blob: d16094e8238deba487d4b1d67e0d14d8ecb8e8ae [file] [log] [blame]
// Copyright 2017 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Liveness analysis which computes liveness of MIR local variables at the boundary of basic blocks
//!
//! This analysis considers references as being used only at the point of the
//! borrow. This means that this does not track uses because of references that
//! already exist:
//!
//! ```Rust
//! fn foo() {
//! x = 0;
//! // `x` is live here
//! GLOBAL = &x: *const u32;
//! // but not here, even while it can be accessed through `GLOBAL`.
//! foo();
//! x = 1;
//! // `x` is live again here, because it is assigned to `OTHER_GLOBAL`
//! OTHER_GLOBAL = &x: *const u32;
//! // ...
//! }
//! ```
//!
//! This means that users of this analysis still have to check whether
//! pre-existing references can be used to access the value (e.g. at movable
//! generator yield points, all pre-existing references are invalidated, so this
//! doesn't matter).
use rustc::mir::visit::{
PlaceContext, Visitor, MutatingUseContext, NonMutatingUseContext, NonUseContext,
};
use rustc::mir::Local;
use rustc::mir::*;
use rustc::ty::{item_path, TyCtxt};
use rustc_data_structures::bit_set::BitSet;
use rustc_data_structures::indexed_vec::{Idx, IndexVec};
use rustc_data_structures::work_queue::WorkQueue;
use std::fs;
use std::io::{self, Write};
use std::path::{Path, PathBuf};
use transform::MirSource;
use util::pretty::{dump_enabled, write_basic_block, write_mir_intro};
pub type LiveVarSet<V> = BitSet<V>;
/// This gives the result of the liveness analysis at the boundary of
/// basic blocks.
///
/// The `V` type defines the set of variables that we computed
/// liveness for. This is often `Local`, in which case we computed
/// liveness for all variables -- but it can also be some other type,
/// which indicates a subset of the variables within the graph.
pub struct LivenessResult<V: Idx> {
/// Live variables on exit to each basic block. This is equal to
/// the union of the `ins` for each successor.
pub outs: IndexVec<BasicBlock, LiveVarSet<V>>,
}
/// Defines the mapping to/from the MIR local variables (`Local`) to
/// the "live variable indices" we are using in a particular
/// computation.
pub trait LiveVariableMap {
type LiveVar;
fn from_local(&self, local: Local) -> Option<Self::LiveVar>;
fn from_live_var(&self, local: Self::LiveVar) -> Local;
fn num_variables(&self) -> usize;
}
#[derive(Debug)]
pub struct IdentityMap<'a, 'tcx: 'a> {
mir: &'a Mir<'tcx>,
}
impl<'a, 'tcx> IdentityMap<'a, 'tcx> {
pub fn new(mir: &'a Mir<'tcx>) -> Self {
Self { mir }
}
}
impl<'a, 'tcx> LiveVariableMap for IdentityMap<'a, 'tcx> {
type LiveVar = Local;
fn from_local(&self, local: Local) -> Option<Self::LiveVar> {
Some(local)
}
fn from_live_var(&self, local: Self::LiveVar) -> Local {
local
}
fn num_variables(&self) -> usize {
self.mir.local_decls.len()
}
}
/// Compute which local variables are live within the given function
/// `mir`. The liveness mode `mode` determines what sorts of uses are
/// considered to make a variable live (e.g., do drops count?).
pub fn liveness_of_locals<'tcx, V: Idx>(
mir: &Mir<'tcx>,
map: &impl LiveVariableMap<LiveVar = V>,
) -> LivenessResult<V> {
let num_live_vars = map.num_variables();
let def_use: IndexVec<_, DefsUses<V>> = mir
.basic_blocks()
.iter()
.map(|b| block(map, b, num_live_vars))
.collect();
let mut outs: IndexVec<_, LiveVarSet<V>> = mir
.basic_blocks()
.indices()
.map(|_| LiveVarSet::new_empty(num_live_vars))
.collect();
let mut bits = LiveVarSet::new_empty(num_live_vars);
// queue of things that need to be re-processed, and a set containing
// the things currently in the queue
let mut dirty_queue: WorkQueue<BasicBlock> = WorkQueue::with_all(mir.basic_blocks().len());
let predecessors = mir.predecessors();
while let Some(bb) = dirty_queue.pop() {
// bits = use ∪ (bits - def)
bits.overwrite(&outs[bb]);
def_use[bb].apply(&mut bits);
// `bits` now contains the live variables on entry. Therefore,
// add `bits` to the `out` set for each predecessor; if those
// bits were not already present, then enqueue the predecessor
// as dirty.
//
// (note that `union` returns true if the `self` set changed)
for &pred_bb in &predecessors[bb] {
if outs[pred_bb].union(&bits) {
dirty_queue.insert(pred_bb);
}
}
}
LivenessResult { outs }
}
#[derive(Eq, PartialEq, Clone)]
pub enum DefUse {
Def,
Use,
Drop,
}
pub fn categorize<'tcx>(context: PlaceContext<'tcx>) -> Option<DefUse> {
match context {
///////////////////////////////////////////////////////////////////////////
// DEFS
PlaceContext::MutatingUse(MutatingUseContext::Store) |
// This is potentially both a def and a use...
PlaceContext::MutatingUse(MutatingUseContext::AsmOutput) |
// We let Call define the result in both the success and
// unwind cases. This is not really correct, however it
// does not seem to be observable due to the way that we
// generate MIR. To do things properly, we would apply
// the def in call only to the input from the success
// path and not the unwind path. -nmatsakis
PlaceContext::MutatingUse(MutatingUseContext::Call) |
// Storage live and storage dead aren't proper defines, but we can ignore
// values that come before them.
PlaceContext::NonUse(NonUseContext::StorageLive) |
PlaceContext::NonUse(NonUseContext::StorageDead) => Some(DefUse::Def),
///////////////////////////////////////////////////////////////////////////
// REGULAR USES
//
// These are uses that occur *outside* of a drop. For the
// purposes of NLL, these are special in that **all** the
// lifetimes appearing in the variable must be live for each regular use.
PlaceContext::NonMutatingUse(NonMutatingUseContext::Projection) |
PlaceContext::MutatingUse(MutatingUseContext::Projection) |
// Borrows only consider their local used at the point of the borrow.
// This won't affect the results since we use this analysis for generators
// and we only care about the result at suspension points. Borrows cannot
// cross suspension points so this behavior is unproblematic.
PlaceContext::MutatingUse(MutatingUseContext::Borrow(..)) |
PlaceContext::NonMutatingUse(NonMutatingUseContext::SharedBorrow(..)) |
PlaceContext::NonMutatingUse(NonMutatingUseContext::ShallowBorrow(..)) |
PlaceContext::NonMutatingUse(NonMutatingUseContext::UniqueBorrow(..)) |
PlaceContext::NonMutatingUse(NonMutatingUseContext::Inspect) |
PlaceContext::NonMutatingUse(NonMutatingUseContext::Copy) |
PlaceContext::NonMutatingUse(NonMutatingUseContext::Move) |
PlaceContext::NonUse(NonUseContext::AscribeUserTy) |
PlaceContext::NonUse(NonUseContext::Validate) =>
Some(DefUse::Use),
///////////////////////////////////////////////////////////////////////////
// DROP USES
//
// These are uses that occur in a DROP (a MIR drop, not a
// call to `std::mem::drop()`). For the purposes of NLL,
// uses in drop are special because `#[may_dangle]`
// attributes can affect whether lifetimes must be live.
PlaceContext::MutatingUse(MutatingUseContext::Drop) =>
Some(DefUse::Drop),
}
}
struct DefsUsesVisitor<'lv, V, M>
where
V: Idx,
M: LiveVariableMap<LiveVar = V> + 'lv,
{
map: &'lv M,
defs_uses: DefsUses<V>,
}
#[derive(Eq, PartialEq, Clone)]
struct DefsUses<V: Idx> {
defs: LiveVarSet<V>,
uses: LiveVarSet<V>,
}
impl<V: Idx> DefsUses<V> {
fn apply(&self, bits: &mut LiveVarSet<V>) -> bool {
bits.subtract(&self.defs) | bits.union(&self.uses)
}
fn add_def(&mut self, index: V) {
// If it was used already in the block, remove that use
// now that we found a definition.
//
// Example:
//
// // Defs = {X}, Uses = {}
// X = 5
// // Defs = {}, Uses = {X}
// use(X)
self.uses.remove(index);
self.defs.insert(index);
}
fn add_use(&mut self, index: V) {
// Inverse of above.
//
// Example:
//
// // Defs = {}, Uses = {X}
// use(X)
// // Defs = {X}, Uses = {}
// X = 5
// // Defs = {}, Uses = {X}
// use(X)
self.defs.remove(index);
self.uses.insert(index);
}
}
impl<'tcx, 'lv, V, M> Visitor<'tcx> for DefsUsesVisitor<'lv, V, M>
where
V: Idx,
M: LiveVariableMap<LiveVar = V>,
{
fn visit_local(&mut self, &local: &Local, context: PlaceContext<'tcx>, _: Location) {
if let Some(v_index) = self.map.from_local(local) {
match categorize(context) {
Some(DefUse::Def) => self.defs_uses.add_def(v_index),
Some(DefUse::Use) | Some(DefUse::Drop) => self.defs_uses.add_use(v_index),
_ => (),
}
}
}
}
fn block<'tcx, V: Idx>(
map: &impl LiveVariableMap<LiveVar = V>,
b: &BasicBlockData<'tcx>,
locals: usize,
) -> DefsUses<V> {
let mut visitor = DefsUsesVisitor {
map,
defs_uses: DefsUses {
defs: LiveVarSet::new_empty(locals),
uses: LiveVarSet::new_empty(locals),
},
};
let dummy_location = Location {
block: BasicBlock::new(0),
statement_index: 0,
};
// Visit the various parts of the basic block in reverse. If we go
// forward, the logic in `add_def` and `add_use` would be wrong.
visitor.visit_terminator(BasicBlock::new(0), b.terminator(), dummy_location);
for statement in b.statements.iter().rev() {
visitor.visit_statement(BasicBlock::new(0), statement, dummy_location);
}
visitor.defs_uses
}
pub fn dump_mir<'a, 'tcx, V: Idx>(
tcx: TyCtxt<'a, 'tcx, 'tcx>,
pass_name: &str,
source: MirSource,
mir: &Mir<'tcx>,
map: &impl LiveVariableMap<LiveVar = V>,
result: &LivenessResult<V>,
) {
if !dump_enabled(tcx, pass_name, source) {
return;
}
let node_path = item_path::with_forced_impl_filename_line(|| {
// see notes on #41697 below
tcx.item_path_str(source.def_id)
});
dump_matched_mir_node(tcx, pass_name, &node_path, source, mir, map, result);
}
fn dump_matched_mir_node<'a, 'tcx, V: Idx>(
tcx: TyCtxt<'a, 'tcx, 'tcx>,
pass_name: &str,
node_path: &str,
source: MirSource,
mir: &Mir<'tcx>,
map: &dyn LiveVariableMap<LiveVar = V>,
result: &LivenessResult<V>,
) {
let mut file_path = PathBuf::new();
file_path.push(Path::new(&tcx.sess.opts.debugging_opts.dump_mir_dir));
let item_id = tcx.hir.as_local_node_id(source.def_id).unwrap();
let file_name = format!("rustc.node{}{}-liveness.mir", item_id, pass_name);
file_path.push(&file_name);
let _ = fs::File::create(&file_path).and_then(|mut file| {
writeln!(file, "// MIR local liveness analysis for `{}`", node_path)?;
writeln!(file, "// source = {:?}", source)?;
writeln!(file, "// pass_name = {}", pass_name)?;
writeln!(file, "")?;
write_mir_fn(tcx, source, mir, map, &mut file, result)?;
Ok(())
});
}
pub fn write_mir_fn<'a, 'tcx, V: Idx>(
tcx: TyCtxt<'a, 'tcx, 'tcx>,
src: MirSource,
mir: &Mir<'tcx>,
map: &dyn LiveVariableMap<LiveVar = V>,
w: &mut dyn Write,
result: &LivenessResult<V>,
) -> io::Result<()> {
write_mir_intro(tcx, src, mir, w)?;
for block in mir.basic_blocks().indices() {
let print = |w: &mut dyn Write, prefix, result: &IndexVec<BasicBlock, LiveVarSet<V>>| {
let live: Vec<String> = result[block]
.iter()
.map(|v| map.from_live_var(v))
.map(|local| format!("{:?}", local))
.collect();
writeln!(w, "{} {{{}}}", prefix, live.join(", "))
};
write_basic_block(tcx, block, mir, &mut |_, _| Ok(()), w)?;
print(w, " ", &result.outs)?;
if block.index() + 1 != mir.basic_blocks().len() {
writeln!(w, "")?;
}
}
writeln!(w, "}}")?;
Ok(())
}