blob: 6c54363e306d0a5228e18f31eac5be9ab0afd60c [file] [log] [blame]
//! Lowers the AST to the HIR.
//!
//! Since the AST and HIR are fairly similar, this is mostly a simple procedure,
//! much like a fold. Where lowering involves a bit more work things get more
//! interesting and there are some invariants you should know about. These mostly
//! concern spans and IDs.
//!
//! Spans are assigned to AST nodes during parsing and then are modified during
//! expansion to indicate the origin of a node and the process it went through
//! being expanded. IDs are assigned to AST nodes just before lowering.
//!
//! For the simpler lowering steps, IDs and spans should be preserved. Unlike
//! expansion we do not preserve the process of lowering in the spans, so spans
//! should not be modified here. When creating a new node (as opposed to
//! "folding" an existing one), create a new ID using `next_id()`.
//!
//! You must ensure that IDs are unique. That means that you should only use the
//! ID from an AST node in a single HIR node (you can assume that AST node-IDs
//! are unique). Every new node must have a unique ID. Avoid cloning HIR nodes.
//! If you do, you must then set the new node's ID to a fresh one.
//!
//! Spans are used for error messages and for tools to map semantics back to
//! source code. It is therefore not as important with spans as IDs to be strict
//! about use (you can't break the compiler by screwing up a span). Obviously, a
//! HIR node can only have a single span. But multiple nodes can have the same
//! span and spans don't need to be kept in order, etc. Where code is preserved
//! by lowering, it should have the same span as in the AST. Where HIR nodes are
//! new it is probably best to give a span for the whole AST node being lowered.
//! All nodes should have real spans; don't use dummy spans. Tools are likely to
//! get confused if the spans from leaf AST nodes occur in multiple places
//! in the HIR, especially for multiple identifiers.
#![allow(internal_features)]
#![feature(rustdoc_internals)]
#![doc(rust_logo)]
#![feature(assert_matches)]
#![feature(box_patterns)]
#![feature(let_chains)]
use crate::errors::{AssocTyParentheses, AssocTyParenthesesSub, MisplacedImplTrait};
use rustc_ast::node_id::NodeMap;
use rustc_ast::ptr::P;
use rustc_ast::{self as ast, *};
use rustc_ast_pretty::pprust;
use rustc_data_structures::captures::Captures;
use rustc_data_structures::fingerprint::Fingerprint;
use rustc_data_structures::fx::FxIndexSet;
use rustc_data_structures::sorted_map::SortedMap;
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
use rustc_data_structures::sync::Lrc;
use rustc_errors::{DiagArgFromDisplay, DiagCtxt, StashKey};
use rustc_hir as hir;
use rustc_hir::def::{DefKind, LifetimeRes, Namespace, PartialRes, PerNS, Res};
use rustc_hir::def_id::{LocalDefId, LocalDefIdMap, CRATE_DEF_ID, LOCAL_CRATE};
use rustc_hir::{
ConstArg, GenericArg, HirId, ItemLocalMap, MissingLifetimeKind, ParamName, TraitCandidate,
};
use rustc_index::{Idx, IndexSlice, IndexVec};
use rustc_macros::extension;
use rustc_middle::span_bug;
use rustc_middle::ty::{ResolverAstLowering, TyCtxt};
use rustc_session::parse::{add_feature_diagnostics, feature_err};
use rustc_span::symbol::{kw, sym, Ident, Symbol};
use rustc_span::{DesugaringKind, Span, DUMMY_SP};
use smallvec::{smallvec, SmallVec};
use std::collections::hash_map::Entry;
use thin_vec::ThinVec;
use tracing::{debug, instrument, trace};
macro_rules! arena_vec {
($this:expr; $($x:expr),*) => (
$this.arena.alloc_from_iter([$($x),*])
);
}
mod asm;
mod block;
mod delegation;
mod errors;
mod expr;
mod format;
mod index;
mod item;
mod lifetime_collector;
mod pat;
mod path;
rustc_fluent_macro::fluent_messages! { "../messages.ftl" }
struct LoweringContext<'a, 'hir> {
tcx: TyCtxt<'hir>,
resolver: &'a mut ResolverAstLowering,
/// Used to allocate HIR nodes.
arena: &'hir hir::Arena<'hir>,
/// Bodies inside the owner being lowered.
bodies: Vec<(hir::ItemLocalId, &'hir hir::Body<'hir>)>,
/// Attributes inside the owner being lowered.
attrs: SortedMap<hir::ItemLocalId, &'hir [Attribute]>,
/// Collect items that were created by lowering the current owner.
children: Vec<(LocalDefId, hir::MaybeOwner<'hir>)>,
coroutine_kind: Option<hir::CoroutineKind>,
/// When inside an `async` context, this is the `HirId` of the
/// `task_context` local bound to the resume argument of the coroutine.
task_context: Option<HirId>,
/// Used to get the current `fn`'s def span to point to when using `await`
/// outside of an `async fn`.
current_item: Option<Span>,
catch_scope: Option<NodeId>,
loop_scope: Option<NodeId>,
is_in_loop_condition: bool,
is_in_trait_impl: bool,
is_in_dyn_type: bool,
current_hir_id_owner: hir::OwnerId,
item_local_id_counter: hir::ItemLocalId,
trait_map: ItemLocalMap<Box<[TraitCandidate]>>,
impl_trait_defs: Vec<hir::GenericParam<'hir>>,
impl_trait_bounds: Vec<hir::WherePredicate<'hir>>,
/// NodeIds that are lowered inside the current HIR owner.
node_id_to_local_id: NodeMap<hir::ItemLocalId>,
allow_try_trait: Lrc<[Symbol]>,
allow_gen_future: Lrc<[Symbol]>,
allow_async_iterator: Lrc<[Symbol]>,
allow_for_await: Lrc<[Symbol]>,
allow_async_fn_traits: Lrc<[Symbol]>,
/// Mapping from generics `def_id`s to TAIT generics `def_id`s.
/// For each captured lifetime (e.g., 'a), we create a new lifetime parameter that is a generic
/// defined on the TAIT, so we have type Foo<'a1> = ... and we establish a mapping in this
/// field from the original parameter 'a to the new parameter 'a1.
generics_def_id_map: Vec<LocalDefIdMap<LocalDefId>>,
host_param_id: Option<LocalDefId>,
}
impl<'a, 'hir> LoweringContext<'a, 'hir> {
fn new(tcx: TyCtxt<'hir>, resolver: &'a mut ResolverAstLowering) -> Self {
Self {
// Pseudo-globals.
tcx,
resolver: resolver,
arena: tcx.hir_arena,
// HirId handling.
bodies: Vec::new(),
attrs: SortedMap::default(),
children: Vec::default(),
current_hir_id_owner: hir::CRATE_OWNER_ID,
item_local_id_counter: hir::ItemLocalId::ZERO,
node_id_to_local_id: Default::default(),
trait_map: Default::default(),
// Lowering state.
catch_scope: None,
loop_scope: None,
is_in_loop_condition: false,
is_in_trait_impl: false,
is_in_dyn_type: false,
coroutine_kind: None,
task_context: None,
current_item: None,
impl_trait_defs: Vec::new(),
impl_trait_bounds: Vec::new(),
allow_try_trait: [sym::try_trait_v2, sym::yeet_desugar_details].into(),
allow_gen_future: if tcx.features().async_fn_track_caller {
[sym::gen_future, sym::closure_track_caller].into()
} else {
[sym::gen_future].into()
},
allow_for_await: [sym::async_iterator].into(),
allow_async_fn_traits: [sym::async_fn_traits].into(),
// FIXME(gen_blocks): how does `closure_track_caller`/`async_fn_track_caller`
// interact with `gen`/`async gen` blocks
allow_async_iterator: [sym::gen_future, sym::async_iterator].into(),
generics_def_id_map: Default::default(),
host_param_id: None,
}
}
pub(crate) fn dcx(&self) -> &'hir DiagCtxt {
self.tcx.dcx()
}
}
#[extension(trait ResolverAstLoweringExt)]
impl ResolverAstLowering {
fn legacy_const_generic_args(&self, expr: &Expr) -> Option<Vec<usize>> {
if let ExprKind::Path(None, path) = &expr.kind {
// Don't perform legacy const generics rewriting if the path already
// has generic arguments.
if path.segments.last().unwrap().args.is_some() {
return None;
}
if let Res::Def(DefKind::Fn, def_id) = self.partial_res_map.get(&expr.id)?.full_res()? {
// We only support cross-crate argument rewriting. Uses
// within the same crate should be updated to use the new
// const generics style.
if def_id.is_local() {
return None;
}
if let Some(v) = self.legacy_const_generic_args.get(&def_id) {
return v.clone();
}
}
}
None
}
/// Obtains resolution for a `NodeId` with a single resolution.
fn get_partial_res(&self, id: NodeId) -> Option<PartialRes> {
self.partial_res_map.get(&id).copied()
}
/// Obtains per-namespace resolutions for `use` statement with the given `NodeId`.
fn get_import_res(&self, id: NodeId) -> PerNS<Option<Res<NodeId>>> {
self.import_res_map.get(&id).copied().unwrap_or_default()
}
/// Obtains resolution for a label with the given `NodeId`.
fn get_label_res(&self, id: NodeId) -> Option<NodeId> {
self.label_res_map.get(&id).copied()
}
/// Obtains resolution for a lifetime with the given `NodeId`.
fn get_lifetime_res(&self, id: NodeId) -> Option<LifetimeRes> {
self.lifetimes_res_map.get(&id).copied()
}
/// Obtain the list of lifetimes parameters to add to an item.
///
/// Extra lifetime parameters should only be added in places that can appear
/// as a `binder` in `LifetimeRes`.
///
/// The extra lifetimes that appear from the parenthesized `Fn`-trait desugaring
/// should appear at the enclosing `PolyTraitRef`.
fn take_extra_lifetime_params(&mut self, id: NodeId) -> Vec<(Ident, NodeId, LifetimeRes)> {
self.extra_lifetime_params_map.remove(&id).unwrap_or_default()
}
}
/// Context of `impl Trait` in code, which determines whether it is allowed in an HIR subtree,
/// and if so, what meaning it has.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
enum ImplTraitContext {
/// Treat `impl Trait` as shorthand for a new universal generic parameter.
/// Example: `fn foo(x: impl Debug)`, where `impl Debug` is conceptually
/// equivalent to a fresh universal parameter like `fn foo<T: Debug>(x: T)`.
///
/// Newly generated parameters should be inserted into the given `Vec`.
Universal,
/// Treat `impl Trait` as shorthand for a new opaque type.
/// Example: `fn foo() -> impl Debug`, where `impl Debug` is conceptually
/// equivalent to a new opaque type like `type T = impl Debug; fn foo() -> T`.
///
OpaqueTy {
origin: hir::OpaqueTyOrigin,
/// Only used to change the lifetime capture rules, since
/// RPITIT captures all in scope, RPIT does not.
fn_kind: Option<FnDeclKind>,
},
/// `impl Trait` is unstably accepted in this position.
FeatureGated(ImplTraitPosition, Symbol),
/// `impl Trait` is not accepted in this position.
Disallowed(ImplTraitPosition),
}
/// Position in which `impl Trait` is disallowed.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
enum ImplTraitPosition {
Path,
Variable,
Trait,
Bound,
Generic,
ExternFnParam,
ClosureParam,
PointerParam,
FnTraitParam,
ExternFnReturn,
ClosureReturn,
PointerReturn,
FnTraitReturn,
GenericDefault,
ConstTy,
StaticTy,
AssocTy,
FieldTy,
Cast,
ImplSelf,
OffsetOf,
}
impl std::fmt::Display for ImplTraitPosition {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let name = match self {
ImplTraitPosition::Path => "paths",
ImplTraitPosition::Variable => "the type of variable bindings",
ImplTraitPosition::Trait => "traits",
ImplTraitPosition::Bound => "bounds",
ImplTraitPosition::Generic => "generics",
ImplTraitPosition::ExternFnParam => "`extern fn` parameters",
ImplTraitPosition::ClosureParam => "closure parameters",
ImplTraitPosition::PointerParam => "`fn` pointer parameters",
ImplTraitPosition::FnTraitParam => "the parameters of `Fn` trait bounds",
ImplTraitPosition::ExternFnReturn => "`extern fn` return types",
ImplTraitPosition::ClosureReturn => "closure return types",
ImplTraitPosition::PointerReturn => "`fn` pointer return types",
ImplTraitPosition::FnTraitReturn => "the return type of `Fn` trait bounds",
ImplTraitPosition::GenericDefault => "generic parameter defaults",
ImplTraitPosition::ConstTy => "const types",
ImplTraitPosition::StaticTy => "static types",
ImplTraitPosition::AssocTy => "associated types",
ImplTraitPosition::FieldTy => "field types",
ImplTraitPosition::Cast => "cast expression types",
ImplTraitPosition::ImplSelf => "impl headers",
ImplTraitPosition::OffsetOf => "`offset_of!` parameters",
};
write!(f, "{name}")
}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
enum FnDeclKind {
Fn,
Inherent,
ExternFn,
Closure,
Pointer,
Trait,
Impl,
}
#[derive(Copy, Clone)]
enum AstOwner<'a> {
NonOwner,
Crate(&'a ast::Crate),
Item(&'a ast::Item),
AssocItem(&'a ast::AssocItem, visit::AssocCtxt),
ForeignItem(&'a ast::ForeignItem),
}
fn index_crate<'a>(
node_id_to_def_id: &NodeMap<LocalDefId>,
krate: &'a Crate,
) -> IndexVec<LocalDefId, AstOwner<'a>> {
let mut indexer = Indexer { node_id_to_def_id, index: IndexVec::new() };
*indexer.index.ensure_contains_elem(CRATE_DEF_ID, || AstOwner::NonOwner) =
AstOwner::Crate(krate);
visit::walk_crate(&mut indexer, krate);
return indexer.index;
struct Indexer<'s, 'a> {
node_id_to_def_id: &'s NodeMap<LocalDefId>,
index: IndexVec<LocalDefId, AstOwner<'a>>,
}
impl<'a> visit::Visitor<'a> for Indexer<'_, 'a> {
fn visit_attribute(&mut self, _: &'a Attribute) {
// We do not want to lower expressions that appear in attributes,
// as they are not accessible to the rest of the HIR.
}
fn visit_item(&mut self, item: &'a ast::Item) {
let def_id = self.node_id_to_def_id[&item.id];
*self.index.ensure_contains_elem(def_id, || AstOwner::NonOwner) = AstOwner::Item(item);
visit::walk_item(self, item)
}
fn visit_assoc_item(&mut self, item: &'a ast::AssocItem, ctxt: visit::AssocCtxt) {
let def_id = self.node_id_to_def_id[&item.id];
*self.index.ensure_contains_elem(def_id, || AstOwner::NonOwner) =
AstOwner::AssocItem(item, ctxt);
visit::walk_assoc_item(self, item, ctxt);
}
fn visit_foreign_item(&mut self, item: &'a ast::ForeignItem) {
let def_id = self.node_id_to_def_id[&item.id];
*self.index.ensure_contains_elem(def_id, || AstOwner::NonOwner) =
AstOwner::ForeignItem(item);
visit::walk_item(self, item);
}
}
}
/// Compute the hash for the HIR of the full crate.
/// This hash will then be part of the crate_hash which is stored in the metadata.
fn compute_hir_hash(
tcx: TyCtxt<'_>,
owners: &IndexSlice<LocalDefId, hir::MaybeOwner<'_>>,
) -> Fingerprint {
let mut hir_body_nodes: Vec<_> = owners
.iter_enumerated()
.filter_map(|(def_id, info)| {
let info = info.as_owner()?;
let def_path_hash = tcx.hir().def_path_hash(def_id);
Some((def_path_hash, info))
})
.collect();
hir_body_nodes.sort_unstable_by_key(|bn| bn.0);
tcx.with_stable_hashing_context(|mut hcx| {
let mut stable_hasher = StableHasher::new();
hir_body_nodes.hash_stable(&mut hcx, &mut stable_hasher);
stable_hasher.finish()
})
}
pub fn lower_to_hir(tcx: TyCtxt<'_>, (): ()) -> hir::Crate<'_> {
let sess = tcx.sess;
// Queries that borrow `resolver_for_lowering`.
tcx.ensure_with_value().output_filenames(());
tcx.ensure_with_value().early_lint_checks(());
tcx.ensure_with_value().debugger_visualizers(LOCAL_CRATE);
tcx.ensure_with_value().get_lang_items(());
let (mut resolver, krate) = tcx.resolver_for_lowering().steal();
let ast_index = index_crate(&resolver.node_id_to_def_id, &krate);
let mut owners = IndexVec::from_fn_n(
|_| hir::MaybeOwner::Phantom,
tcx.definitions_untracked().def_index_count(),
);
for def_id in ast_index.indices() {
item::ItemLowerer {
tcx,
resolver: &mut resolver,
ast_index: &ast_index,
owners: &mut owners,
}
.lower_node(def_id);
}
// Drop AST to free memory
drop(ast_index);
sess.time("drop_ast", || drop(krate));
// Don't hash unless necessary, because it's expensive.
let opt_hir_hash =
if tcx.needs_crate_hash() { Some(compute_hir_hash(tcx, &owners)) } else { None };
hir::Crate { owners, opt_hir_hash }
}
#[derive(Copy, Clone, PartialEq, Debug)]
enum ParamMode {
/// Any path in a type context.
Explicit,
/// Path in a type definition, where the anonymous lifetime `'_` is not allowed.
ExplicitNamed,
/// The `module::Type` in `module::Type::method` in an expression.
Optional,
}
enum ParenthesizedGenericArgs {
ParenSugar,
Err,
}
impl<'a, 'hir> LoweringContext<'a, 'hir> {
fn create_def(
&mut self,
parent: LocalDefId,
node_id: ast::NodeId,
name: Symbol,
def_kind: DefKind,
span: Span,
) -> LocalDefId {
debug_assert_ne!(node_id, ast::DUMMY_NODE_ID);
assert!(
self.opt_local_def_id(node_id).is_none(),
"adding a def'n for node-id {:?} and def kind {:?} but a previous def'n exists: {:?}",
node_id,
def_kind,
self.tcx.hir().def_key(self.local_def_id(node_id)),
);
let def_id = self.tcx.at(span).create_def(parent, name, def_kind).def_id();
debug!("create_def: def_id_to_node_id[{:?}] <-> {:?}", def_id, node_id);
self.resolver.node_id_to_def_id.insert(node_id, def_id);
def_id
}
fn next_node_id(&mut self) -> NodeId {
let start = self.resolver.next_node_id;
let next = start.as_u32().checked_add(1).expect("input too large; ran out of NodeIds");
self.resolver.next_node_id = ast::NodeId::from_u32(next);
start
}
/// Given the id of some node in the AST, finds the `LocalDefId` associated with it by the name
/// resolver (if any).
fn orig_opt_local_def_id(&self, node: NodeId) -> Option<LocalDefId> {
self.resolver.node_id_to_def_id.get(&node).copied()
}
/// Given the id of some node in the AST, finds the `LocalDefId` associated with it by the name
/// resolver (if any), after applying any remapping from `get_remapped_def_id`.
///
/// For example, in a function like `fn foo<'a>(x: &'a u32)`,
/// invoking with the id from the `ast::Lifetime` node found inside
/// the `&'a u32` type would return the `LocalDefId` of the
/// `'a` parameter declared on `foo`.
///
/// This function also applies remapping from `get_remapped_def_id`.
/// These are used when synthesizing opaque types from `-> impl Trait` return types and so forth.
/// For example, in a function like `fn foo<'a>() -> impl Debug + 'a`,
/// we would create an opaque type `type FooReturn<'a1> = impl Debug + 'a1`.
/// When lowering the `Debug + 'a` bounds, we add a remapping to map `'a` to `'a1`.
fn opt_local_def_id(&self, node: NodeId) -> Option<LocalDefId> {
self.orig_opt_local_def_id(node).map(|local_def_id| self.get_remapped_def_id(local_def_id))
}
fn local_def_id(&self, node: NodeId) -> LocalDefId {
self.opt_local_def_id(node).unwrap_or_else(|| panic!("no entry for node id: `{node:?}`"))
}
/// Get the previously recorded `to` local def id given the `from` local def id, obtained using
/// `generics_def_id_map` field.
fn get_remapped_def_id(&self, local_def_id: LocalDefId) -> LocalDefId {
// `generics_def_id_map` is a stack of mappings. As we go deeper in impl traits nesting we
// push new mappings, so we first need to get the latest (innermost) mappings, hence `iter().rev()`.
//
// Consider:
//
// `fn test<'a, 'b>() -> impl Trait<&'a u8, Ty = impl Sized + 'b> {}`
//
// We would end with a generics_def_id_map like:
//
// `[[fn#'b -> impl_trait#'b], [fn#'b -> impl_sized#'b]]`
//
// for the opaque type generated on `impl Sized + 'b`, we want the result to be: impl_sized#'b.
// So, if we were trying to find first from the start (outermost) would give the wrong result, impl_trait#'b.
self.generics_def_id_map
.iter()
.rev()
.find_map(|map| map.get(&local_def_id).copied())
.unwrap_or(local_def_id)
}
/// Freshen the `LoweringContext` and ready it to lower a nested item.
/// The lowered item is registered into `self.children`.
///
/// This function sets up `HirId` lowering infrastructure,
/// and stashes the shared mutable state to avoid pollution by the closure.
#[instrument(level = "debug", skip(self, f))]
fn with_hir_id_owner(
&mut self,
owner: NodeId,
f: impl FnOnce(&mut Self) -> hir::OwnerNode<'hir>,
) {
let def_id = self.local_def_id(owner);
let current_attrs = std::mem::take(&mut self.attrs);
let current_bodies = std::mem::take(&mut self.bodies);
let current_node_ids = std::mem::take(&mut self.node_id_to_local_id);
let current_trait_map = std::mem::take(&mut self.trait_map);
let current_owner =
std::mem::replace(&mut self.current_hir_id_owner, hir::OwnerId { def_id });
let current_local_counter =
std::mem::replace(&mut self.item_local_id_counter, hir::ItemLocalId::new(1));
let current_impl_trait_defs = std::mem::take(&mut self.impl_trait_defs);
let current_impl_trait_bounds = std::mem::take(&mut self.impl_trait_bounds);
// Do not reset `next_node_id` and `node_id_to_def_id`:
// we want `f` to be able to refer to the `LocalDefId`s that the caller created.
// and the caller to refer to some of the subdefinitions' nodes' `LocalDefId`s.
// Always allocate the first `HirId` for the owner itself.
let _old = self.node_id_to_local_id.insert(owner, hir::ItemLocalId::ZERO);
debug_assert_eq!(_old, None);
let item = f(self);
debug_assert_eq!(def_id, item.def_id().def_id);
// `f` should have consumed all the elements in these vectors when constructing `item`.
debug_assert!(self.impl_trait_defs.is_empty());
debug_assert!(self.impl_trait_bounds.is_empty());
let info = self.make_owner_info(item);
self.attrs = current_attrs;
self.bodies = current_bodies;
self.node_id_to_local_id = current_node_ids;
self.trait_map = current_trait_map;
self.current_hir_id_owner = current_owner;
self.item_local_id_counter = current_local_counter;
self.impl_trait_defs = current_impl_trait_defs;
self.impl_trait_bounds = current_impl_trait_bounds;
debug_assert!(!self.children.iter().any(|(id, _)| id == &def_id));
self.children.push((def_id, hir::MaybeOwner::Owner(info)));
}
/// Installs the remapping `remap` in scope while `f` is being executed.
/// This causes references to the `LocalDefId` keys to be changed to
/// refer to the values instead.
///
/// The remapping is used when one piece of AST expands to multiple
/// pieces of HIR. For example, the function `fn foo<'a>(...) -> impl Debug + 'a`,
/// expands to both a function definition (`foo`) and a TAIT for the return value,
/// both of which have a lifetime parameter `'a`. The remapping allows us to
/// rewrite the `'a` in the return value to refer to the
/// `'a` declared on the TAIT, instead of the function.
fn with_remapping<R>(
&mut self,
remap: LocalDefIdMap<LocalDefId>,
f: impl FnOnce(&mut Self) -> R,
) -> R {
self.generics_def_id_map.push(remap);
let res = f(self);
self.generics_def_id_map.pop();
res
}
fn make_owner_info(&mut self, node: hir::OwnerNode<'hir>) -> &'hir hir::OwnerInfo<'hir> {
let attrs = std::mem::take(&mut self.attrs);
let mut bodies = std::mem::take(&mut self.bodies);
let trait_map = std::mem::take(&mut self.trait_map);
#[cfg(debug_assertions)]
for (id, attrs) in attrs.iter() {
// Verify that we do not store empty slices in the map.
if attrs.is_empty() {
panic!("Stored empty attributes for {:?}", id);
}
}
bodies.sort_by_key(|(k, _)| *k);
let bodies = SortedMap::from_presorted_elements(bodies);
// Don't hash unless necessary, because it's expensive.
let (opt_hash_including_bodies, attrs_hash) =
self.tcx.hash_owner_nodes(node, &bodies, &attrs);
let num_nodes = self.item_local_id_counter.as_usize();
let (nodes, parenting) = index::index_hir(self.tcx, node, &bodies, num_nodes);
let nodes = hir::OwnerNodes { opt_hash_including_bodies, nodes, bodies };
let attrs = hir::AttributeMap { map: attrs, opt_hash: attrs_hash };
self.arena.alloc(hir::OwnerInfo { nodes, parenting, attrs, trait_map })
}
/// This method allocates a new `HirId` for the given `NodeId` and stores it in
/// the `LoweringContext`'s `NodeId => HirId` map.
/// Take care not to call this method if the resulting `HirId` is then not
/// actually used in the HIR, as that would trigger an assertion in the
/// `HirIdValidator` later on, which makes sure that all `NodeId`s got mapped
/// properly. Calling the method twice with the same `NodeId` is fine though.
#[instrument(level = "debug", skip(self), ret)]
fn lower_node_id(&mut self, ast_node_id: NodeId) -> HirId {
assert_ne!(ast_node_id, DUMMY_NODE_ID);
match self.node_id_to_local_id.entry(ast_node_id) {
Entry::Occupied(o) => HirId { owner: self.current_hir_id_owner, local_id: *o.get() },
Entry::Vacant(v) => {
// Generate a new `HirId`.
let owner = self.current_hir_id_owner;
let local_id = self.item_local_id_counter;
let hir_id = HirId { owner, local_id };
v.insert(local_id);
self.item_local_id_counter.increment_by(1);
assert_ne!(local_id, hir::ItemLocalId::ZERO);
if let Some(def_id) = self.opt_local_def_id(ast_node_id) {
self.children.push((def_id, hir::MaybeOwner::NonOwner(hir_id)));
}
if let Some(traits) = self.resolver.trait_map.remove(&ast_node_id) {
self.trait_map.insert(hir_id.local_id, traits.into_boxed_slice());
}
hir_id
}
}
}
/// Generate a new `HirId` without a backing `NodeId`.
#[instrument(level = "debug", skip(self), ret)]
fn next_id(&mut self) -> HirId {
let owner = self.current_hir_id_owner;
let local_id = self.item_local_id_counter;
assert_ne!(local_id, hir::ItemLocalId::ZERO);
self.item_local_id_counter.increment_by(1);
HirId { owner, local_id }
}
#[instrument(level = "trace", skip(self))]
fn lower_res(&mut self, res: Res<NodeId>) -> Res {
let res: Result<Res, ()> = res.apply_id(|id| {
let owner = self.current_hir_id_owner;
let local_id = self.node_id_to_local_id.get(&id).copied().ok_or(())?;
Ok(HirId { owner, local_id })
});
trace!(?res);
// We may fail to find a HirId when the Res points to a Local from an enclosing HIR owner.
// This can happen when trying to lower the return type `x` in erroneous code like
// async fn foo(x: u8) -> x {}
// In that case, `x` is lowered as a function parameter, and the return type is lowered as
// an opaque type as a synthesized HIR owner.
res.unwrap_or(Res::Err)
}
fn expect_full_res(&mut self, id: NodeId) -> Res<NodeId> {
self.resolver.get_partial_res(id).map_or(Res::Err, |pr| pr.expect_full_res())
}
fn lower_import_res(&mut self, id: NodeId, span: Span) -> SmallVec<[Res; 3]> {
let res = self.resolver.get_import_res(id).present_items();
let res: SmallVec<_> = res.map(|res| self.lower_res(res)).collect();
if res.is_empty() {
self.dcx().span_delayed_bug(span, "no resolution for an import");
return smallvec![Res::Err];
}
res
}
fn make_lang_item_qpath(&mut self, lang_item: hir::LangItem, span: Span) -> hir::QPath<'hir> {
hir::QPath::Resolved(None, self.make_lang_item_path(lang_item, span, None))
}
fn make_lang_item_path(
&mut self,
lang_item: hir::LangItem,
span: Span,
args: Option<&'hir hir::GenericArgs<'hir>>,
) -> &'hir hir::Path<'hir> {
let def_id = self.tcx.require_lang_item(lang_item, Some(span));
let def_kind = self.tcx.def_kind(def_id);
let res = Res::Def(def_kind, def_id);
self.arena.alloc(hir::Path {
span,
res,
segments: self.arena.alloc_from_iter([hir::PathSegment {
ident: Ident::new(lang_item.name(), span),
hir_id: self.next_id(),
res,
args,
infer_args: args.is_none(),
}]),
})
}
/// Reuses the span but adds information like the kind of the desugaring and features that are
/// allowed inside this span.
fn mark_span_with_reason(
&self,
reason: DesugaringKind,
span: Span,
allow_internal_unstable: Option<Lrc<[Symbol]>>,
) -> Span {
self.tcx.with_stable_hashing_context(|hcx| {
span.mark_with_reason(allow_internal_unstable, reason, self.tcx.sess.edition(), hcx)
})
}
/// Intercept all spans entering HIR.
/// Mark a span as relative to the current owning item.
fn lower_span(&self, span: Span) -> Span {
if self.tcx.sess.opts.incremental.is_some() {
span.with_parent(Some(self.current_hir_id_owner.def_id))
} else {
// Do not make spans relative when not using incremental compilation.
span
}
}
fn lower_ident(&self, ident: Ident) -> Ident {
Ident::new(ident.name, self.lower_span(ident.span))
}
/// Converts a lifetime into a new generic parameter.
#[instrument(level = "debug", skip(self))]
fn lifetime_res_to_generic_param(
&mut self,
ident: Ident,
node_id: NodeId,
res: LifetimeRes,
source: hir::GenericParamSource,
) -> Option<hir::GenericParam<'hir>> {
let (name, kind) = match res {
LifetimeRes::Param { .. } => {
(hir::ParamName::Plain(ident), hir::LifetimeParamKind::Explicit)
}
LifetimeRes::Fresh { param, kind, .. } => {
// Late resolution delegates to us the creation of the `LocalDefId`.
let _def_id = self.create_def(
self.current_hir_id_owner.def_id,
param,
kw::UnderscoreLifetime,
DefKind::LifetimeParam,
ident.span,
);
debug!(?_def_id);
(hir::ParamName::Fresh, hir::LifetimeParamKind::Elided(kind))
}
LifetimeRes::Static | LifetimeRes::Error => return None,
res => panic!(
"Unexpected lifetime resolution {:?} for {:?} at {:?}",
res, ident, ident.span
),
};
let hir_id = self.lower_node_id(node_id);
let def_id = self.local_def_id(node_id);
Some(hir::GenericParam {
hir_id,
def_id,
name,
span: self.lower_span(ident.span),
pure_wrt_drop: false,
kind: hir::GenericParamKind::Lifetime { kind },
colon_span: None,
source,
})
}
/// Lowers a lifetime binder that defines `generic_params`, returning the corresponding HIR
/// nodes. The returned list includes any "extra" lifetime parameters that were added by the
/// name resolver owing to lifetime elision; this also populates the resolver's node-id->def-id
/// map, so that later calls to `opt_node_id_to_def_id` that refer to these extra lifetime
/// parameters will be successful.
#[instrument(level = "debug", skip(self))]
#[inline]
fn lower_lifetime_binder(
&mut self,
binder: NodeId,
generic_params: &[GenericParam],
) -> &'hir [hir::GenericParam<'hir>] {
let mut generic_params: Vec<_> = self
.lower_generic_params_mut(generic_params, hir::GenericParamSource::Binder)
.collect();
let extra_lifetimes = self.resolver.take_extra_lifetime_params(binder);
debug!(?extra_lifetimes);
generic_params.extend(extra_lifetimes.into_iter().filter_map(|(ident, node_id, res)| {
self.lifetime_res_to_generic_param(ident, node_id, res, hir::GenericParamSource::Binder)
}));
let generic_params = self.arena.alloc_from_iter(generic_params);
debug!(?generic_params);
generic_params
}
fn with_dyn_type_scope<T>(&mut self, in_scope: bool, f: impl FnOnce(&mut Self) -> T) -> T {
let was_in_dyn_type = self.is_in_dyn_type;
self.is_in_dyn_type = in_scope;
let result = f(self);
self.is_in_dyn_type = was_in_dyn_type;
result
}
fn with_new_scopes<T>(&mut self, scope_span: Span, f: impl FnOnce(&mut Self) -> T) -> T {
let current_item = self.current_item;
self.current_item = Some(scope_span);
let was_in_loop_condition = self.is_in_loop_condition;
self.is_in_loop_condition = false;
let catch_scope = self.catch_scope.take();
let loop_scope = self.loop_scope.take();
let ret = f(self);
self.catch_scope = catch_scope;
self.loop_scope = loop_scope;
self.is_in_loop_condition = was_in_loop_condition;
self.current_item = current_item;
ret
}
fn lower_attrs(&mut self, id: HirId, attrs: &[Attribute]) -> Option<&'hir [Attribute]> {
if attrs.is_empty() {
None
} else {
debug_assert_eq!(id.owner, self.current_hir_id_owner);
let ret = self.arena.alloc_from_iter(attrs.iter().map(|a| self.lower_attr(a)));
debug_assert!(!ret.is_empty());
self.attrs.insert(id.local_id, ret);
Some(ret)
}
}
fn lower_attr(&self, attr: &Attribute) -> Attribute {
// Note that we explicitly do not walk the path. Since we don't really
// lower attributes (we use the AST version) there is nowhere to keep
// the `HirId`s. We don't actually need HIR version of attributes anyway.
// Tokens are also not needed after macro expansion and parsing.
let kind = match attr.kind {
AttrKind::Normal(ref normal) => AttrKind::Normal(P(NormalAttr {
item: AttrItem {
path: normal.item.path.clone(),
args: self.lower_attr_args(&normal.item.args),
tokens: None,
},
tokens: None,
})),
AttrKind::DocComment(comment_kind, data) => AttrKind::DocComment(comment_kind, data),
};
Attribute { kind, id: attr.id, style: attr.style, span: self.lower_span(attr.span) }
}
fn alias_attrs(&mut self, id: HirId, target_id: HirId) {
debug_assert_eq!(id.owner, self.current_hir_id_owner);
debug_assert_eq!(target_id.owner, self.current_hir_id_owner);
if let Some(&a) = self.attrs.get(&target_id.local_id) {
debug_assert!(!a.is_empty());
self.attrs.insert(id.local_id, a);
}
}
fn lower_attr_args(&self, args: &AttrArgs) -> AttrArgs {
match args {
AttrArgs::Empty => AttrArgs::Empty,
AttrArgs::Delimited(args) => AttrArgs::Delimited(self.lower_delim_args(args)),
// This is an inert key-value attribute - it will never be visible to macros
// after it gets lowered to HIR. Therefore, we can extract literals to handle
// nonterminals in `#[doc]` (e.g. `#[doc = $e]`).
AttrArgs::Eq(eq_span, AttrArgsEq::Ast(expr)) => {
// In valid code the value always ends up as a single literal. Otherwise, a dummy
// literal suffices because the error is handled elsewhere.
let lit = if let ExprKind::Lit(token_lit) = expr.kind
&& let Ok(lit) = MetaItemLit::from_token_lit(token_lit, expr.span)
{
lit
} else {
let guar = self.dcx().has_errors().unwrap();
MetaItemLit {
symbol: kw::Empty,
suffix: None,
kind: LitKind::Err(guar),
span: DUMMY_SP,
}
};
AttrArgs::Eq(*eq_span, AttrArgsEq::Hir(lit))
}
AttrArgs::Eq(_, AttrArgsEq::Hir(lit)) => {
unreachable!("in literal form when lowering mac args eq: {:?}", lit)
}
}
}
fn lower_delim_args(&self, args: &DelimArgs) -> DelimArgs {
DelimArgs { dspan: args.dspan, delim: args.delim, tokens: args.tokens.flattened() }
}
/// Given an associated type constraint like one of these:
///
/// ```ignore (illustrative)
/// T: Iterator<Item: Debug>
/// ^^^^^^^^^^^
/// T: Iterator<Item = Debug>
/// ^^^^^^^^^^^^
/// ```
///
/// returns a `hir::TypeBinding` representing `Item`.
#[instrument(level = "debug", skip(self))]
fn lower_assoc_ty_constraint(
&mut self,
constraint: &AssocConstraint,
itctx: ImplTraitContext,
) -> hir::TypeBinding<'hir> {
debug!("lower_assoc_ty_constraint(constraint={:?}, itctx={:?})", constraint, itctx);
// lower generic arguments of identifier in constraint
let gen_args = if let Some(gen_args) = &constraint.gen_args {
let gen_args_ctor = match gen_args {
GenericArgs::AngleBracketed(data) => {
self.lower_angle_bracketed_parameter_data(data, ParamMode::Explicit, itctx).0
}
GenericArgs::Parenthesized(data) => {
if data.inputs.is_empty() && matches!(data.output, FnRetTy::Default(..)) {
let parenthesized = if self.tcx.features().return_type_notation {
hir::GenericArgsParentheses::ReturnTypeNotation
} else {
self.emit_bad_parenthesized_trait_in_assoc_ty(data);
hir::GenericArgsParentheses::No
};
GenericArgsCtor {
args: Default::default(),
bindings: &[],
parenthesized,
span: data.inputs_span,
}
} else if let Some(first_char) = constraint.ident.as_str().chars().next()
&& first_char.is_ascii_lowercase()
{
let mut err = if !data.inputs.is_empty() {
self.dcx().create_err(errors::BadReturnTypeNotation::Inputs {
span: data.inputs_span,
})
} else if let FnRetTy::Ty(ty) = &data.output {
self.dcx().create_err(errors::BadReturnTypeNotation::Output {
span: data.inputs_span.shrink_to_hi().to(ty.span),
})
} else {
unreachable!("inputs are empty and return type is not provided")
};
if !self.tcx.features().return_type_notation
&& self.tcx.sess.is_nightly_build()
{
add_feature_diagnostics(
&mut err,
&self.tcx.sess,
sym::return_type_notation,
);
}
err.emit();
GenericArgsCtor {
args: Default::default(),
bindings: &[],
parenthesized: hir::GenericArgsParentheses::ReturnTypeNotation,
span: data.span,
}
} else {
self.emit_bad_parenthesized_trait_in_assoc_ty(data);
// FIXME(return_type_notation): we could issue a feature error
// if the parens are empty and there's no return type.
self.lower_angle_bracketed_parameter_data(
&data.as_angle_bracketed_args(),
ParamMode::Explicit,
itctx,
)
.0
}
}
};
gen_args_ctor.into_generic_args(self)
} else {
self.arena.alloc(hir::GenericArgs::none())
};
let kind = match &constraint.kind {
AssocConstraintKind::Equality { term } => {
let term = match term {
Term::Ty(ty) => self.lower_ty(ty, itctx).into(),
Term::Const(c) => self.lower_anon_const(c).into(),
};
hir::TypeBindingKind::Equality { term }
}
AssocConstraintKind::Bound { bounds } => {
// Disallow ATB in dyn types
if self.is_in_dyn_type {
let suggestion = match itctx {
ImplTraitContext::OpaqueTy { .. } | ImplTraitContext::Universal => {
let bound_end_span = constraint
.gen_args
.as_ref()
.map_or(constraint.ident.span, |args| args.span());
if bound_end_span.eq_ctxt(constraint.span) {
Some(self.tcx.sess.source_map().next_point(bound_end_span))
} else {
None
}
}
_ => None,
};
let guar = self.dcx().emit_err(errors::MisplacedAssocTyBinding {
span: constraint.span,
suggestion,
});
let err_ty =
&*self.arena.alloc(self.ty(constraint.span, hir::TyKind::Err(guar)));
hir::TypeBindingKind::Equality { term: err_ty.into() }
} else {
// Desugar `AssocTy: Bounds` into a type binding where the
// later desugars into a trait predicate.
let bounds = self.lower_param_bounds(bounds, itctx);
hir::TypeBindingKind::Constraint { bounds }
}
}
};
hir::TypeBinding {
hir_id: self.lower_node_id(constraint.id),
ident: self.lower_ident(constraint.ident),
gen_args,
kind,
span: self.lower_span(constraint.span),
}
}
fn emit_bad_parenthesized_trait_in_assoc_ty(&self, data: &ParenthesizedArgs) {
// Suggest removing empty parentheses: "Trait()" -> "Trait"
let sub = if data.inputs.is_empty() {
let parentheses_span =
data.inputs_span.shrink_to_lo().to(data.inputs_span.shrink_to_hi());
AssocTyParenthesesSub::Empty { parentheses_span }
}
// Suggest replacing parentheses with angle brackets `Trait(params...)` to `Trait<params...>`
else {
// Start of parameters to the 1st argument
let open_param = data.inputs_span.shrink_to_lo().to(data
.inputs
.first()
.unwrap()
.span
.shrink_to_lo());
// End of last argument to end of parameters
let close_param =
data.inputs.last().unwrap().span.shrink_to_hi().to(data.inputs_span.shrink_to_hi());
AssocTyParenthesesSub::NotEmpty { open_param, close_param }
};
self.dcx().emit_err(AssocTyParentheses { span: data.span, sub });
}
#[instrument(level = "debug", skip(self))]
fn lower_generic_arg(
&mut self,
arg: &ast::GenericArg,
itctx: ImplTraitContext,
) -> hir::GenericArg<'hir> {
match arg {
ast::GenericArg::Lifetime(lt) => GenericArg::Lifetime(self.lower_lifetime(lt)),
ast::GenericArg::Type(ty) => {
match &ty.kind {
TyKind::Infer if self.tcx.features().generic_arg_infer => {
return GenericArg::Infer(hir::InferArg {
hir_id: self.lower_node_id(ty.id),
span: self.lower_span(ty.span),
});
}
// We parse const arguments as path types as we cannot distinguish them during
// parsing. We try to resolve that ambiguity by attempting resolution in both the
// type and value namespaces. If we resolved the path in the value namespace, we
// transform it into a generic const argument.
TyKind::Path(None, path) => {
if let Some(res) = self
.resolver
.get_partial_res(ty.id)
.and_then(|partial_res| partial_res.full_res())
{
if !res.matches_ns(Namespace::TypeNS)
&& path.is_potential_trivial_const_arg()
{
debug!(
"lower_generic_arg: Lowering type argument as const argument: {:?}",
ty,
);
// Construct an AnonConst where the expr is the "ty"'s path.
let parent_def_id = self.current_hir_id_owner;
let node_id = self.next_node_id();
let span = self.lower_span(ty.span);
// Add a definition for the in-band const def.
let def_id = self.create_def(
parent_def_id.def_id,
node_id,
kw::Empty,
DefKind::AnonConst,
span,
);
let path_expr = Expr {
id: ty.id,
kind: ExprKind::Path(None, path.clone()),
span,
attrs: AttrVec::new(),
tokens: None,
};
let ct = self.with_new_scopes(span, |this| {
self.arena.alloc(hir::AnonConst {
def_id,
hir_id: this.lower_node_id(node_id),
body: this
.lower_const_body(path_expr.span, Some(&path_expr)),
span,
})
});
return GenericArg::Const(ConstArg {
value: ct,
is_desugared_from_effects: false,
});
}
}
}
_ => {}
}
GenericArg::Type(self.lower_ty(ty, itctx))
}
ast::GenericArg::Const(ct) => GenericArg::Const(ConstArg {
value: self.lower_anon_const(ct),
is_desugared_from_effects: false,
}),
}
}
#[instrument(level = "debug", skip(self))]
fn lower_ty(&mut self, t: &Ty, itctx: ImplTraitContext) -> &'hir hir::Ty<'hir> {
self.arena.alloc(self.lower_ty_direct(t, itctx))
}
fn lower_path_ty(
&mut self,
t: &Ty,
qself: &Option<ptr::P<QSelf>>,
path: &Path,
param_mode: ParamMode,
itctx: ImplTraitContext,
) -> hir::Ty<'hir> {
// Check whether we should interpret this as a bare trait object.
// This check mirrors the one in late resolution. We only introduce this special case in
// the rare occurrence we need to lower `Fresh` anonymous lifetimes.
// The other cases when a qpath should be opportunistically made a trait object are handled
// by `ty_path`.
if qself.is_none()
&& let Some(partial_res) = self.resolver.get_partial_res(t.id)
&& let Some(Res::Def(DefKind::Trait | DefKind::TraitAlias, _)) = partial_res.full_res()
{
let (bounds, lifetime_bound) = self.with_dyn_type_scope(true, |this| {
let bound = this.lower_poly_trait_ref(
&PolyTraitRef {
bound_generic_params: ThinVec::new(),
trait_ref: TraitRef { path: path.clone(), ref_id: t.id },
span: t.span,
},
itctx,
TraitBoundModifiers::NONE,
);
let bounds = this.arena.alloc_from_iter([bound]);
let lifetime_bound = this.elided_dyn_bound(t.span);
(bounds, lifetime_bound)
});
let kind = hir::TyKind::TraitObject(bounds, lifetime_bound, TraitObjectSyntax::None);
return hir::Ty { kind, span: self.lower_span(t.span), hir_id: self.next_id() };
}
let id = self.lower_node_id(t.id);
let qpath = self.lower_qpath(t.id, qself, path, param_mode, itctx, None);
self.ty_path(id, t.span, qpath)
}
fn ty(&mut self, span: Span, kind: hir::TyKind<'hir>) -> hir::Ty<'hir> {
hir::Ty { hir_id: self.next_id(), kind, span: self.lower_span(span) }
}
fn ty_tup(&mut self, span: Span, tys: &'hir [hir::Ty<'hir>]) -> hir::Ty<'hir> {
self.ty(span, hir::TyKind::Tup(tys))
}
fn lower_ty_direct(&mut self, t: &Ty, itctx: ImplTraitContext) -> hir::Ty<'hir> {
let kind = match &t.kind {
TyKind::Infer => hir::TyKind::Infer,
TyKind::Err(guar) => hir::TyKind::Err(*guar),
// Lower the anonymous structs or unions in a nested lowering context.
//
// ```
// struct Foo {
// _: union {
// // ^__________________ <-- within the nested lowering context,
// /* fields */ // | we lower all fields defined into an
// } // | owner node of struct or union item
// // ^_____________________|
// }
// ```
TyKind::AnonStruct(node_id, fields) | TyKind::AnonUnion(node_id, fields) => {
// Here its `def_id` is created in `build_reduced_graph`.
let def_id = self.local_def_id(*node_id);
debug!(?def_id);
let owner_id = hir::OwnerId { def_id };
self.with_hir_id_owner(*node_id, |this| {
let fields = this.arena.alloc_from_iter(
fields.iter().enumerate().map(|f| this.lower_field_def(f)),
);
let span = t.span;
let variant_data = hir::VariantData::Struct { fields, recovered: false };
// FIXME: capture the generics from the outer adt.
let generics = hir::Generics::empty();
let kind = match t.kind {
TyKind::AnonStruct(..) => hir::ItemKind::Struct(variant_data, generics),
TyKind::AnonUnion(..) => hir::ItemKind::Union(variant_data, generics),
_ => unreachable!(),
};
hir::OwnerNode::Item(this.arena.alloc(hir::Item {
ident: Ident::new(kw::Empty, span),
owner_id,
kind,
span: this.lower_span(span),
vis_span: this.lower_span(span.shrink_to_lo()),
}))
});
hir::TyKind::AnonAdt(hir::ItemId { owner_id })
}
TyKind::Slice(ty) => hir::TyKind::Slice(self.lower_ty(ty, itctx)),
TyKind::Ptr(mt) => hir::TyKind::Ptr(self.lower_mt(mt, itctx)),
TyKind::Ref(region, mt) => {
let region = region.unwrap_or_else(|| {
let id = if let Some(LifetimeRes::ElidedAnchor { start, end }) =
self.resolver.get_lifetime_res(t.id)
{
debug_assert_eq!(start.plus(1), end);
start
} else {
self.next_node_id()
};
let span = self.tcx.sess.source_map().start_point(t.span).shrink_to_hi();
Lifetime { ident: Ident::new(kw::UnderscoreLifetime, span), id }
});
let lifetime = self.lower_lifetime(&region);
hir::TyKind::Ref(lifetime, self.lower_mt(mt, itctx))
}
TyKind::BareFn(f) => {
let generic_params = self.lower_lifetime_binder(t.id, &f.generic_params);
hir::TyKind::BareFn(self.arena.alloc(hir::BareFnTy {
generic_params,
unsafety: self.lower_unsafety(f.unsafety),
abi: self.lower_extern(f.ext),
decl: self.lower_fn_decl(&f.decl, t.id, t.span, FnDeclKind::Pointer, None),
param_names: self.lower_fn_params_to_names(&f.decl),
}))
}
TyKind::Never => hir::TyKind::Never,
TyKind::Tup(tys) => hir::TyKind::Tup(
self.arena.alloc_from_iter(tys.iter().map(|ty| self.lower_ty_direct(ty, itctx))),
),
TyKind::Paren(ty) => {
return self.lower_ty_direct(ty, itctx);
}
TyKind::Path(qself, path) => {
return self.lower_path_ty(t, qself, path, ParamMode::Explicit, itctx);
}
TyKind::ImplicitSelf => {
let hir_id = self.next_id();
let res = self.expect_full_res(t.id);
let res = self.lower_res(res);
hir::TyKind::Path(hir::QPath::Resolved(
None,
self.arena.alloc(hir::Path {
res,
segments: arena_vec![self; hir::PathSegment::new(
Ident::with_dummy_span(kw::SelfUpper),
hir_id,
res
)],
span: self.lower_span(t.span),
}),
))
}
TyKind::Array(ty, length) => {
hir::TyKind::Array(self.lower_ty(ty, itctx), self.lower_array_length(length))
}
TyKind::Typeof(expr) => hir::TyKind::Typeof(self.lower_anon_const(expr)),
TyKind::TraitObject(bounds, kind) => {
let mut lifetime_bound = None;
let (bounds, lifetime_bound) = self.with_dyn_type_scope(true, |this| {
let bounds =
this.arena.alloc_from_iter(bounds.iter().filter_map(|bound| match bound {
// We can safely ignore constness here since AST validation
// takes care of rejecting invalid modifier combinations and
// const trait bounds in trait object types.
GenericBound::Trait(ty, modifiers) => match modifiers.polarity {
BoundPolarity::Positive | BoundPolarity::Negative(_) => {
Some(this.lower_poly_trait_ref(
ty,
itctx,
// Still, don't pass along the constness here; we don't want to
// synthesize any host effect args, it'd only cause problems.
TraitBoundModifiers {
constness: BoundConstness::Never,
..*modifiers
},
))
}
BoundPolarity::Maybe(_) => None,
},
GenericBound::Outlives(lifetime) => {
if lifetime_bound.is_none() {
lifetime_bound = Some(this.lower_lifetime(lifetime));
}
None
}
}));
let lifetime_bound =
lifetime_bound.unwrap_or_else(|| this.elided_dyn_bound(t.span));
(bounds, lifetime_bound)
});
hir::TyKind::TraitObject(bounds, lifetime_bound, *kind)
}
TyKind::ImplTrait(def_node_id, bounds, precise_capturing) => {
let span = t.span;
match itctx {
ImplTraitContext::OpaqueTy { origin, fn_kind } => self.lower_opaque_impl_trait(
span,
origin,
*def_node_id,
bounds,
fn_kind,
itctx,
precise_capturing.as_deref().map(|(args, _)| args.as_slice()),
),
ImplTraitContext::Universal => {
if let Some(&(_, span)) = precise_capturing.as_deref() {
self.tcx.dcx().emit_err(errors::NoPreciseCapturesOnApit { span });
};
let span = t.span;
// HACK: pprust breaks strings with newlines when the type
// gets too long. We don't want these to show up in compiler
// output or built artifacts, so replace them here...
// Perhaps we should instead format APITs more robustly.
let ident = Ident::from_str_and_span(
&pprust::ty_to_string(t).replace('\n', " "),
span,
);
self.create_def(
self.current_hir_id_owner.def_id,
*def_node_id,
ident.name,
DefKind::TyParam,
span,
);
let (param, bounds, path) = self.lower_universal_param_and_bounds(
*def_node_id,
span,
ident,
bounds,
);
self.impl_trait_defs.push(param);
if let Some(bounds) = bounds {
self.impl_trait_bounds.push(bounds);
}
path
}
ImplTraitContext::FeatureGated(position, feature) => {
let guar = self
.tcx
.sess
.create_feature_err(
MisplacedImplTrait {
span: t.span,
position: DiagArgFromDisplay(&position),
},
feature,
)
.emit();
hir::TyKind::Err(guar)
}
ImplTraitContext::Disallowed(position) => {
let guar = self.dcx().emit_err(MisplacedImplTrait {
span: t.span,
position: DiagArgFromDisplay(&position),
});
hir::TyKind::Err(guar)
}
}
}
TyKind::Pat(ty, pat) => hir::TyKind::Pat(self.lower_ty(ty, itctx), self.lower_pat(pat)),
TyKind::MacCall(_) => {
span_bug!(t.span, "`TyKind::MacCall` should have been expanded by now")
}
TyKind::CVarArgs => {
let guar = self.dcx().span_delayed_bug(
t.span,
"`TyKind::CVarArgs` should have been handled elsewhere",
);
hir::TyKind::Err(guar)
}
TyKind::Dummy => panic!("`TyKind::Dummy` should never be lowered"),
};
hir::Ty { kind, span: self.lower_span(t.span), hir_id: self.lower_node_id(t.id) }
}
/// Lowers a `ReturnPositionOpaqueTy` (`-> impl Trait`) or a `TypeAliasesOpaqueTy` (`type F =
/// impl Trait`): this creates the associated Opaque Type (TAIT) definition and then returns a
/// HIR type that references the TAIT.
///
/// Given a function definition like:
///
/// ```rust
/// use std::fmt::Debug;
///
/// fn test<'a, T: Debug>(x: &'a T) -> impl Debug + 'a {
/// x
/// }
/// ```
///
/// we will create a TAIT definition in the HIR like
///
/// ```rust,ignore (pseudo-Rust)
/// type TestReturn<'a, T, 'x> = impl Debug + 'x
/// ```
///
/// and return a type like `TestReturn<'static, T, 'a>`, so that the function looks like:
///
/// ```rust,ignore (pseudo-Rust)
/// fn test<'a, T: Debug>(x: &'a T) -> TestReturn<'static, T, 'a>
/// ```
///
/// Note the subtlety around type parameters! The new TAIT, `TestReturn`, inherits all the
/// type parameters from the function `test` (this is implemented in the query layer, they aren't
/// added explicitly in the HIR). But this includes all the lifetimes, and we only want to
/// capture the lifetimes that are referenced in the bounds. Therefore, we add *extra* lifetime parameters
/// for the lifetimes that get captured (`'x`, in our example above) and reference those.
#[instrument(level = "debug", skip(self), ret)]
fn lower_opaque_impl_trait(
&mut self,
span: Span,
origin: hir::OpaqueTyOrigin,
opaque_ty_node_id: NodeId,
bounds: &GenericBounds,
fn_kind: Option<FnDeclKind>,
itctx: ImplTraitContext,
precise_capturing_args: Option<&[PreciseCapturingArg]>,
) -> hir::TyKind<'hir> {
// Make sure we know that some funky desugaring has been going on here.
// This is a first: there is code in other places like for loop
// desugaring that explicitly states that we don't want to track that.
// Not tracking it makes lints in rustc and clippy very fragile, as
// frequently opened issues show.
let opaque_ty_span = self.mark_span_with_reason(DesugaringKind::OpaqueTy, span, None);
let captured_lifetimes_to_duplicate =
if let Some(precise_capturing) = precise_capturing_args {
// We'll actually validate these later on; all we need is the list of
// lifetimes to duplicate during this portion of lowering.
precise_capturing
.iter()
.filter_map(|arg| match arg {
PreciseCapturingArg::Lifetime(lt) => Some(*lt),
PreciseCapturingArg::Arg(..) => None,
})
// Add in all the lifetimes mentioned in the bounds. We will error
// them out later, but capturing them here is important to make sure
// they actually get resolved in resolve_bound_vars.
.chain(lifetime_collector::lifetimes_in_bounds(self.resolver, bounds))
.collect()
} else {
match origin {
hir::OpaqueTyOrigin::TyAlias { .. } => {
// type alias impl trait and associated type position impl trait were
// decided to capture all in-scope lifetimes, which we collect for
// all opaques during resolution.
self.resolver
.take_extra_lifetime_params(opaque_ty_node_id)
.into_iter()
.map(|(ident, id, _)| Lifetime { id, ident })
.collect()
}
hir::OpaqueTyOrigin::FnReturn(..) => {
if matches!(
fn_kind.expect("expected RPITs to be lowered with a FnKind"),
FnDeclKind::Impl | FnDeclKind::Trait
) || self.tcx.features().lifetime_capture_rules_2024
|| span.at_least_rust_2024()
{
// return-position impl trait in trait was decided to capture all
// in-scope lifetimes, which we collect for all opaques during resolution.
self.resolver
.take_extra_lifetime_params(opaque_ty_node_id)
.into_iter()
.map(|(ident, id, _)| Lifetime { id, ident })
.collect()
} else {
// in fn return position, like the `fn test<'a>() -> impl Debug + 'a`
// example, we only need to duplicate lifetimes that appear in the
// bounds, since those are the only ones that are captured by the opaque.
lifetime_collector::lifetimes_in_bounds(self.resolver, bounds)
}
}
hir::OpaqueTyOrigin::AsyncFn(..) => {
unreachable!("should be using `lower_async_fn_ret_ty`")
}
}
};
debug!(?captured_lifetimes_to_duplicate);
self.lower_opaque_inner(
opaque_ty_node_id,
origin,
matches!(fn_kind, Some(FnDeclKind::Trait)),
captured_lifetimes_to_duplicate,
span,
opaque_ty_span,
precise_capturing_args,
|this| this.lower_param_bounds(bounds, itctx),
)
}
fn lower_opaque_inner(
&mut self,
opaque_ty_node_id: NodeId,
origin: hir::OpaqueTyOrigin,
in_trait: bool,
captured_lifetimes_to_duplicate: FxIndexSet<Lifetime>,
span: Span,
opaque_ty_span: Span,
precise_capturing_args: Option<&[PreciseCapturingArg]>,
lower_item_bounds: impl FnOnce(&mut Self) -> &'hir [hir::GenericBound<'hir>],
) -> hir::TyKind<'hir> {
let opaque_ty_def_id = self.create_def(
self.current_hir_id_owner.def_id,
opaque_ty_node_id,
kw::Empty,
DefKind::OpaqueTy,
opaque_ty_span,
);
debug!(?opaque_ty_def_id);
// Map from captured (old) lifetime to synthetic (new) lifetime.
// Used to resolve lifetimes in the bounds of the opaque.
let mut captured_to_synthesized_mapping = LocalDefIdMap::default();
// List of (early-bound) synthetic lifetimes that are owned by the opaque.
// This is used to create the `hir::Generics` owned by the opaque.
let mut synthesized_lifetime_definitions = vec![];
// Pairs of lifetime arg (that resolves to the captured lifetime)
// and the def-id of the (early-bound) synthetic lifetime definition.
// This is used both to create generics for the `TyKind::OpaqueDef` that
// we return, and also as a captured lifetime mapping for RPITITs.
let mut synthesized_lifetime_args = vec![];
for lifetime in captured_lifetimes_to_duplicate {
let res = self.resolver.get_lifetime_res(lifetime.id).unwrap_or(LifetimeRes::Error);
let (old_def_id, missing_kind) = match res {
LifetimeRes::Param { param: old_def_id, binder: _ } => (old_def_id, None),
LifetimeRes::Fresh { param, kind, .. } => {
debug_assert_eq!(lifetime.ident.name, kw::UnderscoreLifetime);
if let Some(old_def_id) = self.orig_opt_local_def_id(param) {
(old_def_id, Some(kind))
} else {
self.dcx()
.span_delayed_bug(lifetime.ident.span, "no def-id for fresh lifetime");
continue;
}
}
// Opaques do not capture `'static`
LifetimeRes::Static | LifetimeRes::Error => {
continue;
}
res => {
let bug_msg = format!(
"Unexpected lifetime resolution {:?} for {:?} at {:?}",
res, lifetime.ident, lifetime.ident.span
);
span_bug!(lifetime.ident.span, "{}", bug_msg);
}
};
if captured_to_synthesized_mapping.get(&old_def_id).is_none() {
// Create a new lifetime parameter local to the opaque.
let duplicated_lifetime_node_id = self.next_node_id();
let duplicated_lifetime_def_id = self.create_def(
opaque_ty_def_id,
duplicated_lifetime_node_id,
lifetime.ident.name,
DefKind::LifetimeParam,
self.lower_span(lifetime.ident.span),
);
captured_to_synthesized_mapping.insert(old_def_id, duplicated_lifetime_def_id);
// FIXME: Instead of doing this, we could move this whole loop
// into the `with_hir_id_owner`, then just directly construct
// the `hir::GenericParam` here.
synthesized_lifetime_definitions.push((
duplicated_lifetime_node_id,
duplicated_lifetime_def_id,
self.lower_ident(lifetime.ident),
missing_kind,
));
// Now make an arg that we can use for the generic params of the opaque tykind.
let id = self.next_node_id();
let lifetime_arg = self.new_named_lifetime_with_res(id, lifetime.ident, res);
let duplicated_lifetime_def_id = self.local_def_id(duplicated_lifetime_node_id);
synthesized_lifetime_args.push((lifetime_arg, duplicated_lifetime_def_id))
}
}
self.with_hir_id_owner(opaque_ty_node_id, |this| {
// Install the remapping from old to new (if any). This makes sure that
// any lifetimes that would have resolved to the def-id of captured
// lifetimes are remapped to the new *synthetic* lifetimes of the opaque.
let (bounds, precise_capturing_args) =
this.with_remapping(captured_to_synthesized_mapping, |this| {
(
lower_item_bounds(this),
precise_capturing_args.map(|precise_capturing| {
this.lower_precise_capturing_args(precise_capturing)
}),
)
});
let generic_params =
this.arena.alloc_from_iter(synthesized_lifetime_definitions.iter().map(
|&(new_node_id, new_def_id, ident, missing_kind)| {
let hir_id = this.lower_node_id(new_node_id);
let (name, kind) = if ident.name == kw::UnderscoreLifetime {
(
hir::ParamName::Fresh,
hir::LifetimeParamKind::Elided(
missing_kind.unwrap_or(MissingLifetimeKind::Underscore),
),
)
} else {
(hir::ParamName::Plain(ident), hir::LifetimeParamKind::Explicit)
};
hir::GenericParam {
hir_id,
def_id: new_def_id,
name,
span: ident.span,
pure_wrt_drop: false,
kind: hir::GenericParamKind::Lifetime { kind },
colon_span: None,
source: hir::GenericParamSource::Generics,
}
},
));
debug!("lower_async_fn_ret_ty: generic_params={:#?}", generic_params);
let lifetime_mapping = self.arena.alloc_slice(&synthesized_lifetime_args);
let opaque_ty_item = hir::OpaqueTy {
generics: this.arena.alloc(hir::Generics {
params: generic_params,
predicates: &[],
has_where_clause_predicates: false,
where_clause_span: this.lower_span(span),
span: this.lower_span(span),
}),
bounds,
origin,
lifetime_mapping,
in_trait,
precise_capturing_args,
};
// Generate an `type Foo = impl Trait;` declaration.
trace!("registering opaque type with id {:#?}", opaque_ty_def_id);
let opaque_ty_item = hir::Item {
owner_id: hir::OwnerId { def_id: opaque_ty_def_id },
ident: Ident::empty(),
kind: hir::ItemKind::OpaqueTy(this.arena.alloc(opaque_ty_item)),
vis_span: this.lower_span(span.shrink_to_lo()),
span: this.lower_span(opaque_ty_span),
};
hir::OwnerNode::Item(this.arena.alloc(opaque_ty_item))
});
let generic_args = self.arena.alloc_from_iter(
synthesized_lifetime_args
.iter()
.map(|(lifetime, _)| hir::GenericArg::Lifetime(*lifetime)),
);
// Create the `Foo<...>` reference itself. Note that the `type
// Foo = impl Trait` is, internally, created as a child of the
// async fn, so the *type parameters* are inherited. It's
// only the lifetime parameters that we must supply.
hir::TyKind::OpaqueDef(
hir::ItemId { owner_id: hir::OwnerId { def_id: opaque_ty_def_id } },
generic_args,
in_trait,
)
}
fn lower_precise_capturing_args(
&mut self,
precise_capturing_args: &[PreciseCapturingArg],
) -> &'hir [hir::PreciseCapturingArg<'hir>] {
self.arena.alloc_from_iter(precise_capturing_args.iter().map(|arg| match arg {
PreciseCapturingArg::Lifetime(lt) => {
hir::PreciseCapturingArg::Lifetime(self.lower_lifetime(lt))
}
PreciseCapturingArg::Arg(path, id) => {
let [segment] = path.segments.as_slice() else {
panic!();
};
let res = self.resolver.get_partial_res(*id).map_or(Res::Err, |partial_res| {
partial_res.full_res().expect("no partial res expected for precise capture arg")
});
hir::PreciseCapturingArg::Param(hir::PreciseCapturingNonLifetimeArg {
hir_id: self.lower_node_id(*id),
ident: self.lower_ident(segment.ident),
res: self.lower_res(res),
})
}
}))
}
fn lower_fn_params_to_names(&mut self, decl: &FnDecl) -> &'hir [Ident] {
self.arena.alloc_from_iter(decl.inputs.iter().map(|param| match param.pat.kind {
PatKind::Ident(_, ident, _) => self.lower_ident(ident),
_ => Ident::new(kw::Empty, self.lower_span(param.pat.span)),
}))
}
/// Lowers a function declaration.
///
/// `decl`: the unlowered (AST) function declaration.
///
/// `fn_node_id`: `impl Trait` arguments are lowered into generic parameters on the given
/// `NodeId`.
///
/// `transform_return_type`: if `Some`, applies some conversion to the return type, such as is
/// needed for `async fn` and `gen fn`. See [`CoroutineKind`] for more details.
#[instrument(level = "debug", skip(self))]
fn lower_fn_decl(
&mut self,
decl: &FnDecl,
fn_node_id: NodeId,
fn_span: Span,
kind: FnDeclKind,
coro: Option<CoroutineKind>,
) -> &'hir hir::FnDecl<'hir> {
let c_variadic = decl.c_variadic();
// Skip the `...` (`CVarArgs`) trailing arguments from the AST,
// as they are not explicit in HIR/Ty function signatures.
// (instead, the `c_variadic` flag is set to `true`)
let mut inputs = &decl.inputs[..];
if c_variadic {
inputs = &inputs[..inputs.len() - 1];
}
let inputs = self.arena.alloc_from_iter(inputs.iter().map(|param| {
let itctx = match kind {
FnDeclKind::Fn | FnDeclKind::Inherent | FnDeclKind::Impl | FnDeclKind::Trait => {
ImplTraitContext::Universal
}
FnDeclKind::ExternFn => {
ImplTraitContext::Disallowed(ImplTraitPosition::ExternFnParam)
}
FnDeclKind::Closure => {
ImplTraitContext::Disallowed(ImplTraitPosition::ClosureParam)
}
FnDeclKind::Pointer => {
ImplTraitContext::Disallowed(ImplTraitPosition::PointerParam)
}
};
self.lower_ty_direct(&param.ty, itctx)
}));
let output = match coro {
Some(coro) => {
let fn_def_id = self.local_def_id(fn_node_id);
self.lower_coroutine_fn_ret_ty(&decl.output, fn_def_id, coro, kind, fn_span)
}
None => match &decl.output {
FnRetTy::Ty(ty) => {
let itctx = match kind {
FnDeclKind::Fn
| FnDeclKind::Inherent
| FnDeclKind::Trait
| FnDeclKind::Impl => ImplTraitContext::OpaqueTy {
origin: hir::OpaqueTyOrigin::FnReturn(self.local_def_id(fn_node_id)),
fn_kind: Some(kind),
},
FnDeclKind::ExternFn => {
ImplTraitContext::Disallowed(ImplTraitPosition::ExternFnReturn)
}
FnDeclKind::Closure => {
ImplTraitContext::Disallowed(ImplTraitPosition::ClosureReturn)
}
FnDeclKind::Pointer => {
ImplTraitContext::Disallowed(ImplTraitPosition::PointerReturn)
}
};
hir::FnRetTy::Return(self.lower_ty(ty, itctx))
}
FnRetTy::Default(span) => hir::FnRetTy::DefaultReturn(self.lower_span(*span)),
},
};
self.arena.alloc(hir::FnDecl {
inputs,
output,
c_variadic,
lifetime_elision_allowed: self.resolver.lifetime_elision_allowed.contains(&fn_node_id),
implicit_self: decl.inputs.get(0).map_or(hir::ImplicitSelfKind::None, |arg| {
let is_mutable_pat = matches!(
arg.pat.kind,
PatKind::Ident(hir::BindingMode(_, Mutability::Mut), ..)
);
match &arg.ty.kind {
TyKind::ImplicitSelf if is_mutable_pat => hir::ImplicitSelfKind::Mut,
TyKind::ImplicitSelf => hir::ImplicitSelfKind::Imm,
// Given we are only considering `ImplicitSelf` types, we needn't consider
// the case where we have a mutable pattern to a reference as that would
// no longer be an `ImplicitSelf`.
TyKind::Ref(_, mt) if mt.ty.kind.is_implicit_self() => match mt.mutbl {
hir::Mutability::Not => hir::ImplicitSelfKind::RefImm,
hir::Mutability::Mut => hir::ImplicitSelfKind::RefMut,
},
_ => hir::ImplicitSelfKind::None,
}
}),
})
}
// Transforms `-> T` for `async fn` into `-> OpaqueTy { .. }`
// combined with the following definition of `OpaqueTy`:
//
// type OpaqueTy<generics_from_parent_fn> = impl Future<Output = T>;
//
// `output`: unlowered output type (`T` in `-> T`)
// `fn_node_id`: `NodeId` of the parent function (used to create child impl trait definition)
// `opaque_ty_node_id`: `NodeId` of the opaque `impl Trait` type that should be created
#[instrument(level = "debug", skip(self))]
fn lower_coroutine_fn_ret_ty(
&mut self,
output: &FnRetTy,
fn_def_id: LocalDefId,
coro: CoroutineKind,
fn_kind: FnDeclKind,
fn_span: Span,
) -> hir::FnRetTy<'hir> {
let span = self.lower_span(fn_span);
let (opaque_ty_node_id, allowed_features) = match coro {
CoroutineKind::Async { return_impl_trait_id, .. } => (return_impl_trait_id, None),
CoroutineKind::Gen { return_impl_trait_id, .. } => (return_impl_trait_id, None),
CoroutineKind::AsyncGen { return_impl_trait_id, .. } => {
(return_impl_trait_id, Some(self.allow_async_iterator.clone()))
}
};
let opaque_ty_span =
self.mark_span_with_reason(DesugaringKind::Async, span, allowed_features);
let captured_lifetimes = self
.resolver
.take_extra_lifetime_params(opaque_ty_node_id)
.into_iter()
.map(|(ident, id, _)| Lifetime { id, ident })
.collect();
let opaque_ty_ref = self.lower_opaque_inner(
opaque_ty_node_id,
hir::OpaqueTyOrigin::AsyncFn(fn_def_id),
matches!(fn_kind, FnDeclKind::Trait),
captured_lifetimes,
span,
opaque_ty_span,
None,
|this| {
let bound = this.lower_coroutine_fn_output_type_to_bound(
output,
coro,
opaque_ty_span,
ImplTraitContext::OpaqueTy {
origin: hir::OpaqueTyOrigin::FnReturn(fn_def_id),
fn_kind: Some(fn_kind),
},
);
arena_vec![this; bound]
},
);
let opaque_ty = self.ty(opaque_ty_span, opaque_ty_ref);
hir::FnRetTy::Return(self.arena.alloc(opaque_ty))
}
/// Transforms `-> T` into `Future<Output = T>`.
fn lower_coroutine_fn_output_type_to_bound(
&mut self,
output: &FnRetTy,
coro: CoroutineKind,
opaque_ty_span: Span,
itctx: ImplTraitContext,
) -> hir::GenericBound<'hir> {
// Compute the `T` in `Future<Output = T>` from the return type.
let output_ty = match output {
FnRetTy::Ty(ty) => {
// Not `OpaqueTyOrigin::AsyncFn`: that's only used for the
// `impl Future` opaque type that `async fn` implicitly
// generates.
self.lower_ty(ty, itctx)
}
FnRetTy::Default(ret_ty_span) => self.arena.alloc(self.ty_tup(*ret_ty_span, &[])),
};
// "<$assoc_ty_name = T>"
let (assoc_ty_name, trait_lang_item) = match coro {
CoroutineKind::Async { .. } => (sym::Output, hir::LangItem::Future),
CoroutineKind::Gen { .. } => (sym::Item, hir::LangItem::Iterator),
CoroutineKind::AsyncGen { .. } => (sym::Item, hir::LangItem::AsyncIterator),
};
let bound_args = self.arena.alloc(hir::GenericArgs {
args: &[],
bindings: arena_vec![self; self.assoc_ty_binding(assoc_ty_name, opaque_ty_span, output_ty)],
parenthesized: hir::GenericArgsParentheses::No,
span_ext: DUMMY_SP,
});
hir::GenericBound::Trait(
hir::PolyTraitRef {
bound_generic_params: &[],
trait_ref: hir::TraitRef {
path: self.make_lang_item_path(
trait_lang_item,
opaque_ty_span,
Some(bound_args),
),
hir_ref_id: self.next_id(),
},
span: opaque_ty_span,
},
hir::TraitBoundModifier::None,
)
}
#[instrument(level = "trace", skip(self))]
fn lower_param_bound(
&mut self,
tpb: &GenericBound,
itctx: ImplTraitContext,
) -> hir::GenericBound<'hir> {
match tpb {
GenericBound::Trait(p, modifiers) => hir::GenericBound::Trait(
self.lower_poly_trait_ref(p, itctx, *modifiers),
self.lower_trait_bound_modifiers(*modifiers),
),
GenericBound::Outlives(lifetime) => {
hir::GenericBound::Outlives(self.lower_lifetime(lifetime))
}
}
}
fn lower_lifetime(&mut self, l: &Lifetime) -> &'hir hir::Lifetime {
let ident = self.lower_ident(l.ident);
self.new_named_lifetime(l.id, l.id, ident)
}
#[instrument(level = "debug", skip(self))]
fn new_named_lifetime_with_res(
&mut self,
id: NodeId,
ident: Ident,
res: LifetimeRes,
) -> &'hir hir::Lifetime {
let res = match res {
LifetimeRes::Param { param, .. } => {
let param = self.get_remapped_def_id(param);
hir::LifetimeName::Param(param)
}
LifetimeRes::Fresh { param, .. } => {
let param = self.local_def_id(param);
hir::LifetimeName::Param(param)
}
LifetimeRes::Infer => hir::LifetimeName::Infer,
LifetimeRes::Static => hir::LifetimeName::Static,
LifetimeRes::Error => hir::LifetimeName::Error,
res => panic!(
"Unexpected lifetime resolution {:?} for {:?} at {:?}",
res, ident, ident.span
),
};
debug!(?res);
self.arena.alloc(hir::Lifetime {
hir_id: self.lower_node_id(id),
ident: self.lower_ident(ident),
res,
})
}
#[instrument(level = "debug", skip(self))]
fn new_named_lifetime(
&mut self,
id: NodeId,
new_id: NodeId,
ident: Ident,
) -> &'hir hir::Lifetime {
let res = self.resolver.get_lifetime_res(id).unwrap_or(LifetimeRes::Error);
self.new_named_lifetime_with_res(new_id, ident, res)
}
fn lower_generic_params_mut<'s>(
&'s mut self,
params: &'s [GenericParam],
source: hir::GenericParamSource,
) -> impl Iterator<Item = hir::GenericParam<'hir>> + Captures<'a> + Captures<'s> {
params.iter().map(move |param| self.lower_generic_param(param, source))
}
fn lower_generic_params(
&mut self,
params: &[GenericParam],
source: hir::GenericParamSource,
) -> &'hir [hir::GenericParam<'hir>] {
self.arena.alloc_from_iter(self.lower_generic_params_mut(params, source))
}
#[instrument(level = "trace", skip(self))]
fn lower_generic_param(
&mut self,
param: &GenericParam,
source: hir::GenericParamSource,
) -> hir::GenericParam<'hir> {
let (name, kind) = self.lower_generic_param_kind(param, source);
let hir_id = self.lower_node_id(param.id);
self.lower_attrs(hir_id, &param.attrs);
hir::GenericParam {
hir_id,
def_id: self.local_def_id(param.id),
name,
span: self.lower_span(param.span()),
pure_wrt_drop: attr::contains_name(&param.attrs, sym::may_dangle),
kind,
colon_span: param.colon_span.map(|s| self.lower_span(s)),
source,
}
}
fn lower_generic_param_kind(
&mut self,
param: &GenericParam,
source: hir::GenericParamSource,
) -> (hir::ParamName, hir::GenericParamKind<'hir>) {
match &param.kind {
GenericParamKind::Lifetime => {
// AST resolution emitted an error on those parameters, so we lower them using
// `ParamName::Error`.
let param_name =
if let Some(LifetimeRes::Error) = self.resolver.get_lifetime_res(param.id) {
ParamName::Error
} else {
let ident = self.lower_ident(param.ident);
ParamName::Plain(ident)
};
let kind =
hir::GenericParamKind::Lifetime { kind: hir::LifetimeParamKind::Explicit };
(param_name, kind)
}
GenericParamKind::Type { default, .. } => {
// Not only do we deny type param defaults in binders but we also map them to `None`
// since later compiler stages cannot handle them (and shouldn't need to be able to).
let default = default
.as_ref()
.filter(|_| match source {
hir::GenericParamSource::Generics => true,
hir::GenericParamSource::Binder => {
self.dcx().emit_err(errors::GenericParamDefaultInBinder {
span: param.span(),
});
false
}
})
.map(|def| {
self.lower_ty(
def,
ImplTraitContext::Disallowed(ImplTraitPosition::GenericDefault),
)
});
let kind = hir::GenericParamKind::Type { default, synthetic: false };
(hir::ParamName::Plain(self.lower_ident(param.ident)), kind)
}
GenericParamKind::Const { ty, kw_span: _, default } => {
let ty = self
.lower_ty(ty, ImplTraitContext::Disallowed(ImplTraitPosition::GenericDefault));
// Not only do we deny const param defaults in binders but we also map them to `None`
// since later compiler stages cannot handle them (and shouldn't need to be able to).
let default = default
.as_ref()
.filter(|_| match source {
hir::GenericParamSource::Generics => true,
hir::GenericParamSource::Binder => {
self.dcx().emit_err(errors::GenericParamDefaultInBinder {
span: param.span(),
});
false
}
})
.map(|def| self.lower_anon_const(def));
(
hir::ParamName::Plain(self.lower_ident(param.ident)),
hir::GenericParamKind::Const { ty, default, is_host_effect: false },
)
}
}
}
fn lower_trait_ref(
&mut self,
modifiers: ast::TraitBoundModifiers,
p: &TraitRef,
itctx: ImplTraitContext,
) -> hir::TraitRef<'hir> {
let path = match self.lower_qpath(
p.ref_id,
&None,
&p.path,
ParamMode::Explicit,
itctx,
Some(modifiers),
) {
hir::QPath::Resolved(None, path) => path,
qpath => panic!("lower_trait_ref: unexpected QPath `{qpath:?}`"),
};
hir::TraitRef { path, hir_ref_id: self.lower_node_id(p.ref_id) }
}
#[instrument(level = "debug", skip(self))]
fn lower_poly_trait_ref(
&mut self,
p: &PolyTraitRef,
itctx: ImplTraitContext,
modifiers: ast::TraitBoundModifiers,
) -> hir::PolyTraitRef<'hir> {
let bound_generic_params =
self.lower_lifetime_binder(p.trait_ref.ref_id, &p.bound_generic_params);
let trait_ref = self.lower_trait_ref(modifiers, &p.trait_ref, itctx);
hir::PolyTraitRef { bound_generic_params, trait_ref, span: self.lower_span(p.span) }
}
fn lower_mt(&mut self, mt: &MutTy, itctx: ImplTraitContext) -> hir::MutTy<'hir> {
hir::MutTy { ty: self.lower_ty(&mt.ty, itctx), mutbl: mt.mutbl }
}
#[instrument(level = "debug", skip(self), ret)]
fn lower_param_bounds(
&mut self,
bounds: &[GenericBound],
itctx: ImplTraitContext,
) -> hir::GenericBounds<'hir> {
self.arena.alloc_from_iter(self.lower_param_bounds_mut(bounds, itctx))
}
fn lower_param_bounds_mut<'s>(
&'s mut self,
bounds: &'s [GenericBound],
itctx: ImplTraitContext,
) -> impl Iterator<Item = hir::GenericBound<'hir>> + Captures<'s> + Captures<'a> {
bounds.iter().map(move |bound| self.lower_param_bound(bound, itctx))
}
#[instrument(level = "debug", skip(self), ret)]
fn lower_universal_param_and_bounds(
&mut self,
node_id: NodeId,
span: Span,
ident: Ident,
bounds: &[GenericBound],
) -> (hir::GenericParam<'hir>, Option<hir::WherePredicate<'hir>>, hir::TyKind<'hir>) {
// Add a definition for the in-band `Param`.
let def_id = self.local_def_id(node_id);
let span = self.lower_span(span);
// Set the name to `impl Bound1 + Bound2`.
let param = hir::GenericParam {
hir_id: self.lower_node_id(node_id),
def_id,
name: ParamName::Plain(self.lower_ident(ident)),
pure_wrt_drop: false,
span,
kind: hir::GenericParamKind::Type { default: None, synthetic: true },
colon_span: None,
source: hir::GenericParamSource::Generics,
};
let preds = self.lower_generic_bound_predicate(
ident,
node_id,
&GenericParamKind::Type { default: None },
bounds,
/* colon_span */ None,
span,
ImplTraitContext::Universal,
hir::PredicateOrigin::ImplTrait,
);
let hir_id = self.next_id();
let res = Res::Def(DefKind::TyParam, def_id.to_def_id());
let ty = hir::TyKind::Path(hir::QPath::Resolved(
None,
self.arena.alloc(hir::Path {
span,
res,
segments:
arena_vec![self; hir::PathSegment::new(self.lower_ident(ident), hir_id, res)],
}),
));
(param, preds, ty)
}
/// Lowers a block directly to an expression, presuming that it
/// has no attributes and is not targeted by a `break`.
fn lower_block_expr(&mut self, b: &Block) -> hir::Expr<'hir> {
let block = self.lower_block(b, false);
self.expr_block(block)
}
#[allow(rustc::untranslatable_diagnostic)] // FIXME: make this translatable
fn lower_array_length(&mut self, c: &AnonConst) -> hir::ArrayLen<'hir> {
match c.value.kind {
ExprKind::Underscore => {
if self.tcx.features().generic_arg_infer {
hir::ArrayLen::Infer(hir::InferArg {
hir_id: self.lower_node_id(c.id),
span: self.lower_span(c.value.span),
})
} else {
feature_err(
&self.tcx.sess,
sym::generic_arg_infer,
c.value.span,
"using `_` for array lengths is unstable",
)
.stash(c.value.span, StashKey::UnderscoreForArrayLengths);
hir::ArrayLen::Body(self.lower_anon_const(c))
}
}
_ => hir::ArrayLen::Body(self.lower_anon_const(c)),
}
}
fn lower_anon_const(&mut self, c: &AnonConst) -> &'hir hir::AnonConst {
self.arena.alloc(self.with_new_scopes(c.value.span, |this| hir::AnonConst {
def_id: this.local_def_id(c.id),
hir_id: this.lower_node_id(c.id),
body: this.lower_const_body(c.value.span, Some(&c.value)),
span: this.lower_span(c.value.span),
}))
}
fn lower_unsafe_source(&mut self, u: UnsafeSource) -> hir::UnsafeSource {
match u {
CompilerGenerated => hir::UnsafeSource::CompilerGenerated,
UserProvided => hir::UnsafeSource::UserProvided,
}
}
fn lower_trait_bound_modifiers(
&mut self,
modifiers: TraitBoundModifiers,
) -> hir::TraitBoundModifier {
// Invalid modifier combinations will cause an error during AST validation.
// Arbitrarily pick a placeholder for them to make compilation proceed.
match (modifiers.constness, modifiers.polarity) {
(BoundConstness::Never, BoundPolarity::Positive) => hir::TraitBoundModifier::None,
(_, BoundPolarity::Maybe(_)) => hir::TraitBoundModifier::Maybe,
(BoundConstness::Never, BoundPolarity::Negative(_)) => {
if self.tcx.features().negative_bounds {
hir::TraitBoundModifier::Negative
} else {
hir::TraitBoundModifier::None
}
}
(BoundConstness::Always(_), _) => hir::TraitBoundModifier::Const,
(BoundConstness::Maybe(_), _) => hir::TraitBoundModifier::MaybeConst,
}
}
// Helper methods for building HIR.
fn stmt(&mut self, span: Span, kind: hir::StmtKind<'hir>) -> hir::Stmt<'hir> {
hir::Stmt { span: self.lower_span(span), kind, hir_id: self.next_id() }
}
fn stmt_expr(&mut self, span: Span, expr: hir::Expr<'hir>) -> hir::Stmt<'hir> {
self.stmt(span, hir::StmtKind::Expr(self.arena.alloc(expr)))
}
fn stmt_let_pat(
&mut self,
attrs: Option<&'hir [Attribute]>,
span: Span,
init: Option<&'hir hir::Expr<'hir>>,
pat: &'hir hir::Pat<'hir>,
source: hir::LocalSource,
) -> hir::Stmt<'hir> {
let hir_id = self.next_id();
if let Some(a) = attrs {
debug_assert!(!a.is_empty());
self.attrs.insert(hir_id.local_id, a);
}
let local = hir::LetStmt {
hir_id,
init,
pat,
els: None,
source,
span: self.lower_span(span),
ty: None,
};
self.stmt(span, hir::StmtKind::Let(self.arena.alloc(local)))
}
fn block_expr(&mut self, expr: &'hir hir::Expr<'hir>) -> &'hir hir::Block<'hir> {
self.block_all(expr.span, &[], Some(expr))
}
fn block_all(
&mut self,
span: Span,
stmts: &'hir [hir::Stmt<'hir>],
expr: Option<&'hir hir::Expr<'hir>>,
) -> &'hir hir::Block<'hir> {
let blk = hir::Block {
stmts,
expr,
hir_id: self.next_id(),
rules: hir::BlockCheckMode::DefaultBlock,
span: self.lower_span(span),
targeted_by_break: false,
};
self.arena.alloc(blk)
}
fn pat_cf_continue(&mut self, span: Span, pat: &'hir hir::Pat<'hir>) -> &'hir hir::Pat<'hir> {
let field = self.single_pat_field(span, pat);
self.pat_lang_item_variant(span, hir::LangItem::ControlFlowContinue, field)
}
fn pat_cf_break(&mut self, span: Span, pat: &'hir hir::Pat<'hir>) -> &'hir hir::Pat<'hir> {
let field = self.single_pat_field(span, pat);
self.pat_lang_item_variant(span, hir::LangItem::ControlFlowBreak, field)
}
fn pat_some(&mut self, span: Span, pat: &'hir hir::Pat<'hir>) -> &'hir hir::Pat<'hir> {
let field = self.single_pat_field(span, pat);
self.pat_lang_item_variant(span, hir::LangItem::OptionSome, field)
}
fn pat_none(&mut self, span: Span) -> &'hir hir::Pat<'hir> {
self.pat_lang_item_variant(span, hir::LangItem::OptionNone, &[])
}
fn single_pat_field(
&mut self,
span: Span,
pat: &'hir hir::Pat<'hir>,
) -> &'hir [hir::PatField<'hir>] {
let field = hir::PatField {
hir_id: self.next_id(),
ident: Ident::new(sym::integer(0), self.lower_span(span)),
is_shorthand: false,
pat,
span: self.lower_span(span),
};
arena_vec![self; field]
}
fn pat_lang_item_variant(
&mut self,
span: Span,
lang_item: hir::LangItem,
fields: &'hir [hir::PatField<'hir>],
) -> &'hir hir::Pat<'hir> {
let qpath = hir::QPath::LangItem(lang_item, self.lower_span(span));
self.pat(span, hir::PatKind::Struct(qpath, fields, false))
}
fn pat_ident(&mut self, span: Span, ident: Ident) -> (&'hir hir::Pat<'hir>, HirId) {
self.pat_ident_binding_mode(span, ident, hir::BindingMode::NONE)
}
fn pat_ident_mut(&mut self, span: Span, ident: Ident) -> (hir::Pat<'hir>, HirId) {
self.pat_ident_binding_mode_mut(span, ident, hir::BindingMode::NONE)
}
fn pat_ident_binding_mode(
&mut self,
span: Span,
ident: Ident,
bm: hir::BindingMode,
) -> (&'hir hir::Pat<'hir>, HirId) {
let (pat, hir_id) = self.pat_ident_binding_mode_mut(span, ident, bm);
(self.arena.alloc(pat), hir_id)
}
fn pat_ident_binding_mode_mut(
&mut self,
span: Span,
ident: Ident,
bm: hir::BindingMode,
) -> (hir::Pat<'hir>, HirId) {
let hir_id = self.next_id();
(
hir::Pat {
hir_id,
kind: hir::PatKind::Binding(bm, hir_id, self.lower_ident(ident), None),
span: self.lower_span(span),
default_binding_modes: true,
},
hir_id,
)
}
fn pat(&mut self, span: Span, kind: hir::PatKind<'hir>) -> &'hir hir::Pat<'hir> {
self.arena.alloc(hir::Pat {
hir_id: self.next_id(),
kind,
span: self.lower_span(span),
default_binding_modes: true,
})
}
fn pat_without_dbm(&mut self, span: Span, kind: hir::PatKind<'hir>) -> hir::Pat<'hir> {
hir::Pat {
hir_id: self.next_id(),
kind,
span: self.lower_span(span),
default_binding_modes: false,
}
}
fn ty_path(&mut self, mut hir_id: HirId, span: Span, qpath: hir::QPath<'hir>) -> hir::Ty<'hir> {
let kind = match qpath {
hir::QPath::Resolved(None, path) => {
// Turn trait object paths into `TyKind::TraitObject` instead.
match path.res {
Res::Def(DefKind::Trait | DefKind::TraitAlias, _) => {
let principal = hir::PolyTraitRef {
bound_generic_params: &[],
trait_ref: hir::TraitRef { path, hir_ref_id: hir_id },
span: self.lower_span(span),
};
// The original ID is taken by the `PolyTraitRef`,
// so the `Ty` itself needs a different one.
hir_id = self.next_id();
hir::TyKind::TraitObject(
arena_vec![self; principal],
self.elided_dyn_bound(span),
TraitObjectSyntax::None,
)
}
_ => hir::TyKind::Path(hir::QPath::Resolved(None, path)),
}
}
_ => hir::TyKind::Path(qpath),
};
hir::Ty { hir_id, kind, span: self.lower_span(span) }
}
/// Invoked to create the lifetime argument(s) for an elided trait object
/// bound, like the bound in `Box<dyn Debug>`. This method is not invoked
/// when the bound is written, even if it is written with `'_` like in
/// `Box<dyn Debug + '_>`. In those cases, `lower_lifetime` is invoked.
fn elided_dyn_bound(&mut self, span: Span) -> &'hir hir::Lifetime {
let r = hir::Lifetime {
hir_id: self.next_id(),
ident: Ident::new(kw::Empty, self.lower_span(span)),
res: hir::LifetimeName::ImplicitObjectLifetimeDefault,
};
debug!("elided_dyn_bound: r={:?}", r);
self.arena.alloc(r)
}
}
/// Helper struct for delayed construction of GenericArgs.
struct GenericArgsCtor<'hir> {
args: SmallVec<[hir::GenericArg<'hir>; 4]>,
bindings: &'hir [hir::TypeBinding<'hir>],
parenthesized: hir::GenericArgsParentheses,
span: Span,
}
impl<'hir> GenericArgsCtor<'hir> {
fn push_constness(
&mut self,
lcx: &mut LoweringContext<'_, 'hir>,
constness: ast::BoundConstness,
) {
if !lcx.tcx.features().effects {
return;
}
let (span, body) = match constness {
BoundConstness::Never => return,
BoundConstness::Always(span) => {
let span = lcx.lower_span(span);
let body = hir::ExprKind::Lit(
lcx.arena.alloc(hir::Lit { node: LitKind::Bool(false), span }),
);
(span, body)
}
BoundConstness::Maybe(span) => {
let span = lcx.lower_span(span);
let Some(host_param_id) = lcx.host_param_id else {
lcx.dcx().span_delayed_bug(
span,
"no host param id for call in const yet no errors reported",
);
return;
};
let hir_id = lcx.next_id();
let res = Res::Def(DefKind::ConstParam, host_param_id.to_def_id());
let body = hir::ExprKind::Path(hir::QPath::Resolved(
None,
lcx.arena.alloc(hir::Path {
span,
res,
segments: arena_vec![
lcx;
hir::PathSegment::new(
Ident { name: sym::host, span },
hir_id,
res
)
],
}),
));
(span, body)
}
};
let body = lcx.lower_body(|lcx| (&[], lcx.expr(span, body)));
let id = lcx.next_node_id();
let hir_id = lcx.next_id();
let def_id = lcx.create_def(
lcx.current_hir_id_owner.def_id,
id,
kw::Empty,
DefKind::AnonConst,
span,
);
lcx.children.push((def_id, hir::MaybeOwner::NonOwner(hir_id)));
self.args.push(hir::GenericArg::Const(hir::ConstArg {
value: lcx.arena.alloc(hir::AnonConst { def_id, hir_id, body, span }),
is_desugared_from_effects: true,
}))
}
fn is_empty(&self) -> bool {
self.args.is_empty()
&& self.bindings.is_empty()
&& self.parenthesized == hir::GenericArgsParentheses::No
}
fn into_generic_args(self, this: &LoweringContext<'_, 'hir>) -> &'hir hir::GenericArgs<'hir> {
let ga = hir::GenericArgs {
args: this.arena.alloc_from_iter(self.args),
bindings: self.bindings,
parenthesized: self.parenthesized,
span_ext: this.lower_span(self.span),
};
this.arena.alloc(ga)
}
}