blob: 2511a1535af18a85d0577231120844493c86d93e [file] [log] [blame]
//! This module contains code to equate the input/output types appearing
//! in the MIR with the expected input/output types from the function
//! signature. This requires a bit of processing, as the expected types
//! are supplied to us before normalization and may contain opaque
//! `impl Trait` instances. In contrast, the input/output types found in
//! the MIR (specifically, in the special local variables for the
//! `RETURN_PLACE` the MIR arguments) are always fully normalized (and
//! contain revealed `impl Trait` values).
use std::assert_matches::assert_matches;
use itertools::Itertools;
use rustc_hir as hir;
use rustc_infer::infer::type_variable::TypeVariableOrigin;
use rustc_infer::infer::{BoundRegionConversionTime, RegionVariableOrigin};
use rustc_middle::mir::*;
use rustc_middle::ty::{self, Ty};
use rustc_span::Span;
use crate::renumber::RegionCtxt;
use crate::universal_regions::{DefiningTy, UniversalRegions};
use super::{Locations, TypeChecker};
impl<'a, 'tcx> TypeChecker<'a, 'tcx> {
/// Check explicit closure signature annotation,
/// e.g., `|x: FxIndexMap<_, &'static u32>| ...`.
#[instrument(skip(self, body), level = "debug")]
pub(super) fn check_signature_annotation(&mut self, body: &Body<'tcx>) {
let mir_def_id = body.source.def_id().expect_local();
if !self.tcx().is_closure_like(mir_def_id.to_def_id()) {
return;
}
let user_provided_poly_sig = self.tcx().closure_user_provided_sig(mir_def_id);
// Instantiate the canonicalized variables from user-provided signature
// (e.g., the `_` in the code above) with fresh variables.
// Then replace the bound items in the fn sig with fresh variables,
// so that they represent the view from "inside" the closure.
let user_provided_sig = self.instantiate_canonical(body.span, &user_provided_poly_sig);
let mut user_provided_sig = self.infcx.instantiate_binder_with_fresh_vars(
body.span,
BoundRegionConversionTime::FnCall,
user_provided_sig,
);
// FIXME(async_closures): It's kind of wacky that we must apply this
// transformation here, since we do the same thing in HIR typeck.
// Maybe we could just fix up the canonicalized signature during HIR typeck?
if let DefiningTy::CoroutineClosure(_, args) =
self.borrowck_context.universal_regions.defining_ty
{
assert_matches!(
self.tcx().coroutine_kind(self.tcx().coroutine_for_closure(mir_def_id)),
Some(hir::CoroutineKind::Desugared(
hir::CoroutineDesugaring::Async,
hir::CoroutineSource::Closure
)),
"this needs to be modified if we're lowering non-async closures"
);
// Make sure to use the args from `DefiningTy` so the right NLL region vids are prepopulated
// into the type.
let args = args.as_coroutine_closure();
let tupled_upvars_ty = ty::CoroutineClosureSignature::tupled_upvars_by_closure_kind(
self.tcx(),
args.kind(),
Ty::new_tup(self.tcx(), user_provided_sig.inputs()),
args.tupled_upvars_ty(),
args.coroutine_captures_by_ref_ty(),
self.infcx.next_region_var(RegionVariableOrigin::MiscVariable(body.span), || {
RegionCtxt::Unknown
}),
);
let next_ty_var = || {
self.infcx.next_ty_var(TypeVariableOrigin { span: body.span, param_def_id: None })
};
let output_ty = Ty::new_coroutine(
self.tcx(),
self.tcx().coroutine_for_closure(mir_def_id),
ty::CoroutineArgs::new(
self.tcx(),
ty::CoroutineArgsParts {
parent_args: args.parent_args(),
kind_ty: Ty::from_coroutine_closure_kind(self.tcx(), args.kind()),
return_ty: user_provided_sig.output(),
tupled_upvars_ty,
// For async closures, none of these can be annotated, so just fill
// them with fresh ty vars.
resume_ty: next_ty_var(),
yield_ty: next_ty_var(),
witness: next_ty_var(),
},
)
.args,
);
user_provided_sig = self.tcx().mk_fn_sig(
user_provided_sig.inputs().iter().copied(),
output_ty,
user_provided_sig.c_variadic,
user_provided_sig.unsafety,
user_provided_sig.abi,
);
}
let is_coroutine_with_implicit_resume_ty = self.tcx().is_coroutine(mir_def_id.to_def_id())
&& user_provided_sig.inputs().is_empty();
for (&user_ty, arg_decl) in user_provided_sig.inputs().iter().zip_eq(
// In MIR, closure args begin with an implicit `self`.
// Also, coroutines have a resume type which may be implicitly `()`.
body.args_iter()
.skip(1 + if is_coroutine_with_implicit_resume_ty { 1 } else { 0 })
.map(|local| &body.local_decls[local]),
) {
self.ascribe_user_type_skip_wf(
arg_decl.ty,
ty::UserType::Ty(user_ty),
arg_decl.source_info.span,
);
}
// If the user explicitly annotated the output type, enforce it.
let output_decl = &body.local_decls[RETURN_PLACE];
self.ascribe_user_type_skip_wf(
output_decl.ty,
ty::UserType::Ty(user_provided_sig.output()),
output_decl.source_info.span,
);
}
#[instrument(skip(self, body, universal_regions), level = "debug")]
pub(super) fn equate_inputs_and_outputs(
&mut self,
body: &Body<'tcx>,
universal_regions: &UniversalRegions<'tcx>,
normalized_inputs_and_output: &[Ty<'tcx>],
) {
let (&normalized_output_ty, normalized_input_tys) =
normalized_inputs_and_output.split_last().unwrap();
debug!(?normalized_output_ty);
debug!(?normalized_input_tys);
// Equate expected input tys with those in the MIR.
for (argument_index, &normalized_input_ty) in normalized_input_tys.iter().enumerate() {
if argument_index + 1 >= body.local_decls.len() {
self.tcx()
.dcx()
.span_bug(body.span, "found more normalized_input_ty than local_decls");
}
// In MIR, argument N is stored in local N+1.
let local = Local::from_usize(argument_index + 1);
let mir_input_ty = body.local_decls[local].ty;
let mir_input_span = body.local_decls[local].source_info.span;
self.equate_normalized_input_or_output(
normalized_input_ty,
mir_input_ty,
mir_input_span,
);
}
if let Some(mir_yield_ty) = body.yield_ty() {
let yield_span = body.local_decls[RETURN_PLACE].source_info.span;
self.equate_normalized_input_or_output(
universal_regions.yield_ty.unwrap(),
mir_yield_ty,
yield_span,
);
}
if let Some(mir_resume_ty) = body.resume_ty() {
let yield_span = body.local_decls[RETURN_PLACE].source_info.span;
self.equate_normalized_input_or_output(
universal_regions.resume_ty.unwrap(),
mir_resume_ty,
yield_span,
);
}
// Return types are a bit more complex. They may contain opaque `impl Trait` types.
let mir_output_ty = body.local_decls[RETURN_PLACE].ty;
let output_span = body.local_decls[RETURN_PLACE].source_info.span;
self.equate_normalized_input_or_output(normalized_output_ty, mir_output_ty, output_span);
}
#[instrument(skip(self), level = "debug")]
fn equate_normalized_input_or_output(&mut self, a: Ty<'tcx>, b: Ty<'tcx>, span: Span) {
if let Err(_) =
self.eq_types(a, b, Locations::All(span), ConstraintCategory::BoringNoLocation)
{
// FIXME(jackh726): This is a hack. It's somewhat like
// `rustc_traits::normalize_after_erasing_regions`. Ideally, we'd
// like to normalize *before* inserting into `local_decls`, but
// doing so ends up causing some other trouble.
let b = self.normalize(b, Locations::All(span));
// Note: if we have to introduce new placeholders during normalization above, then we won't have
// added those universes to the universe info, which we would want in `relate_tys`.
if let Err(terr) =
self.eq_types(a, b, Locations::All(span), ConstraintCategory::BoringNoLocation)
{
span_mirbug!(
self,
Location::START,
"equate_normalized_input_or_output: `{:?}=={:?}` failed with `{:?}`",
a,
b,
terr
);
}
}
}
}