, source_info.span, layout.ty);
return Ok(());
}
}
let ty = fx.clif_type(layout.ty).unwrap();
let src = src.load_scalar(fx);
let old = fx.bcx.ins().atomic_rmw(ty, MemFlags::trusted(), AtomicRmwOp::Smin, ptr, src);
let old = CValue::by_val(old, layout);
ret.write_cvalue(fx, old);
}
_ if intrinsic.as_str().starts_with("atomic_umin") => {
intrinsic_args!(fx, args => (ptr, src); intrinsic);
let ptr = ptr.load_scalar(fx);
let layout = src.layout();
match layout.ty.kind() {
ty::Uint(_) | ty::Int(_) | ty::RawPtr(..) => {}
_ => {
report_atomic_type_validation_error(fx, intrinsic, source_info.span, layout.ty);
return Ok(());
}
}
let ty = fx.clif_type(layout.ty).unwrap();
let src = src.load_scalar(fx);
let old = fx.bcx.ins().atomic_rmw(ty, MemFlags::trusted(), AtomicRmwOp::Umin, ptr, src);
let old = CValue::by_val(old, layout);
ret.write_cvalue(fx, old);
}
sym::minnumf32 => {
intrinsic_args!(fx, args => (a, b); intrinsic);
let a = a.load_scalar(fx);
let b = b.load_scalar(fx);
let val = crate::num::codegen_float_min(fx, a, b);
let val = CValue::by_val(val, fx.layout_of(fx.tcx.types.f32));
ret.write_cvalue(fx, val);
}
sym::minnumf64 => {
intrinsic_args!(fx, args => (a, b); intrinsic);
let a = a.load_scalar(fx);
let b = b.load_scalar(fx);
let val = crate::num::codegen_float_min(fx, a, b);
let val = CValue::by_val(val, fx.layout_of(fx.tcx.types.f64));
ret.write_cvalue(fx, val);
}
sym::maxnumf32 => {
intrinsic_args!(fx, args => (a, b); intrinsic);
let a = a.load_scalar(fx);
let b = b.load_scalar(fx);
let val = crate::num::codegen_float_max(fx, a, b);
let val = CValue::by_val(val, fx.layout_of(fx.tcx.types.f32));
ret.write_cvalue(fx, val);
}
sym::maxnumf64 => {
intrinsic_args!(fx, args => (a, b); intrinsic);
let a = a.load_scalar(fx);
let b = b.load_scalar(fx);
let val = crate::num::codegen_float_max(fx, a, b);
let val = CValue::by_val(val, fx.layout_of(fx.tcx.types.f64));
ret.write_cvalue(fx, val);
}
sym::catch_unwind => {
intrinsic_args!(fx, args => (f, data, catch_fn); intrinsic);
let f = f.load_scalar(fx);
let data = data.load_scalar(fx);
let _catch_fn = catch_fn.load_scalar(fx);
// FIXME once unwinding is supported, change this to actually catch panics
let f_sig = fx.bcx.func.import_signature(Signature {
call_conv: fx.target_config.default_call_conv,
params: vec![AbiParam::new(pointer_ty(fx.tcx))],
returns: vec![],
});
fx.bcx.ins().call_indirect(f_sig, f, &[data]);
let layout = fx.layout_of(fx.tcx.types.i32);
let ret_val = CValue::by_val(fx.bcx.ins().iconst(types::I32, 0), layout);
ret.write_cvalue(fx, ret_val);
}
sym::fadd_fast
| sym::fsub_fast
| sym::fmul_fast
| sym::fdiv_fast
| sym::frem_fast
| sym::fadd_algebraic
| sym::fsub_algebraic
| sym::fmul_algebraic
| sym::fdiv_algebraic
| sym::frem_algebraic => {
intrinsic_args!(fx, args => (x, y); intrinsic);
let res = crate::num::codegen_float_binop(
fx,
match intrinsic {
sym::fadd_fast | sym::fadd_algebraic => BinOp::Add,
sym::fsub_fast | sym::fsub_algebraic => BinOp::Sub,
sym::fmul_fast | sym::fmul_algebraic => BinOp::Mul,
sym::fdiv_fast | sym::fdiv_algebraic => BinOp::Div,
sym::frem_fast | sym::frem_algebraic => BinOp::Rem,
_ => unreachable!(),
},
x,
y,
);
ret.write_cvalue(fx, res);
}
sym::float_to_int_unchecked => {
intrinsic_args!(fx, args => (f); intrinsic);
let f = f.load_scalar(fx);
let res = crate::cast::clif_int_or_float_cast(
fx,
f,
false,
fx.clif_type(ret.layout().ty).unwrap(),
type_sign(ret.layout().ty),
);
ret.write_cvalue(fx, CValue::by_val(res, ret.layout()));
}
sym::raw_eq => {
intrinsic_args!(fx, args => (lhs_ref, rhs_ref); intrinsic);
let lhs_ref = lhs_ref.load_scalar(fx);
let rhs_ref = rhs_ref.load_scalar(fx);
let size = fx.layout_of(generic_args.type_at(0)).layout.size();
// FIXME add and use emit_small_memcmp
let is_eq_value = if size == Size::ZERO {
// No bytes means they're trivially equal
fx.bcx.ins().iconst(types::I8, 1)
} else if let Some(clty) = size.bits().try_into().ok().and_then(Type::int) {
// Can't use `trusted` for these loads; they could be unaligned.
let mut flags = MemFlags::new();
flags.set_notrap();
let lhs_val = fx.bcx.ins().load(clty, flags, lhs_ref, 0);
let rhs_val = fx.bcx.ins().load(clty, flags, rhs_ref, 0);
fx.bcx.ins().icmp(IntCC::Equal, lhs_val, rhs_val)
} else {
// Just call `memcmp` (like slices do in core) when the
// size is too large or it's not a power-of-two.
let signed_bytes = i64::try_from(size.bytes()).unwrap();
let bytes_val = fx.bcx.ins().iconst(fx.pointer_type, signed_bytes);
let params = vec![AbiParam::new(fx.pointer_type); 3];
let returns = vec![AbiParam::new(types::I32)];
let args = &[lhs_ref, rhs_ref, bytes_val];
let cmp = fx.lib_call("memcmp", params, returns, args)[0];
fx.bcx.ins().icmp_imm(IntCC::Equal, cmp, 0)
};
ret.write_cvalue(fx, CValue::by_val(is_eq_value, ret.layout()));
}
sym::compare_bytes => {
intrinsic_args!(fx, args => (lhs_ptr, rhs_ptr, bytes_val); intrinsic);
let lhs_ptr = lhs_ptr.load_scalar(fx);
let rhs_ptr = rhs_ptr.load_scalar(fx);
let bytes_val = bytes_val.load_scalar(fx);
let params = vec![AbiParam::new(fx.pointer_type); 3];
let returns = vec![AbiParam::new(types::I32)];
let args = &[lhs_ptr, rhs_ptr, bytes_val];
// Here we assume that the `memcmp` provided by the target is a NOP for size 0.
let cmp = fx.lib_call("memcmp", params, returns, args)[0];
ret.write_cvalue(fx, CValue::by_val(cmp, ret.layout()));
}
sym::black_box => {
intrinsic_args!(fx, args => (a); intrinsic);
// FIXME implement black_box semantics
ret.write_cvalue(fx, a);
}
// FIXME implement variadics in cranelift
sym::va_copy | sym::va_arg | sym::va_end => {
fx.tcx.dcx().span_fatal(
source_info.span,
"Defining variadic functions is not yet supported by Cranelift",
);
}
// Unimplemented intrinsics must have a fallback body. The fallback body is obtained
// by converting the `InstanceDef::Intrinsic` to an `InstanceDef::Item`.
_ => {
let intrinsic = fx.tcx.intrinsic(instance.def_id()).unwrap();
if intrinsic.must_be_overridden {
span_bug!(
source_info.span,
"intrinsic {} must be overridden by codegen_cranelift, but isn't",
intrinsic.name,
);
}
return Err(Instance::new(instance.def_id(), instance.args));
}
}
let ret_block = fx.get_block(destination.unwrap());
fx.bcx.ins().jump(ret_block, &[]);
Ok(())
}