blob: ad7978480a6b1b44ccb99b0fcb127aa4d554453b [file] [log] [blame]
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The region check is a final pass that runs over the AST after we have
//! inferred the type constraints but before we have actually finalized
//! the types. Its purpose is to embed a variety of region constraints.
//! Inserting these constraints as a separate pass is good because (1) it
//! localizes the code that has to do with region inference and (2) often
//! we cannot know what constraints are needed until the basic types have
//! been inferred.
//!
//! ### Interaction with the borrow checker
//!
//! In general, the job of the borrowck module (which runs later) is to
//! check that all soundness criteria are met, given a particular set of
//! regions. The job of *this* module is to anticipate the needs of the
//! borrow checker and infer regions that will satisfy its requirements.
//! It is generally true that the inference doesn't need to be sound,
//! meaning that if there is a bug and we inferred bad regions, the borrow
//! checker should catch it. This is not entirely true though; for
//! example, the borrow checker doesn't check subtyping, and it doesn't
//! check that region pointers are always live when they are used. It
//! might be worthwhile to fix this so that borrowck serves as a kind of
//! verification step -- that would add confidence in the overall
//! correctness of the compiler, at the cost of duplicating some type
//! checks and effort.
//!
//! ### Inferring the duration of borrows, automatic and otherwise
//!
//! Whenever we introduce a borrowed pointer, for example as the result of
//! a borrow expression `let x = &data`, the lifetime of the pointer `x`
//! is always specified as a region inference variable. `regionck` has the
//! job of adding constraints such that this inference variable is as
//! narrow as possible while still accommodating all uses (that is, every
//! dereference of the resulting pointer must be within the lifetime).
//!
//! #### Reborrows
//!
//! Generally speaking, `regionck` does NOT try to ensure that the data
//! `data` will outlive the pointer `x`. That is the job of borrowck. The
//! one exception is when "re-borrowing" the contents of another borrowed
//! pointer. For example, imagine you have a borrowed pointer `b` with
//! lifetime L1 and you have an expression `&*b`. The result of this
//! expression will be another borrowed pointer with lifetime L2 (which is
//! an inference variable). The borrow checker is going to enforce the
//! constraint that L2 < L1, because otherwise you are re-borrowing data
//! for a lifetime larger than the original loan. However, without the
//! routines in this module, the region inferencer would not know of this
//! dependency and thus it might infer the lifetime of L2 to be greater
//! than L1 (issue #3148).
//!
//! There are a number of troublesome scenarios in the tests
//! `region-dependent-*.rs`, but here is one example:
//!
//! struct Foo { i: i32 }
//! struct Bar { foo: Foo }
//! fn get_i<'a>(x: &'a Bar) -> &'a i32 {
//! let foo = &x.foo; // Lifetime L1
//! &foo.i // Lifetime L2
//! }
//!
//! Note that this comes up either with `&` expressions, `ref`
//! bindings, and `autorefs`, which are the three ways to introduce
//! a borrow.
//!
//! The key point here is that when you are borrowing a value that
//! is "guaranteed" by a borrowed pointer, you must link the
//! lifetime of that borrowed pointer (L1, here) to the lifetime of
//! the borrow itself (L2). What do I mean by "guaranteed" by a
//! borrowed pointer? I mean any data that is reached by first
//! dereferencing a borrowed pointer and then either traversing
//! interior offsets or boxes. We say that the guarantor
//! of such data is the region of the borrowed pointer that was
//! traversed. This is essentially the same as the ownership
//! relation, except that a borrowed pointer never owns its
//! contents.
use check::dropck;
use check::FnCtxt;
use middle::free_region::FreeRegionMap;
use middle::mem_categorization as mc;
use middle::mem_categorization::Categorization;
use middle::region;
use rustc::hir::def_id::DefId;
use rustc::ty::subst::Substs;
use rustc::traits;
use rustc::ty::{self, Ty, TypeFoldable};
use rustc::infer::{self, GenericKind, SubregionOrigin, VerifyBound};
use rustc::ty::adjustment;
use rustc::ty::outlives::Component;
use rustc::ty::wf;
use std::mem;
use std::ops::Deref;
use std::rc::Rc;
use syntax::ast;
use syntax_pos::Span;
use rustc::hir::intravisit::{self, Visitor, NestedVisitorMap};
use rustc::hir::{self, PatKind};
// a variation on try that just returns unit
macro_rules! ignore_err {
($e:expr) => (match $e { Ok(e) => e, Err(_) => return () })
}
///////////////////////////////////////////////////////////////////////////
// PUBLIC ENTRY POINTS
impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
pub fn regionck_expr(&self, body: &'gcx hir::Body) {
let subject = self.tcx.hir.body_owner_def_id(body.id());
let id = body.value.id;
let mut rcx = RegionCtxt::new(self, RepeatingScope(id), id, Subject(subject));
if self.err_count_since_creation() == 0 {
// regionck assumes typeck succeeded
rcx.visit_body(body);
rcx.visit_region_obligations(id);
}
rcx.resolve_regions_and_report_errors();
assert!(self.tables.borrow().free_region_map.is_empty());
self.tables.borrow_mut().free_region_map = rcx.free_region_map;
}
/// Region checking during the WF phase for items. `wf_tys` are the
/// types from which we should derive implied bounds, if any.
pub fn regionck_item(&self,
item_id: ast::NodeId,
span: Span,
wf_tys: &[Ty<'tcx>]) {
debug!("regionck_item(item.id={:?}, wf_tys={:?}", item_id, wf_tys);
let subject = self.tcx.hir.local_def_id(item_id);
let mut rcx = RegionCtxt::new(self, RepeatingScope(item_id), item_id, Subject(subject));
rcx.free_region_map.relate_free_regions_from_predicates(
&self.param_env.caller_bounds);
rcx.relate_free_regions(wf_tys, item_id, span);
rcx.visit_region_obligations(item_id);
rcx.resolve_regions_and_report_errors();
}
pub fn regionck_fn(&self,
fn_id: ast::NodeId,
body: &'gcx hir::Body) {
debug!("regionck_fn(id={})", fn_id);
let subject = self.tcx.hir.body_owner_def_id(body.id());
let node_id = body.value.id;
let mut rcx = RegionCtxt::new(self, RepeatingScope(node_id), node_id, Subject(subject));
if self.err_count_since_creation() == 0 {
// regionck assumes typeck succeeded
rcx.visit_fn_body(fn_id, body, self.tcx.hir.span(fn_id));
}
rcx.free_region_map.relate_free_regions_from_predicates(
&self.param_env.caller_bounds);
rcx.resolve_regions_and_report_errors();
// In this mode, we also copy the free-region-map into the
// tables of the enclosing fcx. In the other regionck modes
// (e.g., `regionck_item`), we don't have an enclosing tables.
assert!(self.tables.borrow().free_region_map.is_empty());
self.tables.borrow_mut().free_region_map = rcx.free_region_map;
}
}
///////////////////////////////////////////////////////////////////////////
// INTERNALS
pub struct RegionCtxt<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
pub fcx: &'a FnCtxt<'a, 'gcx, 'tcx>,
region_bound_pairs: Vec<(ty::Region<'tcx>, GenericKind<'tcx>)>,
pub region_scope_tree: Rc<region::ScopeTree>,
free_region_map: FreeRegionMap<'tcx>,
// id of innermost fn body id
body_id: ast::NodeId,
// call_site scope of innermost fn
call_site_scope: Option<region::Scope>,
// id of innermost fn or loop
repeating_scope: ast::NodeId,
// id of AST node being analyzed (the subject of the analysis).
subject_def_id: DefId,
}
/// Implied bounds are region relationships that we deduce
/// automatically. The idea is that (e.g.) a caller must check that a
/// function's argument types are well-formed immediately before
/// calling that fn, and hence the *callee* can assume that its
/// argument types are well-formed. This may imply certain relationships
/// between generic parameters. For example:
///
/// fn foo<'a,T>(x: &'a T)
///
/// can only be called with a `'a` and `T` such that `&'a T` is WF.
/// For `&'a T` to be WF, `T: 'a` must hold. So we can assume `T: 'a`.
#[derive(Debug)]
enum ImpliedBound<'tcx> {
RegionSubRegion(ty::Region<'tcx>, ty::Region<'tcx>),
RegionSubParam(ty::Region<'tcx>, ty::ParamTy),
RegionSubProjection(ty::Region<'tcx>, ty::ProjectionTy<'tcx>),
}
impl<'a, 'gcx, 'tcx> Deref for RegionCtxt<'a, 'gcx, 'tcx> {
type Target = FnCtxt<'a, 'gcx, 'tcx>;
fn deref(&self) -> &Self::Target {
&self.fcx
}
}
pub struct RepeatingScope(ast::NodeId);
pub struct Subject(DefId);
impl<'a, 'gcx, 'tcx> RegionCtxt<'a, 'gcx, 'tcx> {
pub fn new(fcx: &'a FnCtxt<'a, 'gcx, 'tcx>,
RepeatingScope(initial_repeating_scope): RepeatingScope,
initial_body_id: ast::NodeId,
Subject(subject): Subject) -> RegionCtxt<'a, 'gcx, 'tcx> {
let region_scope_tree = fcx.tcx.region_scope_tree(subject);
RegionCtxt {
fcx,
region_scope_tree,
repeating_scope: initial_repeating_scope,
body_id: initial_body_id,
call_site_scope: None,
subject_def_id: subject,
region_bound_pairs: Vec::new(),
free_region_map: FreeRegionMap::new(),
}
}
fn set_call_site_scope(&mut self, call_site_scope: Option<region::Scope>)
-> Option<region::Scope> {
mem::replace(&mut self.call_site_scope, call_site_scope)
}
fn set_body_id(&mut self, body_id: ast::NodeId) -> ast::NodeId {
mem::replace(&mut self.body_id, body_id)
}
fn set_repeating_scope(&mut self, scope: ast::NodeId) -> ast::NodeId {
mem::replace(&mut self.repeating_scope, scope)
}
/// Try to resolve the type for the given node, returning t_err if an error results. Note that
/// we never care about the details of the error, the same error will be detected and reported
/// in the writeback phase.
///
/// Note one important point: we do not attempt to resolve *region variables* here. This is
/// because regionck is essentially adding constraints to those region variables and so may yet
/// influence how they are resolved.
///
/// Consider this silly example:
///
/// ```
/// fn borrow(x: &i32) -> &i32 {x}
/// fn foo(x: @i32) -> i32 { // block: B
/// let b = borrow(x); // region: <R0>
/// *b
/// }
/// ```
///
/// Here, the region of `b` will be `<R0>`. `<R0>` is constrained to be some subregion of the
/// block B and some superregion of the call. If we forced it now, we'd choose the smaller
/// region (the call). But that would make the *b illegal. Since we don't resolve, the type
/// of b will be `&<R0>.i32` and then `*b` will require that `<R0>` be bigger than the let and
/// the `*b` expression, so we will effectively resolve `<R0>` to be the block B.
pub fn resolve_type(&self, unresolved_ty: Ty<'tcx>) -> Ty<'tcx> {
self.resolve_type_vars_if_possible(&unresolved_ty)
}
/// Try to resolve the type for the given node.
fn resolve_node_type(&self, id: hir::HirId) -> Ty<'tcx> {
let t = self.node_ty(id);
self.resolve_type(t)
}
/// Try to resolve the type for the given node.
pub fn resolve_expr_type_adjusted(&mut self, expr: &hir::Expr) -> Ty<'tcx> {
let ty = self.tables.borrow().expr_ty_adjusted(expr);
self.resolve_type(ty)
}
fn visit_fn_body(&mut self,
id: ast::NodeId, // the id of the fn itself
body: &'gcx hir::Body,
span: Span)
{
// When we enter a function, we can derive
debug!("visit_fn_body(id={})", id);
let body_id = body.id();
let call_site = region::Scope::CallSite(body.value.hir_id.local_id);
let old_call_site_scope = self.set_call_site_scope(Some(call_site));
let fn_sig = {
let fn_hir_id = self.tcx.hir.node_to_hir_id(id);
match self.tables.borrow().liberated_fn_sigs().get(fn_hir_id) {
Some(f) => f.clone(),
None => {
bug!("No fn-sig entry for id={}", id);
}
}
};
let old_region_bounds_pairs_len = self.region_bound_pairs.len();
// Collect the types from which we create inferred bounds.
// For the return type, if diverging, substitute `bool` just
// because it will have no effect.
//
// FIXME(#27579) return types should not be implied bounds
let fn_sig_tys: Vec<_> =
fn_sig.inputs().iter().cloned().chain(Some(fn_sig.output())).collect();
let old_body_id = self.set_body_id(body_id.node_id);
self.relate_free_regions(&fn_sig_tys[..], body_id.node_id, span);
self.link_fn_args(region::Scope::Node(body.value.hir_id.local_id), &body.arguments);
self.visit_body(body);
self.visit_region_obligations(body_id.node_id);
let call_site_scope = self.call_site_scope.unwrap();
debug!("visit_fn_body body.id {:?} call_site_scope: {:?}",
body.id(), call_site_scope);
let call_site_region = self.tcx.mk_region(ty::ReScope(call_site_scope));
let body_hir_id = self.tcx.hir.node_to_hir_id(body_id.node_id);
self.type_of_node_must_outlive(infer::CallReturn(span),
body_hir_id,
call_site_region);
self.region_bound_pairs.truncate(old_region_bounds_pairs_len);
self.set_body_id(old_body_id);
self.set_call_site_scope(old_call_site_scope);
}
fn visit_region_obligations(&mut self, node_id: ast::NodeId)
{
debug!("visit_region_obligations: node_id={}", node_id);
// region checking can introduce new pending obligations
// which, when processed, might generate new region
// obligations. So make sure we process those.
self.select_all_obligations_or_error();
// Make a copy of the region obligations vec because we'll need
// to be able to borrow the fulfillment-cx below when projecting.
let region_obligations =
self.fulfillment_cx
.borrow()
.region_obligations(node_id)
.to_vec();
for r_o in &region_obligations {
debug!("visit_region_obligations: r_o={:?} cause={:?}",
r_o, r_o.cause);
let sup_type = self.resolve_type(r_o.sup_type);
let origin = self.code_to_origin(&r_o.cause, sup_type);
self.type_must_outlive(origin, sup_type, r_o.sub_region);
}
// Processing the region obligations should not cause the list to grow further:
assert_eq!(region_obligations.len(),
self.fulfillment_cx.borrow().region_obligations(node_id).len());
}
fn code_to_origin(&self,
cause: &traits::ObligationCause<'tcx>,
sup_type: Ty<'tcx>)
-> SubregionOrigin<'tcx> {
SubregionOrigin::from_obligation_cause(cause,
|| infer::RelateParamBound(cause.span, sup_type))
}
/// This method populates the region map's `free_region_map`. It walks over the transformed
/// argument and return types for each function just before we check the body of that function,
/// looking for types where you have a borrowed pointer to other borrowed data (e.g., `&'a &'b
/// [usize]`. We do not allow references to outlive the things they point at, so we can assume
/// that `'a <= 'b`. This holds for both the argument and return types, basically because, on
/// the caller side, the caller is responsible for checking that the type of every expression
/// (including the actual values for the arguments, as well as the return type of the fn call)
/// is well-formed.
///
/// Tests: `src/test/compile-fail/regions-free-region-ordering-*.rs`
fn relate_free_regions(&mut self,
fn_sig_tys: &[Ty<'tcx>],
body_id: ast::NodeId,
span: Span) {
debug!("relate_free_regions >>");
for &ty in fn_sig_tys {
let ty = self.resolve_type(ty);
debug!("relate_free_regions(t={:?})", ty);
let implied_bounds = self.implied_bounds(body_id, ty, span);
// But also record other relationships, such as `T:'x`,
// that don't go into the free-region-map but which we use
// here.
for implication in implied_bounds {
debug!("implication: {:?}", implication);
match implication {
ImpliedBound::RegionSubRegion(r_a @ &ty::ReEarlyBound(_),
&ty::ReVar(vid_b)) |
ImpliedBound::RegionSubRegion(r_a @ &ty::ReFree(_),
&ty::ReVar(vid_b)) => {
self.add_given(r_a, vid_b);
}
ImpliedBound::RegionSubParam(r_a, param_b) => {
self.region_bound_pairs.push((r_a, GenericKind::Param(param_b)));
}
ImpliedBound::RegionSubProjection(r_a, projection_b) => {
self.region_bound_pairs.push((r_a, GenericKind::Projection(projection_b)));
}
ImpliedBound::RegionSubRegion(r_a, r_b) => {
// In principle, we could record (and take
// advantage of) every relationship here, but
// we are also free not to -- it simply means
// strictly less that we can successfully type
// check. Right now we only look for things
// relationships between free regions. (It may
// also be that we should revise our inference
// system to be more general and to make use
// of *every* relationship that arises here,
// but presently we do not.)
self.free_region_map.relate_regions(r_a, r_b);
}
}
}
}
debug!("<< relate_free_regions");
}
/// Compute the implied bounds that a callee/impl can assume based on
/// the fact that caller/projector has ensured that `ty` is WF. See
/// the `ImpliedBound` type for more details.
fn implied_bounds(&mut self, body_id: ast::NodeId, ty: Ty<'tcx>, span: Span)
-> Vec<ImpliedBound<'tcx>> {
// Sometimes when we ask what it takes for T: WF, we get back that
// U: WF is required; in that case, we push U onto this stack and
// process it next. Currently (at least) these resulting
// predicates are always guaranteed to be a subset of the original
// type, so we need not fear non-termination.
let mut wf_types = vec![ty];
let mut implied_bounds = vec![];
while let Some(ty) = wf_types.pop() {
// Compute the obligations for `ty` to be well-formed. If `ty` is
// an unresolved inference variable, just substituted an empty set
// -- because the return type here is going to be things we *add*
// to the environment, it's always ok for this set to be smaller
// than the ultimate set. (Note: normally there won't be
// unresolved inference variables here anyway, but there might be
// during typeck under some circumstances.)
let obligations =
wf::obligations(self, self.fcx.param_env, body_id, ty, span)
.unwrap_or(vec![]);
// NB: All of these predicates *ought* to be easily proven
// true. In fact, their correctness is (mostly) implied by
// other parts of the program. However, in #42552, we had
// an annoying scenario where:
//
// - Some `T::Foo` gets normalized, resulting in a
// variable `_1` and a `T: Trait<Foo=_1>` constraint
// (not sure why it couldn't immediately get
// solved). This result of `_1` got cached.
// - These obligations were dropped on the floor here,
// rather than being registered.
// - Then later we would get a request to normalize
// `T::Foo` which would result in `_1` being used from
// the cache, but hence without the `T: Trait<Foo=_1>`
// constraint. As a result, `_1` never gets resolved,
// and we get an ICE (in dropck).
//
// Therefore, we register any predicates involving
// inference variables. We restrict ourselves to those
// involving inference variables both for efficiency and
// to avoids duplicate errors that otherwise show up.
self.fcx.register_predicates(
obligations.iter()
.filter(|o| o.predicate.has_infer_types())
.cloned());
// From the full set of obligations, just filter down to the
// region relationships.
implied_bounds.extend(
obligations
.into_iter()
.flat_map(|obligation| {
assert!(!obligation.has_escaping_regions());
match obligation.predicate {
ty::Predicate::Trait(..) |
ty::Predicate::Equate(..) |
ty::Predicate::Subtype(..) |
ty::Predicate::Projection(..) |
ty::Predicate::ClosureKind(..) |
ty::Predicate::ObjectSafe(..) |
ty::Predicate::ConstEvaluatable(..) =>
vec![],
ty::Predicate::WellFormed(subty) => {
wf_types.push(subty);
vec![]
}
ty::Predicate::RegionOutlives(ref data) =>
match self.tcx.no_late_bound_regions(data) {
None =>
vec![],
Some(ty::OutlivesPredicate(r_a, r_b)) =>
vec![ImpliedBound::RegionSubRegion(r_b, r_a)],
},
ty::Predicate::TypeOutlives(ref data) =>
match self.tcx.no_late_bound_regions(data) {
None => vec![],
Some(ty::OutlivesPredicate(ty_a, r_b)) => {
let ty_a = self.resolve_type_vars_if_possible(&ty_a);
let components = self.tcx.outlives_components(ty_a);
self.implied_bounds_from_components(r_b, components)
}
},
}}));
}
implied_bounds
}
/// When we have an implied bound that `T: 'a`, we can further break
/// this down to determine what relationships would have to hold for
/// `T: 'a` to hold. We get to assume that the caller has validated
/// those relationships.
fn implied_bounds_from_components(&self,
sub_region: ty::Region<'tcx>,
sup_components: Vec<Component<'tcx>>)
-> Vec<ImpliedBound<'tcx>>
{
sup_components
.into_iter()
.flat_map(|component| {
match component {
Component::Region(r) =>
vec![ImpliedBound::RegionSubRegion(sub_region, r)],
Component::Param(p) =>
vec![ImpliedBound::RegionSubParam(sub_region, p)],
Component::Projection(p) =>
vec![ImpliedBound::RegionSubProjection(sub_region, p)],
Component::EscapingProjection(_) =>
// If the projection has escaping regions, don't
// try to infer any implied bounds even for its
// free components. This is conservative, because
// the caller will still have to prove that those
// free components outlive `sub_region`. But the
// idea is that the WAY that the caller proves
// that may change in the future and we want to
// give ourselves room to get smarter here.
vec![],
Component::UnresolvedInferenceVariable(..) =>
vec![],
}
})
.collect()
}
fn resolve_regions_and_report_errors(&self) {
self.fcx.resolve_regions_and_report_errors(self.subject_def_id,
&self.region_scope_tree,
&self.free_region_map);
}
fn constrain_bindings_in_pat(&mut self, pat: &hir::Pat) {
debug!("regionck::visit_pat(pat={:?})", pat);
pat.each_binding(|_, id, span, _| {
// If we have a variable that contains region'd data, that
// data will be accessible from anywhere that the variable is
// accessed. We must be wary of loops like this:
//
// // from src/test/compile-fail/borrowck-lend-flow.rs
// let mut v = box 3, w = box 4;
// let mut x = &mut w;
// loop {
// **x += 1; // (2)
// borrow(v); //~ ERROR cannot borrow
// x = &mut v; // (1)
// }
//
// Typically, we try to determine the region of a borrow from
// those points where it is dereferenced. In this case, one
// might imagine that the lifetime of `x` need only be the
// body of the loop. But of course this is incorrect because
// the pointer that is created at point (1) is consumed at
// point (2), meaning that it must be live across the loop
// iteration. The easiest way to guarantee this is to require
// that the lifetime of any regions that appear in a
// variable's type enclose at least the variable's scope.
let hir_id = self.tcx.hir.node_to_hir_id(id);
let var_scope = self.region_scope_tree.var_scope(hir_id.local_id);
let var_region = self.tcx.mk_region(ty::ReScope(var_scope));
let origin = infer::BindingTypeIsNotValidAtDecl(span);
self.type_of_node_must_outlive(origin, hir_id, var_region);
let typ = self.resolve_node_type(hir_id);
let _ = dropck::check_safety_of_destructor_if_necessary(
self, typ, span, var_scope);
})
}
}
impl<'a, 'gcx, 'tcx> Visitor<'gcx> for RegionCtxt<'a, 'gcx, 'tcx> {
// (..) FIXME(#3238) should use visit_pat, not visit_arm/visit_local,
// However, right now we run into an issue whereby some free
// regions are not properly related if they appear within the
// types of arguments that must be inferred. This could be
// addressed by deferring the construction of the region
// hierarchy, and in particular the relationships between free
// regions, until regionck, as described in #3238.
fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'gcx> {
NestedVisitorMap::None
}
fn visit_fn(&mut self, _fk: intravisit::FnKind<'gcx>, _: &'gcx hir::FnDecl,
b: hir::BodyId, span: Span, id: ast::NodeId) {
let body = self.tcx.hir.body(b);
self.visit_fn_body(id, body, span)
}
//visit_pat: visit_pat, // (..) see above
fn visit_arm(&mut self, arm: &'gcx hir::Arm) {
// see above
for p in &arm.pats {
self.constrain_bindings_in_pat(p);
}
intravisit::walk_arm(self, arm);
}
fn visit_local(&mut self, l: &'gcx hir::Local) {
// see above
self.constrain_bindings_in_pat(&l.pat);
self.link_local(l);
intravisit::walk_local(self, l);
}
fn visit_expr(&mut self, expr: &'gcx hir::Expr) {
debug!("regionck::visit_expr(e={:?}, repeating_scope={})",
expr, self.repeating_scope);
// No matter what, the type of each expression must outlive the
// scope of that expression. This also guarantees basic WF.
let expr_ty = self.resolve_node_type(expr.hir_id);
// the region corresponding to this expression
let expr_region = self.tcx.mk_region(ty::ReScope(
region::Scope::Node(expr.hir_id.local_id)));
self.type_must_outlive(infer::ExprTypeIsNotInScope(expr_ty, expr.span),
expr_ty, expr_region);
let is_method_call = self.tables.borrow().is_method_call(expr);
// If we are calling a method (either explicitly or via an
// overloaded operator), check that all of the types provided as
// arguments for its type parameters are well-formed, and all the regions
// provided as arguments outlive the call.
if is_method_call {
let origin = match expr.node {
hir::ExprMethodCall(..) =>
infer::ParameterOrigin::MethodCall,
hir::ExprUnary(op, _) if op == hir::UnDeref =>
infer::ParameterOrigin::OverloadedDeref,
_ =>
infer::ParameterOrigin::OverloadedOperator
};
let substs = self.tables.borrow().node_substs(expr.hir_id);
self.substs_wf_in_scope(origin, substs, expr.span, expr_region);
// Arguments (sub-expressions) are checked via `constrain_call`, below.
}
// Check any autoderefs or autorefs that appear.
let cmt_result = self.constrain_adjustments(expr);
// If necessary, constrain destructors in this expression. This will be
// the adjusted form if there is an adjustment.
match cmt_result {
Ok(head_cmt) => {
self.check_safety_of_rvalue_destructor_if_necessary(head_cmt, expr.span);
}
Err(..) => {
self.tcx.sess.delay_span_bug(expr.span, "cat_expr Errd");
}
}
debug!("regionck::visit_expr(e={:?}, repeating_scope={}) - visiting subexprs",
expr, self.repeating_scope);
match expr.node {
hir::ExprPath(_) => {
let substs = self.tables.borrow().node_substs(expr.hir_id);
let origin = infer::ParameterOrigin::Path;
self.substs_wf_in_scope(origin, substs, expr.span, expr_region);
}
hir::ExprCall(ref callee, ref args) => {
if is_method_call {
self.constrain_call(expr, Some(&callee), args.iter().map(|e| &*e));
} else {
self.constrain_callee(&callee);
self.constrain_call(expr, None, args.iter().map(|e| &*e));
}
intravisit::walk_expr(self, expr);
}
hir::ExprMethodCall(.., ref args) => {
self.constrain_call(expr, Some(&args[0]), args[1..].iter().map(|e| &*e));
intravisit::walk_expr(self, expr);
}
hir::ExprAssignOp(_, ref lhs, ref rhs) => {
if is_method_call {
self.constrain_call(expr, Some(&lhs), Some(&**rhs).into_iter());
}
intravisit::walk_expr(self, expr);
}
hir::ExprIndex(ref lhs, ref rhs) if is_method_call => {
self.constrain_call(expr, Some(&lhs), Some(&**rhs).into_iter());
intravisit::walk_expr(self, expr);
},
hir::ExprBinary(_, ref lhs, ref rhs) if is_method_call => {
// As `ExprMethodCall`, but the call is via an overloaded op.
self.constrain_call(expr, Some(&lhs), Some(&**rhs).into_iter());
intravisit::walk_expr(self, expr);
}
hir::ExprBinary(_, ref lhs, ref rhs) => {
// If you do `x OP y`, then the types of `x` and `y` must
// outlive the operation you are performing.
let lhs_ty = self.resolve_expr_type_adjusted(&lhs);
let rhs_ty = self.resolve_expr_type_adjusted(&rhs);
for &ty in &[lhs_ty, rhs_ty] {
self.type_must_outlive(infer::Operand(expr.span),
ty, expr_region);
}
intravisit::walk_expr(self, expr);
}
hir::ExprUnary(hir::UnDeref, ref base) => {
// For *a, the lifetime of a must enclose the deref
if is_method_call {
self.constrain_call(expr, Some(base), None::<hir::Expr>.iter());
}
// For overloaded derefs, base_ty is the input to `Deref::deref`,
// but it's a reference type uing the same region as the output.
let base_ty = self.resolve_expr_type_adjusted(base);
if let ty::TyRef(r_ptr, _) = base_ty.sty {
self.mk_subregion_due_to_dereference(expr.span, expr_region, r_ptr);
}
intravisit::walk_expr(self, expr);
}
hir::ExprUnary(_, ref lhs) if is_method_call => {
// As above.
self.constrain_call(expr, Some(&lhs), None::<hir::Expr>.iter());
intravisit::walk_expr(self, expr);
}
hir::ExprIndex(ref vec_expr, _) => {
// For a[b], the lifetime of a must enclose the deref
let vec_type = self.resolve_expr_type_adjusted(&vec_expr);
self.constrain_index(expr, vec_type);
intravisit::walk_expr(self, expr);
}
hir::ExprCast(ref source, _) => {
// Determine if we are casting `source` to a trait
// instance. If so, we have to be sure that the type of
// the source obeys the trait's region bound.
self.constrain_cast(expr, &source);
intravisit::walk_expr(self, expr);
}
hir::ExprAddrOf(m, ref base) => {
self.link_addr_of(expr, m, &base);
// Require that when you write a `&expr` expression, the
// resulting pointer has a lifetime that encompasses the
// `&expr` expression itself. Note that we constraining
// the type of the node expr.id here *before applying
// adjustments*.
//
// FIXME(https://github.com/rust-lang/rfcs/issues/811)
// nested method calls requires that this rule change
let ty0 = self.resolve_node_type(expr.hir_id);
self.type_must_outlive(infer::AddrOf(expr.span), ty0, expr_region);
intravisit::walk_expr(self, expr);
}
hir::ExprMatch(ref discr, ref arms, _) => {
self.link_match(&discr, &arms[..]);
intravisit::walk_expr(self, expr);
}
hir::ExprClosure(.., body_id, _, _) => {
self.check_expr_fn_block(expr, body_id);
}
hir::ExprLoop(ref body, _, _) => {
let repeating_scope = self.set_repeating_scope(body.id);
intravisit::walk_expr(self, expr);
self.set_repeating_scope(repeating_scope);
}
hir::ExprWhile(ref cond, ref body, _) => {
let repeating_scope = self.set_repeating_scope(cond.id);
self.visit_expr(&cond);
self.set_repeating_scope(body.id);
self.visit_block(&body);
self.set_repeating_scope(repeating_scope);
}
hir::ExprRet(Some(ref ret_expr)) => {
let call_site_scope = self.call_site_scope;
debug!("visit_expr ExprRet ret_expr.id {} call_site_scope: {:?}",
ret_expr.id, call_site_scope);
let call_site_region = self.tcx.mk_region(ty::ReScope(call_site_scope.unwrap()));
self.type_of_node_must_outlive(infer::CallReturn(ret_expr.span),
ret_expr.hir_id,
call_site_region);
intravisit::walk_expr(self, expr);
}
_ => {
intravisit::walk_expr(self, expr);
}
}
}
}
impl<'a, 'gcx, 'tcx> RegionCtxt<'a, 'gcx, 'tcx> {
fn constrain_cast(&mut self,
cast_expr: &hir::Expr,
source_expr: &hir::Expr)
{
debug!("constrain_cast(cast_expr={:?}, source_expr={:?})",
cast_expr,
source_expr);
let source_ty = self.resolve_node_type(source_expr.hir_id);
let target_ty = self.resolve_node_type(cast_expr.hir_id);
self.walk_cast(cast_expr, source_ty, target_ty);
}
fn walk_cast(&mut self,
cast_expr: &hir::Expr,
from_ty: Ty<'tcx>,
to_ty: Ty<'tcx>) {
debug!("walk_cast(from_ty={:?}, to_ty={:?})",
from_ty,
to_ty);
match (&from_ty.sty, &to_ty.sty) {
/*From:*/ (&ty::TyRef(from_r, ref from_mt),
/*To: */ &ty::TyRef(to_r, ref to_mt)) => {
// Target cannot outlive source, naturally.
self.sub_regions(infer::Reborrow(cast_expr.span), to_r, from_r);
self.walk_cast(cast_expr, from_mt.ty, to_mt.ty);
}
/*From:*/ (_,
/*To: */ &ty::TyDynamic(.., r)) => {
// When T is existentially quantified as a trait
// `Foo+'to`, it must outlive the region bound `'to`.
self.type_must_outlive(infer::RelateObjectBound(cast_expr.span), from_ty, r);
}
/*From:*/ (&ty::TyAdt(from_def, _),
/*To: */ &ty::TyAdt(to_def, _)) if from_def.is_box() && to_def.is_box() => {
self.walk_cast(cast_expr, from_ty.boxed_ty(), to_ty.boxed_ty());
}
_ => { }
}
}
fn check_expr_fn_block(&mut self,
expr: &'gcx hir::Expr,
body_id: hir::BodyId) {
let repeating_scope = self.set_repeating_scope(body_id.node_id);
intravisit::walk_expr(self, expr);
self.set_repeating_scope(repeating_scope);
}
fn constrain_callee(&mut self, callee_expr: &hir::Expr) {
let callee_ty = self.resolve_node_type(callee_expr.hir_id);
match callee_ty.sty {
ty::TyFnDef(..) | ty::TyFnPtr(_) => { }
_ => {
// this should not happen, but it does if the program is
// erroneous
//
// bug!(
// callee_expr.span,
// "Calling non-function: {}",
// callee_ty);
}
}
}
fn constrain_call<'b, I: Iterator<Item=&'b hir::Expr>>(&mut self,
call_expr: &hir::Expr,
receiver: Option<&hir::Expr>,
arg_exprs: I) {
//! Invoked on every call site (i.e., normal calls, method calls,
//! and overloaded operators). Constrains the regions which appear
//! in the type of the function. Also constrains the regions that
//! appear in the arguments appropriately.
debug!("constrain_call(call_expr={:?}, receiver={:?})",
call_expr,
receiver);
// `callee_region` is the scope representing the time in which the
// call occurs.
//
// FIXME(#6268) to support nested method calls, should be callee_id
let callee_scope = region::Scope::Node(call_expr.hir_id.local_id);
let callee_region = self.tcx.mk_region(ty::ReScope(callee_scope));
debug!("callee_region={:?}", callee_region);
for arg_expr in arg_exprs {
debug!("Argument: {:?}", arg_expr);
// ensure that any regions appearing in the argument type are
// valid for at least the lifetime of the function:
self.type_of_node_must_outlive(infer::CallArg(arg_expr.span),
arg_expr.hir_id,
callee_region);
}
// as loop above, but for receiver
if let Some(r) = receiver {
debug!("receiver: {:?}", r);
self.type_of_node_must_outlive(infer::CallRcvr(r.span),
r.hir_id,
callee_region);
}
}
/// Create a temporary `MemCategorizationContext` and pass it to the closure.
fn with_mc<F, R>(&self, f: F) -> R
where F: for<'b> FnOnce(mc::MemCategorizationContext<'b, 'gcx, 'tcx>) -> R
{
f(mc::MemCategorizationContext::with_infer(&self.infcx,
&self.region_scope_tree,
&self.tables.borrow()))
}
/// Invoked on any adjustments that occur. Checks that if this is a region pointer being
/// dereferenced, the lifetime of the pointer includes the deref expr.
fn constrain_adjustments(&mut self, expr: &hir::Expr) -> mc::McResult<mc::cmt<'tcx>> {
debug!("constrain_adjustments(expr={:?})", expr);
let mut cmt = self.with_mc(|mc| mc.cat_expr_unadjusted(expr))?;
let tables = self.tables.borrow();
let adjustments = tables.expr_adjustments(&expr);
if adjustments.is_empty() {
return Ok(cmt);
}
debug!("constrain_adjustments: adjustments={:?}", adjustments);
// If necessary, constrain destructors in the unadjusted form of this
// expression.
self.check_safety_of_rvalue_destructor_if_necessary(cmt.clone(), expr.span);
let expr_region = self.tcx.mk_region(ty::ReScope(
region::Scope::Node(expr.hir_id.local_id)));
for adjustment in adjustments {
debug!("constrain_adjustments: adjustment={:?}, cmt={:?}",
adjustment, cmt);
if let adjustment::Adjust::Deref(Some(deref)) = adjustment.kind {
debug!("constrain_adjustments: overloaded deref: {:?}", deref);
// Treat overloaded autoderefs as if an AutoBorrow adjustment
// was applied on the base type, as that is always the case.
let input = self.tcx.mk_ref(deref.region, ty::TypeAndMut {
ty: cmt.ty,
mutbl: deref.mutbl,
});
let output = self.tcx.mk_ref(deref.region, ty::TypeAndMut {
ty: adjustment.target,
mutbl: deref.mutbl,
});
self.link_region(expr.span, deref.region,
ty::BorrowKind::from_mutbl(deref.mutbl), cmt.clone());
// Specialized version of constrain_call.
self.type_must_outlive(infer::CallRcvr(expr.span),
input, expr_region);
self.type_must_outlive(infer::CallReturn(expr.span),
output, expr_region);
}
if let adjustment::Adjust::Borrow(ref autoref) = adjustment.kind {
self.link_autoref(expr, cmt.clone(), autoref);
// Require that the resulting region encompasses
// the current node.
//
// FIXME(#6268) remove to support nested method calls
self.type_of_node_must_outlive(infer::AutoBorrow(expr.span),
expr.hir_id,
expr_region);
}
cmt = self.with_mc(|mc| mc.cat_expr_adjusted(expr, cmt, &adjustment))?;
if let Categorization::Deref(_, mc::BorrowedPtr(_, r_ptr)) = cmt.cat {
self.mk_subregion_due_to_dereference(expr.span,
expr_region, r_ptr);
}
}
Ok(cmt)
}
pub fn mk_subregion_due_to_dereference(&mut self,
deref_span: Span,
minimum_lifetime: ty::Region<'tcx>,
maximum_lifetime: ty::Region<'tcx>) {
self.sub_regions(infer::DerefPointer(deref_span),
minimum_lifetime, maximum_lifetime)
}
fn check_safety_of_rvalue_destructor_if_necessary(&mut self,
cmt: mc::cmt<'tcx>,
span: Span) {
match cmt.cat {
Categorization::Rvalue(region) => {
match *region {
ty::ReScope(rvalue_scope) => {
let typ = self.resolve_type(cmt.ty);
let _ = dropck::check_safety_of_destructor_if_necessary(
self, typ, span, rvalue_scope);
}
ty::ReStatic => {}
_ => {
span_bug!(span,
"unexpected rvalue region in rvalue \
destructor safety checking: `{:?}`",
region);
}
}
}
_ => {}
}
}
/// Invoked on any index expression that occurs. Checks that if this is a slice
/// being indexed, the lifetime of the pointer includes the deref expr.
fn constrain_index(&mut self,
index_expr: &hir::Expr,
indexed_ty: Ty<'tcx>)
{
debug!("constrain_index(index_expr=?, indexed_ty={}",
self.ty_to_string(indexed_ty));
let r_index_expr = ty::ReScope(region::Scope::Node(index_expr.hir_id.local_id));
if let ty::TyRef(r_ptr, mt) = indexed_ty.sty {
match mt.ty.sty {
ty::TySlice(_) | ty::TyStr => {
self.sub_regions(infer::IndexSlice(index_expr.span),
self.tcx.mk_region(r_index_expr), r_ptr);
}
_ => {}
}
}
}
/// Guarantees that any lifetimes which appear in the type of the node `id` (after applying
/// adjustments) are valid for at least `minimum_lifetime`
fn type_of_node_must_outlive(&mut self,
origin: infer::SubregionOrigin<'tcx>,
hir_id: hir::HirId,
minimum_lifetime: ty::Region<'tcx>)
{
// Try to resolve the type. If we encounter an error, then typeck
// is going to fail anyway, so just stop here and let typeck
// report errors later on in the writeback phase.
let ty0 = self.resolve_node_type(hir_id);
let ty = self.tables
.borrow()
.adjustments()
.get(hir_id)
.and_then(|adj| adj.last())
.map_or(ty0, |adj| adj.target);
let ty = self.resolve_type(ty);
debug!("constrain_regions_in_type_of_node(\
ty={}, ty0={}, id={:?}, minimum_lifetime={:?})",
ty, ty0,
hir_id, minimum_lifetime);
self.type_must_outlive(origin, ty, minimum_lifetime);
}
/// Computes the guarantor for an expression `&base` and then ensures that the lifetime of the
/// resulting pointer is linked to the lifetime of its guarantor (if any).
fn link_addr_of(&mut self, expr: &hir::Expr,
mutability: hir::Mutability, base: &hir::Expr) {
debug!("link_addr_of(expr={:?}, base={:?})", expr, base);
let cmt = ignore_err!(self.with_mc(|mc| mc.cat_expr(base)));
debug!("link_addr_of: cmt={:?}", cmt);
self.link_region_from_node_type(expr.span, expr.hir_id, mutability, cmt);
}
/// Computes the guarantors for any ref bindings in a `let` and
/// then ensures that the lifetime of the resulting pointer is
/// linked to the lifetime of the initialization expression.
fn link_local(&self, local: &hir::Local) {
debug!("regionck::for_local()");
let init_expr = match local.init {
None => { return; }
Some(ref expr) => &**expr,
};
let discr_cmt = ignore_err!(self.with_mc(|mc| mc.cat_expr(init_expr)));
self.link_pattern(discr_cmt, &local.pat);
}
/// Computes the guarantors for any ref bindings in a match and
/// then ensures that the lifetime of the resulting pointer is
/// linked to the lifetime of its guarantor (if any).
fn link_match(&self, discr: &hir::Expr, arms: &[hir::Arm]) {
debug!("regionck::for_match()");
let discr_cmt = ignore_err!(self.with_mc(|mc| mc.cat_expr(discr)));
debug!("discr_cmt={:?}", discr_cmt);
for arm in arms {
for root_pat in &arm.pats {
self.link_pattern(discr_cmt.clone(), &root_pat);
}
}
}
/// Computes the guarantors for any ref bindings in a match and
/// then ensures that the lifetime of the resulting pointer is
/// linked to the lifetime of its guarantor (if any).
fn link_fn_args(&self, body_scope: region::Scope, args: &[hir::Arg]) {
debug!("regionck::link_fn_args(body_scope={:?})", body_scope);
for arg in args {
let arg_ty = self.node_ty(arg.hir_id);
let re_scope = self.tcx.mk_region(ty::ReScope(body_scope));
let arg_cmt = self.with_mc(|mc| {
mc.cat_rvalue(arg.id, arg.pat.span, re_scope, arg_ty)
});
debug!("arg_ty={:?} arg_cmt={:?} arg={:?}",
arg_ty,
arg_cmt,
arg);
self.link_pattern(arg_cmt, &arg.pat);
}
}
/// Link lifetimes of any ref bindings in `root_pat` to the pointers found
/// in the discriminant, if needed.
fn link_pattern(&self, discr_cmt: mc::cmt<'tcx>, root_pat: &hir::Pat) {
debug!("link_pattern(discr_cmt={:?}, root_pat={:?})",
discr_cmt,
root_pat);
let _ = self.with_mc(|mc| {
mc.cat_pattern(discr_cmt, root_pat, |sub_cmt, sub_pat| {
match sub_pat.node {
// `ref x` pattern
PatKind::Binding(..) => {
let bm = *mc.tables.pat_binding_modes().get(sub_pat.hir_id)
.expect("missing binding mode");
if let ty::BindByReference(mutbl) = bm {
self.link_region_from_node_type(sub_pat.span, sub_pat.hir_id,
mutbl, sub_cmt);
}
}
_ => {}
}
})
});
}
/// Link lifetime of borrowed pointer resulting from autoref to lifetimes in the value being
/// autoref'd.
fn link_autoref(&self,
expr: &hir::Expr,
expr_cmt: mc::cmt<'tcx>,
autoref: &adjustment::AutoBorrow<'tcx>)
{
debug!("link_autoref(autoref={:?}, expr_cmt={:?})", autoref, expr_cmt);
match *autoref {
adjustment::AutoBorrow::Ref(r, m) => {
self.link_region(expr.span, r,
ty::BorrowKind::from_mutbl(m), expr_cmt);
}
adjustment::AutoBorrow::RawPtr(m) => {
let r = self.tcx.mk_region(ty::ReScope(region::Scope::Node(expr.hir_id.local_id)));
self.link_region(expr.span, r, ty::BorrowKind::from_mutbl(m), expr_cmt);
}
}
}
/// Like `link_region()`, except that the region is extracted from the type of `id`,
/// which must be some reference (`&T`, `&str`, etc).
fn link_region_from_node_type(&self,
span: Span,
id: hir::HirId,
mutbl: hir::Mutability,
cmt_borrowed: mc::cmt<'tcx>) {
debug!("link_region_from_node_type(id={:?}, mutbl={:?}, cmt_borrowed={:?})",
id, mutbl, cmt_borrowed);
let rptr_ty = self.resolve_node_type(id);
if let ty::TyRef(r, _) = rptr_ty.sty {
debug!("rptr_ty={}", rptr_ty);
self.link_region(span, r, ty::BorrowKind::from_mutbl(mutbl),
cmt_borrowed);
}
}
/// Informs the inference engine that `borrow_cmt` is being borrowed with
/// kind `borrow_kind` and lifetime `borrow_region`.
/// In order to ensure borrowck is satisfied, this may create constraints
/// between regions, as explained in `link_reborrowed_region()`.
fn link_region(&self,
span: Span,
borrow_region: ty::Region<'tcx>,
borrow_kind: ty::BorrowKind,
borrow_cmt: mc::cmt<'tcx>) {
let mut borrow_cmt = borrow_cmt;
let mut borrow_kind = borrow_kind;
let origin = infer::DataBorrowed(borrow_cmt.ty, span);
self.type_must_outlive(origin, borrow_cmt.ty, borrow_region);
loop {
debug!("link_region(borrow_region={:?}, borrow_kind={:?}, borrow_cmt={:?})",
borrow_region,
borrow_kind,
borrow_cmt);
match borrow_cmt.cat.clone() {
Categorization::Deref(ref_cmt, mc::Implicit(ref_kind, ref_region)) |
Categorization::Deref(ref_cmt, mc::BorrowedPtr(ref_kind, ref_region)) => {
match self.link_reborrowed_region(span,
borrow_region, borrow_kind,
ref_cmt, ref_region, ref_kind,
borrow_cmt.note) {
Some((c, k)) => {
borrow_cmt = c;
borrow_kind = k;
}
None => {
return;
}
}
}
Categorization::Downcast(cmt_base, _) |
Categorization::Deref(cmt_base, mc::Unique) |
Categorization::Interior(cmt_base, _) => {
// Borrowing interior or owned data requires the base
// to be valid and borrowable in the same fashion.
borrow_cmt = cmt_base;
borrow_kind = borrow_kind;
}
Categorization::Deref(_, mc::UnsafePtr(..)) |
Categorization::StaticItem |
Categorization::Upvar(..) |
Categorization::Local(..) |
Categorization::Rvalue(..) => {
// These are all "base cases" with independent lifetimes
// that are not subject to inference
return;
}
}
}
}
/// This is the most complicated case: the path being borrowed is
/// itself the referent of a borrowed pointer. Let me give an
/// example fragment of code to make clear(er) the situation:
///
/// let r: &'a mut T = ...; // the original reference "r" has lifetime 'a
/// ...
/// &'z *r // the reborrow has lifetime 'z
///
/// Now, in this case, our primary job is to add the inference
/// constraint that `'z <= 'a`. Given this setup, let's clarify the
/// parameters in (roughly) terms of the example:
///
/// A borrow of: `& 'z bk * r` where `r` has type `& 'a bk T`
/// borrow_region ^~ ref_region ^~
/// borrow_kind ^~ ref_kind ^~
/// ref_cmt ^
///
/// Here `bk` stands for some borrow-kind (e.g., `mut`, `uniq`, etc).
///
/// Unfortunately, there are some complications beyond the simple
/// scenario I just painted:
///
/// 1. The reference `r` might in fact be a "by-ref" upvar. In that
/// case, we have two jobs. First, we are inferring whether this reference
/// should be an `&T`, `&mut T`, or `&uniq T` reference, and we must
/// adjust that based on this borrow (e.g., if this is an `&mut` borrow,
/// then `r` must be an `&mut` reference). Second, whenever we link
/// two regions (here, `'z <= 'a`), we supply a *cause*, and in this
/// case we adjust the cause to indicate that the reference being
/// "reborrowed" is itself an upvar. This provides a nicer error message
/// should something go wrong.
///
/// 2. There may in fact be more levels of reborrowing. In the
/// example, I said the borrow was like `&'z *r`, but it might
/// in fact be a borrow like `&'z **q` where `q` has type `&'a
/// &'b mut T`. In that case, we want to ensure that `'z <= 'a`
/// and `'z <= 'b`. This is explained more below.
///
/// The return value of this function indicates whether we need to
/// recurse and process `ref_cmt` (see case 2 above).
fn link_reborrowed_region(&self,
span: Span,
borrow_region: ty::Region<'tcx>,
borrow_kind: ty::BorrowKind,
ref_cmt: mc::cmt<'tcx>,
ref_region: ty::Region<'tcx>,
mut ref_kind: ty::BorrowKind,
note: mc::Note)
-> Option<(mc::cmt<'tcx>, ty::BorrowKind)>
{
// Possible upvar ID we may need later to create an entry in the
// maybe link map.
// Detect by-ref upvar `x`:
let cause = match note {
mc::NoteUpvarRef(ref upvar_id) => {
match self.tables.borrow().upvar_capture_map.get(upvar_id) {
Some(&ty::UpvarCapture::ByRef(ref upvar_borrow)) => {
// The mutability of the upvar may have been modified
// by the above adjustment, so update our local variable.
ref_kind = upvar_borrow.kind;
infer::ReborrowUpvar(span, *upvar_id)
}
_ => {
span_bug!( span, "Illegal upvar id: {:?}", upvar_id);
}
}
}
mc::NoteClosureEnv(ref upvar_id) => {
// We don't have any mutability changes to propagate, but
// we do want to note that an upvar reborrow caused this
// link
infer::ReborrowUpvar(span, *upvar_id)
}
_ => {
infer::Reborrow(span)
}
};
debug!("link_reborrowed_region: {:?} <= {:?}",
borrow_region,
ref_region);
self.sub_regions(cause, borrow_region, ref_region);
// If we end up needing to recurse and establish a region link
// with `ref_cmt`, calculate what borrow kind we will end up
// needing. This will be used below.
//
// One interesting twist is that we can weaken the borrow kind
// when we recurse: to reborrow an `&mut` referent as mutable,
// borrowck requires a unique path to the `&mut` reference but not
// necessarily a *mutable* path.
let new_borrow_kind = match borrow_kind {
ty::ImmBorrow =>
ty::ImmBorrow,
ty::MutBorrow | ty::UniqueImmBorrow =>
ty::UniqueImmBorrow
};
// Decide whether we need to recurse and link any regions within
// the `ref_cmt`. This is concerned for the case where the value
// being reborrowed is in fact a borrowed pointer found within
// another borrowed pointer. For example:
//
// let p: &'b &'a mut T = ...;
// ...
// &'z **p
//
// What makes this case particularly tricky is that, if the data
// being borrowed is a `&mut` or `&uniq` borrow, borrowck requires
// not only that `'z <= 'a`, (as before) but also `'z <= 'b`
// (otherwise the user might mutate through the `&mut T` reference
// after `'b` expires and invalidate the borrow we are looking at
// now).
//
// So let's re-examine our parameters in light of this more
// complicated (possible) scenario:
//
// A borrow of: `& 'z bk * * p` where `p` has type `&'b bk & 'a bk T`
// borrow_region ^~ ref_region ^~
// borrow_kind ^~ ref_kind ^~
// ref_cmt ^~~
//
// (Note that since we have not examined `ref_cmt.cat`, we don't
// know whether this scenario has occurred; but I wanted to show
// how all the types get adjusted.)
match ref_kind {
ty::ImmBorrow => {
// The reference being reborrowed is a sharable ref of
// type `&'a T`. In this case, it doesn't matter where we
// *found* the `&T` pointer, the memory it references will
// be valid and immutable for `'a`. So we can stop here.
//
// (Note that the `borrow_kind` must also be ImmBorrow or
// else the user is borrowed imm memory as mut memory,
// which means they'll get an error downstream in borrowck
// anyhow.)
return None;
}
ty::MutBorrow | ty::UniqueImmBorrow => {
// The reference being reborrowed is either an `&mut T` or
// `&uniq T`. This is the case where recursion is needed.
return Some((ref_cmt, new_borrow_kind));
}
}
}
/// Checks that the values provided for type/region arguments in a given
/// expression are well-formed and in-scope.
fn substs_wf_in_scope(&mut self,
origin: infer::ParameterOrigin,
substs: &Substs<'tcx>,
expr_span: Span,
expr_region: ty::Region<'tcx>) {
debug!("substs_wf_in_scope(substs={:?}, \
expr_region={:?}, \
origin={:?}, \
expr_span={:?})",
substs, expr_region, origin, expr_span);
let origin = infer::ParameterInScope(origin, expr_span);
for region in substs.regions() {
self.sub_regions(origin.clone(), expr_region, region);
}
for ty in substs.types() {
let ty = self.resolve_type(ty);
self.type_must_outlive(origin.clone(), ty, expr_region);
}
}
/// Ensures that type is well-formed in `region`, which implies (among
/// other things) that all borrowed data reachable via `ty` outlives
/// `region`.
pub fn type_must_outlive(&self,
origin: infer::SubregionOrigin<'tcx>,
ty: Ty<'tcx>,
region: ty::Region<'tcx>)
{
let ty = self.resolve_type(ty);
debug!("type_must_outlive(ty={:?}, region={:?}, origin={:?})",
ty,
region,
origin);
assert!(!ty.has_escaping_regions());
let components = self.tcx.outlives_components(ty);
self.components_must_outlive(origin, components, region);
}
fn components_must_outlive(&self,
origin: infer::SubregionOrigin<'tcx>,
components: Vec<Component<'tcx>>,
region: ty::Region<'tcx>)
{
for component in components {
let origin = origin.clone();
match component {
Component::Region(region1) => {
self.sub_regions(origin, region, region1);
}
Component::Param(param_ty) => {
self.param_ty_must_outlive(origin, region, param_ty);
}
Component::Projection(projection_ty) => {
self.projection_must_outlive(origin, region, projection_ty);
}
Component::EscapingProjection(subcomponents) => {
self.components_must_outlive(origin, subcomponents, region);
}
Component::UnresolvedInferenceVariable(v) => {
// ignore this, we presume it will yield an error
// later, since if a type variable is not resolved by
// this point it never will be
self.tcx.sess.delay_span_bug(
origin.span(),
&format!("unresolved inference variable in outlives: {:?}", v));
}
}
}
}
fn param_ty_must_outlive(&self,
origin: infer::SubregionOrigin<'tcx>,
region: ty::Region<'tcx>,
param_ty: ty::ParamTy) {
debug!("param_ty_must_outlive(region={:?}, param_ty={:?}, origin={:?})",
region, param_ty, origin);
let verify_bound = self.param_bound(param_ty);
let generic = GenericKind::Param(param_ty);
self.verify_generic_bound(origin, generic, region, verify_bound);
}
fn projection_must_outlive(&self,
origin: infer::SubregionOrigin<'tcx>,
region: ty::Region<'tcx>,
projection_ty: ty::ProjectionTy<'tcx>)
{
debug!("projection_must_outlive(region={:?}, projection_ty={:?}, origin={:?})",
region, projection_ty, origin);
// This case is thorny for inference. The fundamental problem is
// that there are many cases where we have choice, and inference
// doesn't like choice (the current region inference in
// particular). :) First off, we have to choose between using the
// OutlivesProjectionEnv, OutlivesProjectionTraitDef, and
// OutlivesProjectionComponent rules, any one of which is
// sufficient. If there are no inference variables involved, it's
// not hard to pick the right rule, but if there are, we're in a
// bit of a catch 22: if we picked which rule we were going to
// use, we could add constraints to the region inference graph
// that make it apply, but if we don't add those constraints, the
// rule might not apply (but another rule might). For now, we err
// on the side of adding too few edges into the graph.
// Compute the bounds we can derive from the environment or trait
// definition. We know that the projection outlives all the
// regions in this list.
let env_bounds = self.projection_declared_bounds(origin.span(), projection_ty);
debug!("projection_must_outlive: env_bounds={:?}",
env_bounds);
// If we know that the projection outlives 'static, then we're
// done here.
if env_bounds.contains(&&ty::ReStatic) {
debug!("projection_must_outlive: 'static as declared bound");
return;
}
// If declared bounds list is empty, the only applicable rule is
// OutlivesProjectionComponent. If there are inference variables,
// then, we can break down the outlives into more primitive
// components without adding unnecessary edges.
//
// If there are *no* inference variables, however, we COULD do
// this, but we choose not to, because the error messages are less
// good. For example, a requirement like `T::Item: 'r` would be
// translated to a requirement that `T: 'r`; when this is reported
// to the user, it will thus say "T: 'r must hold so that T::Item:
// 'r holds". But that makes it sound like the only way to fix
// the problem is to add `T: 'r`, which isn't true. So, if there are no
// inference variables, we use a verify constraint instead of adding
// edges, which winds up enforcing the same condition.
let needs_infer = projection_ty.needs_infer();
if env_bounds.is_empty() && needs_infer {
debug!("projection_must_outlive: no declared bounds");
for component_ty in projection_ty.substs.types() {
self.type_must_outlive(origin.clone(), component_ty, region);
}
for r in projection_ty.substs.regions() {
self.sub_regions(origin.clone(), region, r);
}
return;
}
// If we find that there is a unique declared bound `'b`, and this bound
// appears in the trait reference, then the best action is to require that `'b:'r`,
// so do that. This is best no matter what rule we use:
//
// - OutlivesProjectionEnv or OutlivesProjectionTraitDef: these would translate to
// the requirement that `'b:'r`
// - OutlivesProjectionComponent: this would require `'b:'r` in addition to
// other conditions
if !env_bounds.is_empty() && env_bounds[1..].iter().all(|b| *b == env_bounds[0]) {
let unique_bound = env_bounds[0];
debug!("projection_must_outlive: unique declared bound = {:?}", unique_bound);
if projection_ty.substs.regions().any(|r| env_bounds.contains(&r)) {
debug!("projection_must_outlive: unique declared bound appears in trait ref");
self.sub_regions(origin.clone(), region, unique_bound);
return;
}
}
// Fallback to verifying after the fact that there exists a
// declared bound, or that all the components appearing in the
// projection outlive; in some cases, this may add insufficient
// edges into the inference graph, leading to inference failures
// even though a satisfactory solution exists.
let verify_bound = self.projection_bound(origin.span(), env_bounds, projection_ty);
let generic = GenericKind::Projection(projection_ty);
self.verify_generic_bound(origin, generic.clone(), region, verify_bound);
}
fn type_bound(&self, span: Span, ty: Ty<'tcx>) -> VerifyBound<'tcx> {
match ty.sty {
ty::TyParam(p) => {
self.param_bound(p)
}
ty::TyProjection(data) => {
let declared_bounds = self.projection_declared_bounds(span, data);
self.projection_bound(span, declared_bounds, data)
}
_ => {
self.recursive_type_bound(span, ty)
}
}
}
fn param_bound(&self, param_ty: ty::ParamTy) -> VerifyBound<'tcx> {
debug!("param_bound(param_ty={:?})",
param_ty);
let mut param_bounds = self.declared_generic_bounds_from_env(GenericKind::Param(param_ty));
// Add in the default bound of fn body that applies to all in
// scope type parameters:
param_bounds.extend(self.implicit_region_bound);
VerifyBound::AnyRegion(param_bounds)
}
fn projection_declared_bounds(&self,
span: Span,
projection_ty: ty::ProjectionTy<'tcx>)
-> Vec<ty::Region<'tcx>>
{
// First assemble bounds from where clauses and traits.
let mut declared_bounds =
self.declared_generic_bounds_from_env(GenericKind::Projection(projection_ty));
declared_bounds.extend_from_slice(
&self.declared_projection_bounds_from_trait(span, projection_ty));
declared_bounds
}
fn projection_bound(&self,
span: Span,
declared_bounds: Vec<ty::Region<'tcx>>,
projection_ty: ty::ProjectionTy<'tcx>)
-> VerifyBound<'tcx> {
debug!("projection_bound(declared_bounds={:?}, projection_ty={:?})",
declared_bounds, projection_ty);
// see the extensive comment in projection_must_outlive
let ty = self.tcx.mk_projection(projection_ty.item_def_id, projection_ty.substs);
let recursive_bound = self.recursive_type_bound(span, ty);
VerifyBound::AnyRegion(declared_bounds).or(recursive_bound)
}
fn recursive_type_bound(&self, span: Span, ty: Ty<'tcx>) -> VerifyBound<'tcx> {
let mut bounds = vec![];
for subty in ty.walk_shallow() {
bounds.push(self.type_bound(span, subty));
}
let mut regions = ty.regions();
regions.retain(|r| !r.is_late_bound()); // ignore late-bound regions
bounds.push(VerifyBound::AllRegions(regions));
// remove bounds that must hold, since they are not interesting
bounds.retain(|b| !b.must_hold());
if bounds.len() == 1 {
bounds.pop().unwrap()
} else {
VerifyBound::AllBounds(bounds)
}
}
fn declared_generic_bounds_from_env(&self, generic: GenericKind<'tcx>)
-> Vec<ty::Region<'tcx>>
{
let param_env = &self.param_env;
// To start, collect bounds from user:
let mut param_bounds = self.tcx.required_region_bounds(generic.to_ty(self.tcx),
param_env.caller_bounds.to_vec());
// Next, collect regions we scraped from the well-formedness
// constraints in the fn signature. To do that, we walk the list
// of known relations from the fn ctxt.
//
// This is crucial because otherwise code like this fails:
//
// fn foo<'a, A>(x: &'a A) { x.bar() }
//
// The problem is that the type of `x` is `&'a A`. To be
// well-formed, then, A must be lower-generic by `'a`, but we
// don't know that this holds from first principles.
for &(r, p) in &self.region_bound_pairs {
debug!("generic={:?} p={:?}",
generic,
p);
if generic == p {
param_bounds.push(r);
}
}
param_bounds
}
fn declared_projection_bounds_from_trait(&self,
span: Span,
projection_ty: ty::ProjectionTy<'tcx>)
-> Vec<ty::Region<'tcx>>
{
debug!("projection_bounds(projection_ty={:?})",
projection_ty);
let ty = self.tcx.mk_projection(projection_ty.item_def_id, projection_ty.substs);
// Say we have a projection `<T as SomeTrait<'a>>::SomeType`. We are interested
// in looking for a trait definition like:
//
// ```
// trait SomeTrait<'a> {
// type SomeType : 'a;
// }
// ```
//
// we can thus deduce that `<T as SomeTrait<'a>>::SomeType : 'a`.
let trait_predicates = self.tcx.predicates_of(projection_ty.trait_ref(self.tcx).def_id);
assert_eq!(trait_predicates.parent, None);
let predicates = trait_predicates.predicates.as_slice().to_vec();
traits::elaborate_predicates(self.tcx, predicates)
.filter_map(|predicate| {
// we're only interesting in `T : 'a` style predicates:
let outlives = match predicate {
ty::Predicate::TypeOutlives(data) => data,
_ => { return None; }
};
debug!("projection_bounds: outlives={:?} (1)",
outlives);
// apply the substitutions (and normalize any projected types)
let outlives = self.instantiate_type_scheme(span,
projection_ty.substs,
&outlives);
debug!("projection_bounds: outlives={:?} (2)",
outlives);
let region_result = self.commit_if_ok(|_| {
let (outlives, _) =
self.replace_late_bound_regions_with_fresh_var(
span,
infer::AssocTypeProjection(projection_ty.item_def_id),
&outlives);
debug!("projection_bounds: outlives={:?} (3)",
outlives);
// check whether this predicate applies to our current projection
let cause = self.fcx.misc(span);
match self.at(&cause, self.fcx.param_env).eq(outlives.0, ty) {
Ok(ok) => Ok((ok, outlives.1)),
Err(_) => Err(())
}
}).map(|(ok, result)| {
self.register_infer_ok_obligations(ok);
result
});
debug!("projection_bounds: region_result={:?}",
region_result);
region_result.ok()
})
.collect()
}
}