blob: 5f8c7daea6e9bbc13024836076bf9449ec362da1 [file] [log] [blame]
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
html_root_url = "https://doc.rust-lang.org/nightly/")]
#![feature(nll)]
#![feature(rustc_diagnostic_macros)]
#![recursion_limit="256"]
#[macro_use] extern crate rustc;
#[macro_use] extern crate syntax;
extern crate rustc_typeck;
extern crate syntax_pos;
extern crate rustc_data_structures;
use rustc::hir::{self, PatKind};
use hir::Node;
use rustc::hir::def::Def;
use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, CrateNum, DefId};
use rustc::hir::intravisit::{self, Visitor, NestedVisitorMap};
use rustc::hir::itemlikevisit::DeepVisitor;
use rustc::lint;
use rustc::middle::privacy::{AccessLevel, AccessLevels};
use rustc::ty::{self, TyCtxt, Ty, TypeFoldable, GenericParamDefKind};
use rustc::ty::fold::TypeVisitor;
use rustc::ty::query::Providers;
use rustc::ty::subst::UnpackedKind;
use rustc::util::nodemap::NodeSet;
use syntax::ast::{self, CRATE_NODE_ID, Ident};
use syntax::symbol::keywords;
use syntax_pos::Span;
use std::cmp;
use std::mem::replace;
use rustc_data_structures::fx::FxHashSet;
use rustc_data_structures::sync::Lrc;
mod diagnostics;
////////////////////////////////////////////////////////////////////////////////
/// Visitor used to determine if pub(restricted) is used anywhere in the crate.
///
/// This is done so that `private_in_public` warnings can be turned into hard errors
/// in crates that have been updated to use pub(restricted).
////////////////////////////////////////////////////////////////////////////////
struct PubRestrictedVisitor<'a, 'tcx: 'a> {
tcx: TyCtxt<'a, 'tcx, 'tcx>,
has_pub_restricted: bool,
}
impl<'a, 'tcx> Visitor<'tcx> for PubRestrictedVisitor<'a, 'tcx> {
fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
NestedVisitorMap::All(&self.tcx.hir)
}
fn visit_vis(&mut self, vis: &'tcx hir::Visibility) {
self.has_pub_restricted = self.has_pub_restricted || vis.node.is_pub_restricted();
}
}
////////////////////////////////////////////////////////////////////////////////
/// The embargo visitor, used to determine the exports of the ast
////////////////////////////////////////////////////////////////////////////////
struct EmbargoVisitor<'a, 'tcx: 'a> {
tcx: TyCtxt<'a, 'tcx, 'tcx>,
// Accessibility levels for reachable nodes
access_levels: AccessLevels,
// Previous accessibility level, None means unreachable
prev_level: Option<AccessLevel>,
// Have something changed in the level map?
changed: bool,
}
struct ReachEverythingInTheInterfaceVisitor<'b, 'a: 'b, 'tcx: 'a> {
access_level: Option<AccessLevel>,
item_def_id: DefId,
ev: &'b mut EmbargoVisitor<'a, 'tcx>,
}
impl<'a, 'tcx> EmbargoVisitor<'a, 'tcx> {
fn item_ty_level(&self, item_def_id: DefId) -> Option<AccessLevel> {
let ty_def_id = match self.tcx.type_of(item_def_id).sty {
ty::Adt(adt, _) => adt.did,
ty::Foreign(did) => did,
ty::Dynamic(ref obj, ..) => obj.principal().def_id(),
ty::Projection(ref proj) => proj.trait_ref(self.tcx).def_id,
_ => return Some(AccessLevel::Public)
};
if let Some(node_id) = self.tcx.hir.as_local_node_id(ty_def_id) {
self.get(node_id)
} else {
Some(AccessLevel::Public)
}
}
fn impl_trait_level(&self, impl_def_id: DefId) -> Option<AccessLevel> {
if let Some(trait_ref) = self.tcx.impl_trait_ref(impl_def_id) {
if let Some(node_id) = self.tcx.hir.as_local_node_id(trait_ref.def_id) {
return self.get(node_id);
}
}
Some(AccessLevel::Public)
}
fn get(&self, id: ast::NodeId) -> Option<AccessLevel> {
self.access_levels.map.get(&id).cloned()
}
// Updates node level and returns the updated level
fn update(&mut self, id: ast::NodeId, level: Option<AccessLevel>) -> Option<AccessLevel> {
let old_level = self.get(id);
// Accessibility levels can only grow
if level > old_level {
self.access_levels.map.insert(id, level.unwrap());
self.changed = true;
level
} else {
old_level
}
}
fn reach<'b>(&'b mut self, item_id: ast::NodeId)
-> ReachEverythingInTheInterfaceVisitor<'b, 'a, 'tcx> {
ReachEverythingInTheInterfaceVisitor {
access_level: self.prev_level.map(|l| l.min(AccessLevel::Reachable)),
item_def_id: self.tcx.hir.local_def_id(item_id),
ev: self,
}
}
}
impl<'a, 'tcx> Visitor<'tcx> for EmbargoVisitor<'a, 'tcx> {
/// We want to visit items in the context of their containing
/// module and so forth, so supply a crate for doing a deep walk.
fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
NestedVisitorMap::All(&self.tcx.hir)
}
fn visit_item(&mut self, item: &'tcx hir::Item) {
let inherited_item_level = match item.node {
// Impls inherit level from their types and traits
hir::ItemKind::Impl(..) => {
let def_id = self.tcx.hir.local_def_id(item.id);
cmp::min(self.item_ty_level(def_id), self.impl_trait_level(def_id))
}
// Foreign mods inherit level from parents
hir::ItemKind::ForeignMod(..) => {
self.prev_level
}
// Other `pub` items inherit levels from parents
hir::ItemKind::Const(..) | hir::ItemKind::Enum(..) | hir::ItemKind::ExternCrate(..) |
hir::ItemKind::GlobalAsm(..) | hir::ItemKind::Fn(..) | hir::ItemKind::Mod(..) |
hir::ItemKind::Static(..) | hir::ItemKind::Struct(..) |
hir::ItemKind::Trait(..) | hir::ItemKind::TraitAlias(..) |
hir::ItemKind::Existential(..) |
hir::ItemKind::Ty(..) | hir::ItemKind::Union(..) | hir::ItemKind::Use(..) => {
if item.vis.node.is_pub() { self.prev_level } else { None }
}
};
// Update level of the item itself
let item_level = self.update(item.id, inherited_item_level);
// Update levels of nested things
match item.node {
hir::ItemKind::Enum(ref def, _) => {
for variant in &def.variants {
let variant_level = self.update(variant.node.data.id(), item_level);
for field in variant.node.data.fields() {
self.update(field.id, variant_level);
}
}
}
hir::ItemKind::Impl(.., None, _, ref impl_item_refs) => {
for impl_item_ref in impl_item_refs {
if impl_item_ref.vis.node.is_pub() {
self.update(impl_item_ref.id.node_id, item_level);
}
}
}
hir::ItemKind::Impl(.., Some(_), _, ref impl_item_refs) => {
for impl_item_ref in impl_item_refs {
self.update(impl_item_ref.id.node_id, item_level);
}
}
hir::ItemKind::Trait(.., ref trait_item_refs) => {
for trait_item_ref in trait_item_refs {
self.update(trait_item_ref.id.node_id, item_level);
}
}
hir::ItemKind::Struct(ref def, _) | hir::ItemKind::Union(ref def, _) => {
if !def.is_struct() {
self.update(def.id(), item_level);
}
for field in def.fields() {
if field.vis.node.is_pub() {
self.update(field.id, item_level);
}
}
}
hir::ItemKind::ForeignMod(ref foreign_mod) => {
for foreign_item in &foreign_mod.items {
if foreign_item.vis.node.is_pub() {
self.update(foreign_item.id, item_level);
}
}
}
// Impl trait return types mark their parent function.
// It (and its children) are revisited if the change applies.
hir::ItemKind::Existential(ref ty_data) => {
if let Some(impl_trait_fn) = ty_data.impl_trait_fn {
if let Some(node_id) = self.tcx.hir.as_local_node_id(impl_trait_fn) {
self.update(node_id, Some(AccessLevel::ReachableFromImplTrait));
}
}
}
hir::ItemKind::Use(..) |
hir::ItemKind::Static(..) |
hir::ItemKind::Const(..) |
hir::ItemKind::GlobalAsm(..) |
hir::ItemKind::Ty(..) |
hir::ItemKind::Mod(..) |
hir::ItemKind::TraitAlias(..) |
hir::ItemKind::Fn(..) |
hir::ItemKind::ExternCrate(..) => {}
}
// Store this node's access level here to propagate the correct
// reachability level through interfaces and children.
let orig_level = replace(&mut self.prev_level, item_level);
// Mark all items in interfaces of reachable items as reachable
match item.node {
// The interface is empty
hir::ItemKind::ExternCrate(..) => {}
// All nested items are checked by visit_item
hir::ItemKind::Mod(..) => {}
// Re-exports are handled in visit_mod
hir::ItemKind::Use(..) => {}
// The interface is empty
hir::ItemKind::GlobalAsm(..) => {}
hir::ItemKind::Existential(hir::ExistTy { impl_trait_fn: Some(_), .. }) => {
if item_level.is_some() {
// Reach the (potentially private) type and the API being exposed
self.reach(item.id).ty().predicates();
}
}
// Visit everything
hir::ItemKind::Const(..) | hir::ItemKind::Static(..) |
hir::ItemKind::Existential(..) |
hir::ItemKind::Fn(..) | hir::ItemKind::Ty(..) => {
if item_level.is_some() {
self.reach(item.id).generics().predicates().ty();
}
}
hir::ItemKind::Trait(.., ref trait_item_refs) => {
if item_level.is_some() {
self.reach(item.id).generics().predicates();
for trait_item_ref in trait_item_refs {
let mut reach = self.reach(trait_item_ref.id.node_id);
reach.generics().predicates();
if trait_item_ref.kind == hir::AssociatedItemKind::Type &&
!trait_item_ref.defaultness.has_value() {
// No type to visit.
} else {
reach.ty();
}
}
}
}
hir::ItemKind::TraitAlias(..) => {
if item_level.is_some() {
self.reach(item.id).generics().predicates();
}
}
// Visit everything except for private impl items
hir::ItemKind::Impl(.., ref trait_ref, _, ref impl_item_refs) => {
if item_level.is_some() {
self.reach(item.id).generics().predicates().impl_trait_ref();
for impl_item_ref in impl_item_refs {
let id = impl_item_ref.id.node_id;
if trait_ref.is_some() || self.get(id).is_some() {
self.reach(id).generics().predicates().ty();
}
}
}
}
// Visit everything, but enum variants have their own levels
hir::ItemKind::Enum(ref def, _) => {
if item_level.is_some() {
self.reach(item.id).generics().predicates();
}
for variant in &def.variants {
if self.get(variant.node.data.id()).is_some() {
for field in variant.node.data.fields() {
self.reach(field.id).ty();
}
// Corner case: if the variant is reachable, but its
// enum is not, make the enum reachable as well.
self.update(item.id, Some(AccessLevel::Reachable));
}
}
}
// Visit everything, but foreign items have their own levels
hir::ItemKind::ForeignMod(ref foreign_mod) => {
for foreign_item in &foreign_mod.items {
if self.get(foreign_item.id).is_some() {
self.reach(foreign_item.id).generics().predicates().ty();
}
}
}
// Visit everything except for private fields
hir::ItemKind::Struct(ref struct_def, _) |
hir::ItemKind::Union(ref struct_def, _) => {
if item_level.is_some() {
self.reach(item.id).generics().predicates();
for field in struct_def.fields() {
if self.get(field.id).is_some() {
self.reach(field.id).ty();
}
}
}
}
}
intravisit::walk_item(self, item);
self.prev_level = orig_level;
}
fn visit_block(&mut self, b: &'tcx hir::Block) {
let orig_level = replace(&mut self.prev_level, None);
// Blocks can have public items, for example impls, but they always
// start as completely private regardless of publicity of a function,
// constant, type, field, etc. in which this block resides
intravisit::walk_block(self, b);
self.prev_level = orig_level;
}
fn visit_mod(&mut self, m: &'tcx hir::Mod, _sp: Span, id: ast::NodeId) {
// This code is here instead of in visit_item so that the
// crate module gets processed as well.
if self.prev_level.is_some() {
let def_id = self.tcx.hir.local_def_id(id);
if let Some(exports) = self.tcx.module_exports(def_id) {
for export in exports.iter() {
if export.vis == ty::Visibility::Public {
if let Some(def_id) = export.def.opt_def_id() {
if let Some(node_id) = self.tcx.hir.as_local_node_id(def_id) {
self.update(node_id, Some(AccessLevel::Exported));
}
}
}
}
}
}
intravisit::walk_mod(self, m, id);
}
fn visit_macro_def(&mut self, md: &'tcx hir::MacroDef) {
if md.legacy {
self.update(md.id, Some(AccessLevel::Public));
return
}
let module_did = ty::DefIdTree::parent(self.tcx, self.tcx.hir.local_def_id(md.id)).unwrap();
let mut module_id = self.tcx.hir.as_local_node_id(module_did).unwrap();
let level = if md.vis.node.is_pub() { self.get(module_id) } else { None };
let level = self.update(md.id, level);
if level.is_none() {
return
}
loop {
let module = if module_id == ast::CRATE_NODE_ID {
&self.tcx.hir.krate().module
} else if let hir::ItemKind::Mod(ref module) = self.tcx.hir.expect_item(module_id).node
{
module
} else {
unreachable!()
};
for id in &module.item_ids {
self.update(id.id, level);
}
let def_id = self.tcx.hir.local_def_id(module_id);
if let Some(exports) = self.tcx.module_exports(def_id) {
for export in exports.iter() {
if let Some(node_id) = self.tcx.hir.as_local_node_id(export.def.def_id()) {
self.update(node_id, level);
}
}
}
if module_id == ast::CRATE_NODE_ID {
break
}
module_id = self.tcx.hir.get_parent_node(module_id);
}
}
}
impl<'b, 'a, 'tcx> ReachEverythingInTheInterfaceVisitor<'b, 'a, 'tcx> {
fn generics(&mut self) -> &mut Self {
for param in &self.ev.tcx.generics_of(self.item_def_id).params {
match param.kind {
GenericParamDefKind::Type { has_default, .. } => {
if has_default {
self.ev.tcx.type_of(param.def_id).visit_with(self);
}
}
GenericParamDefKind::Lifetime => {}
}
}
self
}
fn predicates(&mut self) -> &mut Self {
let predicates = self.ev.tcx.predicates_of(self.item_def_id);
for (predicate, _) in &predicates.predicates {
predicate.visit_with(self);
match predicate {
&ty::Predicate::Trait(poly_predicate) => {
self.check_trait_ref(poly_predicate.skip_binder().trait_ref);
},
&ty::Predicate::Projection(poly_predicate) => {
let tcx = self.ev.tcx;
self.check_trait_ref(
poly_predicate.skip_binder().projection_ty.trait_ref(tcx)
);
},
_ => (),
};
}
self
}
fn ty(&mut self) -> &mut Self {
let ty = self.ev.tcx.type_of(self.item_def_id);
ty.visit_with(self);
if let ty::FnDef(def_id, _) = ty.sty {
if def_id == self.item_def_id {
self.ev.tcx.fn_sig(def_id).visit_with(self);
}
}
self
}
fn impl_trait_ref(&mut self) -> &mut Self {
if let Some(impl_trait_ref) = self.ev.tcx.impl_trait_ref(self.item_def_id) {
self.check_trait_ref(impl_trait_ref);
impl_trait_ref.super_visit_with(self);
}
self
}
fn check_trait_ref(&mut self, trait_ref: ty::TraitRef<'tcx>) {
if let Some(node_id) = self.ev.tcx.hir.as_local_node_id(trait_ref.def_id) {
let item = self.ev.tcx.hir.expect_item(node_id);
self.ev.update(item.id, self.access_level);
}
}
}
impl<'b, 'a, 'tcx> TypeVisitor<'tcx> for ReachEverythingInTheInterfaceVisitor<'b, 'a, 'tcx> {
fn visit_ty(&mut self, ty: Ty<'tcx>) -> bool {
let ty_def_id = match ty.sty {
ty::Adt(adt, _) => Some(adt.did),
ty::Foreign(did) => Some(did),
ty::Dynamic(ref obj, ..) => Some(obj.principal().def_id()),
ty::Projection(ref proj) => Some(proj.item_def_id),
ty::FnDef(def_id, ..) |
ty::Closure(def_id, ..) |
ty::Generator(def_id, ..) |
ty::Opaque(def_id, _) => Some(def_id),
_ => None
};
if let Some(def_id) = ty_def_id {
if let Some(node_id) = self.ev.tcx.hir.as_local_node_id(def_id) {
self.ev.update(node_id, self.access_level);
}
}
ty.super_visit_with(self)
}
}
//////////////////////////////////////////////////////////////////////////////////////
/// Name privacy visitor, checks privacy and reports violations.
/// Most of name privacy checks are performed during the main resolution phase,
/// or later in type checking when field accesses and associated items are resolved.
/// This pass performs remaining checks for fields in struct expressions and patterns.
//////////////////////////////////////////////////////////////////////////////////////
struct NamePrivacyVisitor<'a, 'tcx: 'a> {
tcx: TyCtxt<'a, 'tcx, 'tcx>,
tables: &'a ty::TypeckTables<'tcx>,
current_item: ast::NodeId,
empty_tables: &'a ty::TypeckTables<'tcx>,
}
impl<'a, 'tcx> NamePrivacyVisitor<'a, 'tcx> {
// Checks that a field in a struct constructor (expression or pattern) is accessible.
fn check_field(&mut self,
use_ctxt: Span, // Syntax context of the field name at the use site
span: Span, // Span of the field pattern, e.g. `x: 0`
def: &'tcx ty::AdtDef, // Definition of the struct or enum
field: &'tcx ty::FieldDef) { // Definition of the field
let ident = Ident::new(keywords::Invalid.name(), use_ctxt);
let def_id = self.tcx.adjust_ident(ident, def.did, self.current_item).1;
if !def.is_enum() && !field.vis.is_accessible_from(def_id, self.tcx) {
struct_span_err!(self.tcx.sess, span, E0451, "field `{}` of {} `{}` is private",
field.ident, def.variant_descr(), self.tcx.item_path_str(def.did))
.span_label(span, format!("field `{}` is private", field.ident))
.emit();
}
}
}
// Set the correct TypeckTables for the given `item_id` (or an empty table if
// there is no TypeckTables for the item).
fn update_tables<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
item_id: ast::NodeId,
tables: &mut &'a ty::TypeckTables<'tcx>,
empty_tables: &'a ty::TypeckTables<'tcx>)
-> &'a ty::TypeckTables<'tcx> {
let def_id = tcx.hir.local_def_id(item_id);
if tcx.has_typeck_tables(def_id) {
replace(tables, tcx.typeck_tables_of(def_id))
} else {
replace(tables, empty_tables)
}
}
impl<'a, 'tcx> Visitor<'tcx> for NamePrivacyVisitor<'a, 'tcx> {
/// We want to visit items in the context of their containing
/// module and so forth, so supply a crate for doing a deep walk.
fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
NestedVisitorMap::All(&self.tcx.hir)
}
fn visit_nested_body(&mut self, body: hir::BodyId) {
let orig_tables = replace(&mut self.tables, self.tcx.body_tables(body));
let body = self.tcx.hir.body(body);
self.visit_body(body);
self.tables = orig_tables;
}
fn visit_item(&mut self, item: &'tcx hir::Item) {
let orig_current_item = replace(&mut self.current_item, item.id);
let orig_tables = update_tables(self.tcx, item.id, &mut self.tables, self.empty_tables);
intravisit::walk_item(self, item);
self.current_item = orig_current_item;
self.tables = orig_tables;
}
fn visit_trait_item(&mut self, ti: &'tcx hir::TraitItem) {
let orig_tables = update_tables(self.tcx, ti.id, &mut self.tables, self.empty_tables);
intravisit::walk_trait_item(self, ti);
self.tables = orig_tables;
}
fn visit_impl_item(&mut self, ii: &'tcx hir::ImplItem) {
let orig_tables = update_tables(self.tcx, ii.id, &mut self.tables, self.empty_tables);
intravisit::walk_impl_item(self, ii);
self.tables = orig_tables;
}
fn visit_expr(&mut self, expr: &'tcx hir::Expr) {
match expr.node {
hir::ExprKind::Struct(ref qpath, ref fields, ref base) => {
let def = self.tables.qpath_def(qpath, expr.hir_id);
let adt = self.tables.expr_ty(expr).ty_adt_def().unwrap();
let variant = adt.variant_of_def(def);
if let Some(ref base) = *base {
// If the expression uses FRU we need to make sure all the unmentioned fields
// are checked for privacy (RFC 736). Rather than computing the set of
// unmentioned fields, just check them all.
for (vf_index, variant_field) in variant.fields.iter().enumerate() {
let field = fields.iter().find(|f| {
self.tcx.field_index(f.id, self.tables) == vf_index
});
let (use_ctxt, span) = match field {
Some(field) => (field.ident.span, field.span),
None => (base.span, base.span),
};
self.check_field(use_ctxt, span, adt, variant_field);
}
} else {
for field in fields {
let use_ctxt = field.ident.span;
let index = self.tcx.field_index(field.id, self.tables);
self.check_field(use_ctxt, field.span, adt, &variant.fields[index]);
}
}
}
_ => {}
}
intravisit::walk_expr(self, expr);
}
fn visit_pat(&mut self, pat: &'tcx hir::Pat) {
match pat.node {
PatKind::Struct(ref qpath, ref fields, _) => {
let def = self.tables.qpath_def(qpath, pat.hir_id);
let adt = self.tables.pat_ty(pat).ty_adt_def().unwrap();
let variant = adt.variant_of_def(def);
for field in fields {
let use_ctxt = field.node.ident.span;
let index = self.tcx.field_index(field.node.id, self.tables);
self.check_field(use_ctxt, field.span, adt, &variant.fields[index]);
}
}
_ => {}
}
intravisit::walk_pat(self, pat);
}
}
////////////////////////////////////////////////////////////////////////////////////////////
/// Type privacy visitor, checks types for privacy and reports violations.
/// Both explicitly written types and inferred types of expressions and patters are checked.
/// Checks are performed on "semantic" types regardless of names and their hygiene.
////////////////////////////////////////////////////////////////////////////////////////////
struct TypePrivacyVisitor<'a, 'tcx: 'a> {
tcx: TyCtxt<'a, 'tcx, 'tcx>,
tables: &'a ty::TypeckTables<'tcx>,
current_item: DefId,
in_body: bool,
span: Span,
empty_tables: &'a ty::TypeckTables<'tcx>,
visited_opaque_tys: FxHashSet<DefId>
}
impl<'a, 'tcx> TypePrivacyVisitor<'a, 'tcx> {
fn def_id_visibility(&self, did: DefId) -> ty::Visibility {
match self.tcx.hir.as_local_node_id(did) {
Some(node_id) => {
let vis = match self.tcx.hir.get(node_id) {
Node::Item(item) => &item.vis,
Node::ForeignItem(foreign_item) => &foreign_item.vis,
Node::ImplItem(impl_item) => &impl_item.vis,
Node::TraitItem(..) |
Node::Variant(..) => {
return self.def_id_visibility(self.tcx.hir.get_parent_did(node_id));
}
Node::StructCtor(vdata) => {
let struct_node_id = self.tcx.hir.get_parent(node_id);
let struct_vis = match self.tcx.hir.get(struct_node_id) {
Node::Item(item) => &item.vis,
node => bug!("unexpected node kind: {:?}", node),
};
let mut ctor_vis
= ty::Visibility::from_hir(struct_vis, struct_node_id, self.tcx);
for field in vdata.fields() {
let field_vis = ty::Visibility::from_hir(&field.vis, node_id, self.tcx);
if ctor_vis.is_at_least(field_vis, self.tcx) {
ctor_vis = field_vis;
}
}
// If the structure is marked as non_exhaustive then lower the
// visibility to within the crate.
let struct_def_id = self.tcx.hir.get_parent_did(node_id);
let adt_def = self.tcx.adt_def(struct_def_id);
if adt_def.non_enum_variant().is_field_list_non_exhaustive()
&& ctor_vis == ty::Visibility::Public
{
ctor_vis = ty::Visibility::Restricted(
DefId::local(CRATE_DEF_INDEX));
}
return ctor_vis;
}
node => bug!("unexpected node kind: {:?}", node)
};
ty::Visibility::from_hir(vis, node_id, self.tcx)
}
None => self.tcx.visibility(did),
}
}
fn item_is_accessible(&self, did: DefId) -> bool {
self.def_id_visibility(did).is_accessible_from(self.current_item, self.tcx)
}
// Take node ID of an expression or pattern and check its type for privacy.
fn check_expr_pat_type(&mut self, id: hir::HirId, span: Span) -> bool {
self.span = span;
if self.tables.node_id_to_type(id).visit_with(self) {
return true;
}
if self.tables.node_substs(id).visit_with(self) {
return true;
}
if let Some(adjustments) = self.tables.adjustments().get(id) {
for adjustment in adjustments {
if adjustment.target.visit_with(self) {
return true;
}
}
}
false
}
fn check_trait_ref(&mut self, trait_ref: ty::TraitRef<'tcx>) -> bool {
if !self.item_is_accessible(trait_ref.def_id) {
let msg = format!("trait `{}` is private", trait_ref);
self.tcx.sess.span_err(self.span, &msg);
return true;
}
trait_ref.super_visit_with(self)
}
}
impl<'a, 'tcx> Visitor<'tcx> for TypePrivacyVisitor<'a, 'tcx> {
/// We want to visit items in the context of their containing
/// module and so forth, so supply a crate for doing a deep walk.
fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
NestedVisitorMap::All(&self.tcx.hir)
}
fn visit_nested_body(&mut self, body: hir::BodyId) {
let orig_tables = replace(&mut self.tables, self.tcx.body_tables(body));
let orig_in_body = replace(&mut self.in_body, true);
let body = self.tcx.hir.body(body);
self.visit_body(body);
self.tables = orig_tables;
self.in_body = orig_in_body;
}
fn visit_ty(&mut self, hir_ty: &'tcx hir::Ty) {
self.span = hir_ty.span;
if self.in_body {
// Types in bodies.
if self.tables.node_id_to_type(hir_ty.hir_id).visit_with(self) {
return;
}
} else {
// Types in signatures.
// FIXME: This is very ineffective. Ideally each HIR type should be converted
// into a semantic type only once and the result should be cached somehow.
if rustc_typeck::hir_ty_to_ty(self.tcx, hir_ty).visit_with(self) {
return;
}
}
intravisit::walk_ty(self, hir_ty);
}
fn visit_trait_ref(&mut self, trait_ref: &'tcx hir::TraitRef) {
self.span = trait_ref.path.span;
if !self.in_body {
// Avoid calling `hir_trait_to_predicates` in bodies, it will ICE.
// The traits' privacy in bodies is already checked as a part of trait object types.
let (principal, projections) =
rustc_typeck::hir_trait_to_predicates(self.tcx, trait_ref);
if self.check_trait_ref(*principal.skip_binder()) {
return;
}
for (poly_predicate, _) in projections {
let tcx = self.tcx;
if self.check_trait_ref(poly_predicate.skip_binder().projection_ty.trait_ref(tcx)) {
return;
}
}
}
intravisit::walk_trait_ref(self, trait_ref);
}
// Check types of expressions
fn visit_expr(&mut self, expr: &'tcx hir::Expr) {
if self.check_expr_pat_type(expr.hir_id, expr.span) {
// Do not check nested expressions if the error already happened.
return;
}
match expr.node {
hir::ExprKind::Assign(.., ref rhs) | hir::ExprKind::Match(ref rhs, ..) => {
// Do not report duplicate errors for `x = y` and `match x { ... }`.
if self.check_expr_pat_type(rhs.hir_id, rhs.span) {
return;
}
}
hir::ExprKind::MethodCall(_, span, _) => {
// Method calls have to be checked specially.
self.span = span;
if let Some(def) = self.tables.type_dependent_defs().get(expr.hir_id) {
let def_id = def.def_id();
if self.tcx.type_of(def_id).visit_with(self) {
return;
}
} else {
self.tcx.sess.delay_span_bug(expr.span,
"no type-dependent def for method call");
}
}
_ => {}
}
intravisit::walk_expr(self, expr);
}
// Prohibit access to associated items with insufficient nominal visibility.
//
// Additionally, until better reachability analysis for macros 2.0 is available,
// we prohibit access to private statics from other crates, this allows to give
// more code internal visibility at link time. (Access to private functions
// is already prohibited by type privacy for function types.)
fn visit_qpath(&mut self, qpath: &'tcx hir::QPath, id: hir::HirId, span: Span) {
let def = match *qpath {
hir::QPath::Resolved(_, ref path) => match path.def {
Def::Method(..) | Def::AssociatedConst(..) |
Def::AssociatedTy(..) | Def::Static(..) => Some(path.def),
_ => None,
}
hir::QPath::TypeRelative(..) => {
self.tables.type_dependent_defs().get(id).cloned()
}
};
if let Some(def) = def {
let def_id = def.def_id();
let is_local_static = if let Def::Static(..) = def { def_id.is_local() } else { false };
if !self.item_is_accessible(def_id) && !is_local_static {
let name = match *qpath {
hir::QPath::Resolved(_, ref path) => path.to_string(),
hir::QPath::TypeRelative(_, ref segment) => segment.ident.to_string(),
};
let msg = format!("{} `{}` is private", def.kind_name(), name);
self.tcx.sess.span_err(span, &msg);
return;
}
}
intravisit::walk_qpath(self, qpath, id, span);
}
// Check types of patterns
fn visit_pat(&mut self, pattern: &'tcx hir::Pat) {
if self.check_expr_pat_type(pattern.hir_id, pattern.span) {
// Do not check nested patterns if the error already happened.
return;
}
intravisit::walk_pat(self, pattern);
}
fn visit_local(&mut self, local: &'tcx hir::Local) {
if let Some(ref init) = local.init {
if self.check_expr_pat_type(init.hir_id, init.span) {
// Do not report duplicate errors for `let x = y`.
return;
}
}
intravisit::walk_local(self, local);
}
// Check types in item interfaces
fn visit_item(&mut self, item: &'tcx hir::Item) {
let orig_current_item = self.current_item;
let orig_tables = update_tables(self.tcx,
item.id,
&mut self.tables,
self.empty_tables);
let orig_in_body = replace(&mut self.in_body, false);
self.current_item = self.tcx.hir.local_def_id(item.id);
intravisit::walk_item(self, item);
self.tables = orig_tables;
self.in_body = orig_in_body;
self.current_item = orig_current_item;
}
fn visit_trait_item(&mut self, ti: &'tcx hir::TraitItem) {
let orig_tables = update_tables(self.tcx, ti.id, &mut self.tables, self.empty_tables);
intravisit::walk_trait_item(self, ti);
self.tables = orig_tables;
}
fn visit_impl_item(&mut self, ii: &'tcx hir::ImplItem) {
let orig_tables = update_tables(self.tcx, ii.id, &mut self.tables, self.empty_tables);
intravisit::walk_impl_item(self, ii);
self.tables = orig_tables;
}
}
impl<'a, 'tcx> TypeVisitor<'tcx> for TypePrivacyVisitor<'a, 'tcx> {
fn visit_ty(&mut self, ty: Ty<'tcx>) -> bool {
match ty.sty {
ty::Adt(&ty::AdtDef { did: def_id, .. }, ..) |
ty::FnDef(def_id, ..) |
ty::Foreign(def_id) => {
if !self.item_is_accessible(def_id) {
let msg = format!("type `{}` is private", ty);
self.tcx.sess.span_err(self.span, &msg);
return true;
}
if let ty::FnDef(..) = ty.sty {
if self.tcx.fn_sig(def_id).visit_with(self) {
return true;
}
}
// Inherent static methods don't have self type in substs,
// we have to check it additionally.
if let Some(assoc_item) = self.tcx.opt_associated_item(def_id) {
if let ty::ImplContainer(impl_def_id) = assoc_item.container {
if self.tcx.type_of(impl_def_id).visit_with(self) {
return true;
}
}
}
}
ty::Dynamic(ref predicates, ..) => {
let is_private = predicates.skip_binder().iter().any(|predicate| {
let def_id = match *predicate {
ty::ExistentialPredicate::Trait(trait_ref) => trait_ref.def_id,
ty::ExistentialPredicate::Projection(proj) =>
proj.trait_ref(self.tcx).def_id,
ty::ExistentialPredicate::AutoTrait(def_id) => def_id,
};
!self.item_is_accessible(def_id)
});
if is_private {
let msg = format!("type `{}` is private", ty);
self.tcx.sess.span_err(self.span, &msg);
return true;
}
}
ty::Projection(ref proj) => {
let tcx = self.tcx;
if self.check_trait_ref(proj.trait_ref(tcx)) {
return true;
}
}
ty::Opaque(def_id, ..) => {
for (predicate, _) in &self.tcx.predicates_of(def_id).predicates {
let trait_ref = match *predicate {
ty::Predicate::Trait(ref poly_trait_predicate) => {
Some(poly_trait_predicate.skip_binder().trait_ref)
}
ty::Predicate::Projection(ref poly_projection_predicate) => {
if poly_projection_predicate.skip_binder().ty.visit_with(self) {
return true;
}
Some(poly_projection_predicate.skip_binder()
.projection_ty.trait_ref(self.tcx))
}
ty::Predicate::TypeOutlives(..) => None,
_ => bug!("unexpected predicate: {:?}", predicate),
};
if let Some(trait_ref) = trait_ref {
if !self.item_is_accessible(trait_ref.def_id) {
let msg = format!("trait `{}` is private", trait_ref);
self.tcx.sess.span_err(self.span, &msg);
return true;
}
for subst in trait_ref.substs.iter() {
// Skip repeated `Opaque`s to avoid infinite recursion.
if let UnpackedKind::Type(ty) = subst.unpack() {
if let ty::Opaque(def_id, ..) = ty.sty {
if !self.visited_opaque_tys.insert(def_id) {
continue;
}
}
}
if subst.visit_with(self) {
return true;
}
}
}
}
}
_ => {}
}
ty.super_visit_with(self)
}
}
///////////////////////////////////////////////////////////////////////////////
/// Obsolete visitors for checking for private items in public interfaces.
/// These visitors are supposed to be kept in frozen state and produce an
/// "old error node set". For backward compatibility the new visitor reports
/// warnings instead of hard errors when the erroneous node is not in this old set.
///////////////////////////////////////////////////////////////////////////////
struct ObsoleteVisiblePrivateTypesVisitor<'a, 'tcx: 'a> {
tcx: TyCtxt<'a, 'tcx, 'tcx>,
access_levels: &'a AccessLevels,
in_variant: bool,
// set of errors produced by this obsolete visitor
old_error_set: NodeSet,
}
struct ObsoleteCheckTypeForPrivatenessVisitor<'a, 'b: 'a, 'tcx: 'b> {
inner: &'a ObsoleteVisiblePrivateTypesVisitor<'b, 'tcx>,
/// whether the type refers to private types.
contains_private: bool,
/// whether we've recurred at all (i.e. if we're pointing at the
/// first type on which visit_ty was called).
at_outer_type: bool,
// whether that first type is a public path.
outer_type_is_public_path: bool,
}
impl<'a, 'tcx> ObsoleteVisiblePrivateTypesVisitor<'a, 'tcx> {
fn path_is_private_type(&self, path: &hir::Path) -> bool {
let did = match path.def {
Def::PrimTy(..) | Def::SelfTy(..) | Def::Err => return false,
def => def.def_id(),
};
// A path can only be private if:
// it's in this crate...
if let Some(node_id) = self.tcx.hir.as_local_node_id(did) {
// .. and it corresponds to a private type in the AST (this returns
// None for type parameters)
match self.tcx.hir.find(node_id) {
Some(Node::Item(ref item)) => !item.vis.node.is_pub(),
Some(_) | None => false,
}
} else {
return false
}
}
fn trait_is_public(&self, trait_id: ast::NodeId) -> bool {
// FIXME: this would preferably be using `exported_items`, but all
// traits are exported currently (see `EmbargoVisitor.exported_trait`)
self.access_levels.is_public(trait_id)
}
fn check_generic_bound(&mut self, bound: &hir::GenericBound) {
if let hir::GenericBound::Trait(ref trait_ref, _) = *bound {
if self.path_is_private_type(&trait_ref.trait_ref.path) {
self.old_error_set.insert(trait_ref.trait_ref.ref_id);
}
}
}
fn item_is_public(&self, id: &ast::NodeId, vis: &hir::Visibility) -> bool {
self.access_levels.is_reachable(*id) || vis.node.is_pub()
}
}
impl<'a, 'b, 'tcx, 'v> Visitor<'v> for ObsoleteCheckTypeForPrivatenessVisitor<'a, 'b, 'tcx> {
fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'v> {
NestedVisitorMap::None
}
fn visit_ty(&mut self, ty: &hir::Ty) {
if let hir::TyKind::Path(hir::QPath::Resolved(_, ref path)) = ty.node {
if self.inner.path_is_private_type(path) {
self.contains_private = true;
// found what we're looking for so let's stop
// working.
return
}
}
if let hir::TyKind::Path(_) = ty.node {
if self.at_outer_type {
self.outer_type_is_public_path = true;
}
}
self.at_outer_type = false;
intravisit::walk_ty(self, ty)
}
// don't want to recurse into [, .. expr]
fn visit_expr(&mut self, _: &hir::Expr) {}
}
impl<'a, 'tcx> Visitor<'tcx> for ObsoleteVisiblePrivateTypesVisitor<'a, 'tcx> {
/// We want to visit items in the context of their containing
/// module and so forth, so supply a crate for doing a deep walk.
fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
NestedVisitorMap::All(&self.tcx.hir)
}
fn visit_item(&mut self, item: &'tcx hir::Item) {
match item.node {
// contents of a private mod can be re-exported, so we need
// to check internals.
hir::ItemKind::Mod(_) => {}
// An `extern {}` doesn't introduce a new privacy
// namespace (the contents have their own privacies).
hir::ItemKind::ForeignMod(_) => {}
hir::ItemKind::Trait(.., ref bounds, _) => {
if !self.trait_is_public(item.id) {
return
}
for bound in bounds.iter() {
self.check_generic_bound(bound)
}
}
// impls need some special handling to try to offer useful
// error messages without (too many) false positives
// (i.e. we could just return here to not check them at
// all, or some worse estimation of whether an impl is
// publicly visible).
hir::ItemKind::Impl(.., ref g, ref trait_ref, ref self_, ref impl_item_refs) => {
// `impl [... for] Private` is never visible.
let self_contains_private;
// impl [... for] Public<...>, but not `impl [... for]
// Vec<Public>` or `(Public,)` etc.
let self_is_public_path;
// check the properties of the Self type:
{
let mut visitor = ObsoleteCheckTypeForPrivatenessVisitor {
inner: self,
contains_private: false,
at_outer_type: true,
outer_type_is_public_path: false,
};
visitor.visit_ty(&self_);
self_contains_private = visitor.contains_private;
self_is_public_path = visitor.outer_type_is_public_path;
}
// miscellaneous info about the impl
// `true` iff this is `impl Private for ...`.
let not_private_trait =
trait_ref.as_ref().map_or(true, // no trait counts as public trait
|tr| {
let did = tr.path.def.def_id();
if let Some(node_id) = self.tcx.hir.as_local_node_id(did) {
self.trait_is_public(node_id)
} else {
true // external traits must be public
}
});
// `true` iff this is a trait impl or at least one method is public.
//
// `impl Public { $( fn ...() {} )* }` is not visible.
//
// This is required over just using the methods' privacy
// directly because we might have `impl<T: Foo<Private>> ...`,
// and we shouldn't warn about the generics if all the methods
// are private (because `T` won't be visible externally).
let trait_or_some_public_method =
trait_ref.is_some() ||
impl_item_refs.iter()
.any(|impl_item_ref| {
let impl_item = self.tcx.hir.impl_item(impl_item_ref.id);
match impl_item.node {
hir::ImplItemKind::Const(..) |
hir::ImplItemKind::Method(..) => {
self.access_levels.is_reachable(impl_item.id)
}
hir::ImplItemKind::Existential(..) |
hir::ImplItemKind::Type(_) => false,
}
});
if !self_contains_private &&
not_private_trait &&
trait_or_some_public_method {
intravisit::walk_generics(self, g);
match *trait_ref {
None => {
for impl_item_ref in impl_item_refs {
// This is where we choose whether to walk down
// further into the impl to check its items. We
// should only walk into public items so that we
// don't erroneously report errors for private
// types in private items.
let impl_item = self.tcx.hir.impl_item(impl_item_ref.id);
match impl_item.node {
hir::ImplItemKind::Const(..) |
hir::ImplItemKind::Method(..)
if self.item_is_public(&impl_item.id, &impl_item.vis) =>
{
intravisit::walk_impl_item(self, impl_item)
}
hir::ImplItemKind::Type(..) => {
intravisit::walk_impl_item(self, impl_item)
}
_ => {}
}
}
}
Some(ref tr) => {
// Any private types in a trait impl fall into three
// categories.
// 1. mentioned in the trait definition
// 2. mentioned in the type params/generics
// 3. mentioned in the associated types of the impl
//
// Those in 1. can only occur if the trait is in
// this crate and will've been warned about on the
// trait definition (there's no need to warn twice
// so we don't check the methods).
//
// Those in 2. are warned via walk_generics and this
// call here.
intravisit::walk_path(self, &tr.path);
// Those in 3. are warned with this call.
for impl_item_ref in impl_item_refs {
let impl_item = self.tcx.hir.impl_item(impl_item_ref.id);
if let hir::ImplItemKind::Type(ref ty) = impl_item.node {
self.visit_ty(ty);
}
}
}
}
} else if trait_ref.is_none() && self_is_public_path {
// impl Public<Private> { ... }. Any public static
// methods will be visible as `Public::foo`.
let mut found_pub_static = false;
for impl_item_ref in impl_item_refs {
if self.item_is_public(&impl_item_ref.id.node_id, &impl_item_ref.vis) {
let impl_item = self.tcx.hir.impl_item(impl_item_ref.id);
match impl_item_ref.kind {
hir::AssociatedItemKind::Const => {
found_pub_static = true;
intravisit::walk_impl_item(self, impl_item);
}
hir::AssociatedItemKind::Method { has_self: false } => {
found_pub_static = true;
intravisit::walk_impl_item(self, impl_item);
}
_ => {}
}
}
}
if found_pub_static {
intravisit::walk_generics(self, g)
}
}
return
}
// `type ... = ...;` can contain private types, because
// we're introducing a new name.
hir::ItemKind::Ty(..) => return,
// not at all public, so we don't care
_ if !self.item_is_public(&item.id, &item.vis) => {
return;
}
_ => {}
}
// We've carefully constructed it so that if we're here, then
// any `visit_ty`'s will be called on things that are in
// public signatures, i.e. things that we're interested in for
// this visitor.
intravisit::walk_item(self, item);
}
fn visit_generics(&mut self, generics: &'tcx hir::Generics) {
for param in &generics.params {
for bound in &param.bounds {
self.check_generic_bound(bound);
}
}
for predicate in &generics.where_clause.predicates {
match predicate {
&hir::WherePredicate::BoundPredicate(ref bound_pred) => {
for bound in bound_pred.bounds.iter() {
self.check_generic_bound(bound)
}
}
&hir::WherePredicate::RegionPredicate(_) => {}
&hir::WherePredicate::EqPredicate(ref eq_pred) => {
self.visit_ty(&eq_pred.rhs_ty);
}
}
}
}
fn visit_foreign_item(&mut self, item: &'tcx hir::ForeignItem) {
if self.access_levels.is_reachable(item.id) {
intravisit::walk_foreign_item(self, item)
}
}
fn visit_ty(&mut self, t: &'tcx hir::Ty) {
if let hir::TyKind::Path(hir::QPath::Resolved(_, ref path)) = t.node {
if self.path_is_private_type(path) {
self.old_error_set.insert(t.id);
}
}
intravisit::walk_ty(self, t)
}
fn visit_variant(&mut self,
v: &'tcx hir::Variant,
g: &'tcx hir::Generics,
item_id: ast::NodeId) {
if self.access_levels.is_reachable(v.node.data.id()) {
self.in_variant = true;
intravisit::walk_variant(self, v, g, item_id);
self.in_variant = false;
}
}
fn visit_struct_field(&mut self, s: &'tcx hir::StructField) {
if s.vis.node.is_pub() || self.in_variant {
intravisit::walk_struct_field(self, s);
}
}
// we don't need to introspect into these at all: an
// expression/block context can't possibly contain exported things.
// (Making them no-ops stops us from traversing the whole AST without
// having to be super careful about our `walk_...` calls above.)
fn visit_block(&mut self, _: &'tcx hir::Block) {}
fn visit_expr(&mut self, _: &'tcx hir::Expr) {}
}
///////////////////////////////////////////////////////////////////////////////
/// SearchInterfaceForPrivateItemsVisitor traverses an item's interface and
/// finds any private components in it.
/// PrivateItemsInPublicInterfacesVisitor ensures there are no private types
/// and traits in public interfaces.
///////////////////////////////////////////////////////////////////////////////
struct SearchInterfaceForPrivateItemsVisitor<'a, 'tcx: 'a> {
tcx: TyCtxt<'a, 'tcx, 'tcx>,
item_def_id: DefId,
span: Span,
/// The visitor checks that each component type is at least this visible
required_visibility: ty::Visibility,
/// The visibility of the least visible component that has been visited
min_visibility: ty::Visibility,
has_pub_restricted: bool,
has_old_errors: bool,
in_assoc_ty: bool,
}
impl<'a, 'tcx: 'a> SearchInterfaceForPrivateItemsVisitor<'a, 'tcx> {
fn generics(&mut self) -> &mut Self {
for param in &self.tcx.generics_of(self.item_def_id).params {
match param.kind {
GenericParamDefKind::Type { has_default, .. } => {
if has_default {
self.tcx.type_of(param.def_id).visit_with(self);
}
}
GenericParamDefKind::Lifetime => {}
}
}
self
}
fn predicates(&mut self) -> &mut Self {
// NB: We use `explicit_predicates_of` and not `predicates_of`
// because we don't want to report privacy errors due to where
// clauses that the compiler inferred. We only want to
// consider the ones that the user wrote. This is important
// for the inferred outlives rules; see
// `src/test/ui/rfc-2093-infer-outlives/privacy.rs`.
let predicates = self.tcx.explicit_predicates_of(self.item_def_id);
for (predicate, _) in &predicates.predicates {
predicate.visit_with(self);
match predicate {
&ty::Predicate::Trait(poly_predicate) => {
self.check_trait_ref(poly_predicate.skip_binder().trait_ref);
},
&ty::Predicate::Projection(poly_predicate) => {
let tcx = self.tcx;
self.check_trait_ref(
poly_predicate.skip_binder().projection_ty.trait_ref(tcx)
);
},
_ => (),
};
}
self
}
fn ty(&mut self) -> &mut Self {
let ty = self.tcx.type_of(self.item_def_id);
ty.visit_with(self);
if let ty::FnDef(def_id, _) = ty.sty {
if def_id == self.item_def_id {
self.tcx.fn_sig(def_id).visit_with(self);
}
}
self
}
fn impl_trait_ref(&mut self) -> &mut Self {
if let Some(impl_trait_ref) = self.tcx.impl_trait_ref(self.item_def_id) {
self.check_trait_ref(impl_trait_ref);
impl_trait_ref.super_visit_with(self);
}
self
}
fn check_trait_ref(&mut self, trait_ref: ty::TraitRef<'tcx>) {
// Non-local means public (private items can't leave their crate, modulo bugs)
if let Some(node_id) = self.tcx.hir.as_local_node_id(trait_ref.def_id) {
let item = self.tcx.hir.expect_item(node_id);
let vis = ty::Visibility::from_hir(&item.vis, node_id, self.tcx);
if !vis.is_at_least(self.min_visibility, self.tcx) {
self.min_visibility = vis;
}
if !vis.is_at_least(self.required_visibility, self.tcx) {
if self.has_pub_restricted || self.has_old_errors || self.in_assoc_ty {
struct_span_err!(self.tcx.sess, self.span, E0445,
"private trait `{}` in public interface", trait_ref)
.span_label(self.span, format!(
"can't leak private trait"))
.emit();
} else {
self.tcx.lint_node(lint::builtin::PRIVATE_IN_PUBLIC,
node_id,
self.span,
&format!("private trait `{}` in public \
interface (error E0445)", trait_ref));
}
}
}
}
}
impl<'a, 'tcx: 'a> TypeVisitor<'tcx> for SearchInterfaceForPrivateItemsVisitor<'a, 'tcx> {
fn visit_ty(&mut self, ty: Ty<'tcx>) -> bool {
let ty_def_id = match ty.sty {
ty::Adt(adt, _) => Some(adt.did),
ty::Foreign(did) => Some(did),
ty::Dynamic(ref obj, ..) => Some(obj.principal().def_id()),
ty::Projection(ref proj) => {
if self.required_visibility == ty::Visibility::Invisible {
// Conservatively approximate the whole type alias as public without
// recursing into its components when determining impl publicity.
// For example, `impl <Type as Trait>::Alias {...}` may be a public impl
// even if both `Type` and `Trait` are private.
// Ideally, associated types should be substituted in the same way as
// free type aliases, but this isn't done yet.
return false;
}
let trait_ref = proj.trait_ref(self.tcx);
Some(trait_ref.def_id)
}
_ => None
};
if let Some(def_id) = ty_def_id {
// Non-local means public (private items can't leave their crate, modulo bugs)
if let Some(node_id) = self.tcx.hir.as_local_node_id(def_id) {
let hir_vis = match self.tcx.hir.find(node_id) {
Some(Node::Item(item)) => &item.vis,
Some(Node::ForeignItem(item)) => &item.vis,
_ => bug!("expected item of foreign item"),
};
let vis = ty::Visibility::from_hir(hir_vis, node_id, self.tcx);
if !vis.is_at_least(self.min_visibility, self.tcx) {
self.min_visibility = vis;
}
if !vis.is_at_least(self.required_visibility, self.tcx) {
let vis_adj = match hir_vis.node {
hir::VisibilityKind::Crate(_) => "crate-visible",
hir::VisibilityKind::Restricted { .. } => "restricted",
_ => "private"
};
if self.has_pub_restricted || self.has_old_errors || self.in_assoc_ty {
let mut err = struct_span_err!(self.tcx.sess, self.span, E0446,
"{} type `{}` in public interface", vis_adj, ty);
err.span_label(self.span, format!("can't leak {} type", vis_adj));
err.span_label(hir_vis.span, format!("`{}` declared as {}", ty, vis_adj));
err.emit();
} else {
self.tcx.lint_node(lint::builtin::PRIVATE_IN_PUBLIC,
node_id,
self.span,
&format!("{} type `{}` in public \
interface (error E0446)", vis_adj, ty));
}
}
}
}
ty.super_visit_with(self)
}
}
struct PrivateItemsInPublicInterfacesVisitor<'a, 'tcx: 'a> {
tcx: TyCtxt<'a, 'tcx, 'tcx>,
has_pub_restricted: bool,
old_error_set: &'a NodeSet,
inner_visibility: ty::Visibility,
}
impl<'a, 'tcx> PrivateItemsInPublicInterfacesVisitor<'a, 'tcx> {
fn check(&self, item_id: ast::NodeId, required_visibility: ty::Visibility)
-> SearchInterfaceForPrivateItemsVisitor<'a, 'tcx> {
let mut has_old_errors = false;
// Slow path taken only if there any errors in the crate.
for &id in self.old_error_set {
// Walk up the nodes until we find `item_id` (or we hit a root).
let mut id = id;
loop {
if id == item_id {
has_old_errors = true;
break;
}
let parent = self.tcx.hir.get_parent_node(id);
if parent == id {
break;
}
id = parent;
}
if has_old_errors {
break;
}
}
SearchInterfaceForPrivateItemsVisitor {
tcx: self.tcx,
item_def_id: self.tcx.hir.local_def_id(item_id),
span: self.tcx.hir.span(item_id),
min_visibility: ty::Visibility::Public,
required_visibility,
has_pub_restricted: self.has_pub_restricted,
has_old_errors,
in_assoc_ty: false,
}
}
}
impl<'a, 'tcx> Visitor<'tcx> for PrivateItemsInPublicInterfacesVisitor<'a, 'tcx> {
fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
NestedVisitorMap::OnlyBodies(&self.tcx.hir)
}
fn visit_item(&mut self, item: &'tcx hir::Item) {
let tcx = self.tcx;
let min = |vis1: ty::Visibility, vis2| {
if vis1.is_at_least(vis2, tcx) { vis2 } else { vis1 }
};
let item_visibility = ty::Visibility::from_hir(&item.vis, item.id, tcx);
match item.node {
// Crates are always public
hir::ItemKind::ExternCrate(..) => {}
// All nested items are checked by visit_item
hir::ItemKind::Mod(..) => {}
// Checked in resolve
hir::ItemKind::Use(..) => {}
// No subitems
hir::ItemKind::GlobalAsm(..) => {}
hir::ItemKind::Existential(hir::ExistTy { impl_trait_fn: Some(_), .. }) => {
// Check the traits being exposed, as they're separate,
// e.g. `impl Iterator<Item=T>` has two predicates,
// `X: Iterator` and `<X as Iterator>::Item == T`,
// where `X` is the `impl Iterator<Item=T>` itself,
// stored in `predicates_of`, not in the `Ty` itself.
self.check(item.id, item_visibility).predicates();
}
// Subitems of these items have inherited publicity
hir::ItemKind::Const(..) | hir::ItemKind::Static(..) | hir::ItemKind::Fn(..) |
hir::ItemKind::Existential(..) |
hir::ItemKind::Ty(..) => {
self.check(item.id, item_visibility).generics().predicates().ty();
// Recurse for e.g. `impl Trait` (see `visit_ty`).
self.inner_visibility = item_visibility;
intravisit::walk_item(self, item);
}
hir::ItemKind::Trait(.., ref trait_item_refs) => {
self.check(item.id, item_visibility).generics().predicates();
for trait_item_ref in trait_item_refs {
let mut check = self.check(trait_item_ref.id.node_id, item_visibility);
check.in_assoc_ty = trait_item_ref.kind == hir::AssociatedItemKind::Type;
check.generics().predicates();
if trait_item_ref.kind == hir::AssociatedItemKind::Type &&
!trait_item_ref.defaultness.has_value() {
// No type to visit.
} else {
check.ty();
}
}
}
hir::ItemKind::TraitAlias(..) => {
self.check(item.id, item_visibility).generics().predicates();
}
hir::ItemKind::Enum(ref def, _) => {
self.check(item.id, item_visibility).generics().predicates();
for variant in &def.variants {
for field in variant.node.data.fields() {
self.check(field.id, item_visibility).ty();
}
}
}
// Subitems of foreign modules have their own publicity
hir::ItemKind::ForeignMod(ref foreign_mod) => {
for foreign_item in &foreign_mod.items {
let vis = ty::Visibility::from_hir(&foreign_item.vis, item.id, tcx);
self.check(foreign_item.id, vis).generics().predicates().ty();
}
}
// Subitems of structs and unions have their own publicity
hir::ItemKind::Struct(ref struct_def, _) |
hir::ItemKind::Union(ref struct_def, _) => {
self.check(item.id, item_visibility).generics().predicates();
for field in struct_def.fields() {
let field_visibility = ty::Visibility::from_hir(&field.vis, item.id, tcx);
self.check(field.id, min(item_visibility, field_visibility)).ty();
}
}
// An inherent impl is public when its type is public
// Subitems of inherent impls have their own publicity
hir::ItemKind::Impl(.., None, _, ref impl_item_refs) => {
let ty_vis =
self.check(item.id, ty::Visibility::Invisible).ty().min_visibility;
self.check(item.id, ty_vis).generics().predicates();
for impl_item_ref in impl_item_refs {
let impl_item = self.tcx.hir.impl_item(impl_item_ref.id);
let impl_item_vis = ty::Visibility::from_hir(&impl_item.vis, item.id, tcx);
let mut check = self.check(impl_item.id, min(impl_item_vis, ty_vis));
check.in_assoc_ty = impl_item_ref.kind == hir::AssociatedItemKind::Type;
check.generics().predicates().ty();
// Recurse for e.g. `impl Trait` (see `visit_ty`).
self.inner_visibility = impl_item_vis;
intravisit::walk_impl_item(self, impl_item);
}
}
// A trait impl is public when both its type and its trait are public
// Subitems of trait impls have inherited publicity
hir::ItemKind::Impl(.., Some(_), _, ref impl_item_refs) => {
let vis = self.check(item.id, ty::Visibility::Invisible)
.ty().impl_trait_ref().min_visibility;
self.check(item.id, vis).generics().predicates();
for impl_item_ref in impl_item_refs {
let impl_item = self.tcx.hir.impl_item(impl_item_ref.id);
let mut check = self.check(impl_item.id, vis);
check.in_assoc_ty = impl_item_ref.kind == hir::AssociatedItemKind::Type;
check.generics().predicates().ty();
// Recurse for e.g. `impl Trait` (see `visit_ty`).
self.inner_visibility = vis;
intravisit::walk_impl_item(self, impl_item);
}
}
}
}
fn visit_impl_item(&mut self, _impl_item: &'tcx hir::ImplItem) {
// handled in `visit_item` above
}
// Don't recurse into expressions in array sizes or const initializers
fn visit_expr(&mut self, _: &'tcx hir::Expr) {}
// Don't recurse into patterns in function arguments
fn visit_pat(&mut self, _: &'tcx hir::Pat) {}
}
pub fn provide(providers: &mut Providers) {
*providers = Providers {
privacy_access_levels,
..*providers
};
}
pub fn check_crate<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>) -> Lrc<AccessLevels> {
tcx.privacy_access_levels(LOCAL_CRATE)
}
fn privacy_access_levels<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
krate: CrateNum)
-> Lrc<AccessLevels> {
assert_eq!(krate, LOCAL_CRATE);
let krate = tcx.hir.krate();
let empty_tables = ty::TypeckTables::empty(None);
// Check privacy of names not checked in previous compilation stages.
let mut visitor = NamePrivacyVisitor {
tcx,
tables: &empty_tables,
current_item: CRATE_NODE_ID,
empty_tables: &empty_tables,
};
intravisit::walk_crate(&mut visitor, krate);
// Check privacy of explicitly written types and traits as well as
// inferred types of expressions and patterns.
let mut visitor = TypePrivacyVisitor {
tcx,
tables: &empty_tables,
current_item: DefId::local(CRATE_DEF_INDEX),
in_body: false,
span: krate.span,
empty_tables: &empty_tables,
visited_opaque_tys: FxHashSet::default()
};
intravisit::walk_crate(&mut visitor, krate);
// Build up a set of all exported items in the AST. This is a set of all
// items which are reachable from external crates based on visibility.
let mut visitor = EmbargoVisitor {
tcx,
access_levels: Default::default(),
prev_level: Some(AccessLevel::Public),
changed: false,
};
loop {
intravisit::walk_crate(&mut visitor, krate);
if visitor.changed {
visitor.changed = false;
} else {
break
}
}
visitor.update(ast::CRATE_NODE_ID, Some(AccessLevel::Public));
{
let mut visitor = ObsoleteVisiblePrivateTypesVisitor {
tcx,
access_levels: &visitor.access_levels,
in_variant: false,
old_error_set: NodeSet(),
};
intravisit::walk_crate(&mut visitor, krate);
let has_pub_restricted = {
let mut pub_restricted_visitor = PubRestrictedVisitor {
tcx,
has_pub_restricted: false
};
intravisit::walk_crate(&mut pub_restricted_visitor, krate);
pub_restricted_visitor.has_pub_restricted
};
// Check for private types and traits in public interfaces
let mut visitor = PrivateItemsInPublicInterfacesVisitor {
tcx,
has_pub_restricted,
old_error_set: &visitor.old_error_set,
inner_visibility: ty::Visibility::Public,
};
krate.visit_all_item_likes(&mut DeepVisitor::new(&mut visitor));
}
Lrc::new(visitor.access_levels)
}
__build_diagnostic_array! { librustc_privacy, DIAGNOSTICS }