blob: ab2c7c2325c99b223963cbf5558bc8a93aca2750 [file] [log] [blame]
// Copyright 2017 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use std::any::Any;
use std::cell::{Cell, RefCell};
use std::collections::BTreeSet;
use std::collections::HashMap;
use std::env;
use std::fmt::Debug;
use std::fs;
use std::hash::Hash;
use std::ops::Deref;
use std::path::{Path, PathBuf};
use std::process::Command;
use std::time::{Duration, Instant};
use cache::{Cache, Interned, INTERNER};
use check;
use compile;
use dist;
use doc;
use flags::Subcommand;
use install;
use native;
use test;
use tool;
use util::{add_lib_path, exe, libdir};
use {Build, DocTests, Mode, GitRepo};
pub use Compiler;
use petgraph::graph::NodeIndex;
use petgraph::Graph;
pub struct Builder<'a> {
pub build: &'a Build,
pub top_stage: u32,
pub kind: Kind,
cache: Cache,
stack: RefCell<Vec<Box<dyn Any>>>,
time_spent_on_dependencies: Cell<Duration>,
pub paths: Vec<PathBuf>,
graph_nodes: RefCell<HashMap<String, NodeIndex>>,
graph: RefCell<Graph<String, bool>>,
parent: Cell<Option<NodeIndex>>,
}
impl<'a> Deref for Builder<'a> {
type Target = Build;
fn deref(&self) -> &Self::Target {
self.build
}
}
pub trait Step: 'static + Clone + Debug + PartialEq + Eq + Hash {
/// `PathBuf` when directories are created or to return a `Compiler` once
/// it's been assembled.
type Output: Clone;
const DEFAULT: bool = false;
/// Run this rule for all hosts without cross compiling.
const ONLY_HOSTS: bool = false;
/// Primary function to execute this rule. Can call `builder.ensure(...)`
/// with other steps to run those.
fn run(self, builder: &Builder) -> Self::Output;
/// When bootstrap is passed a set of paths, this controls whether this rule
/// will execute. However, it does not get called in a "default" context
/// when we are not passed any paths; in that case, make_run is called
/// directly.
fn should_run(run: ShouldRun) -> ShouldRun;
/// Build up a "root" rule, either as a default rule or from a path passed
/// to us.
///
/// When path is `None`, we are executing in a context where no paths were
/// passed. When `./x.py build` is run, for example, this rule could get
/// called if it is in the correct list below with a path of `None`.
fn make_run(_run: RunConfig) {
// It is reasonable to not have an implementation of make_run for rules
// who do not want to get called from the root context. This means that
// they are likely dependencies (e.g., sysroot creation) or similar, and
// as such calling them from ./x.py isn't logical.
unimplemented!()
}
}
pub struct RunConfig<'a> {
pub builder: &'a Builder<'a>,
pub host: Interned<String>,
pub target: Interned<String>,
pub path: PathBuf,
}
struct StepDescription {
default: bool,
only_hosts: bool,
should_run: fn(ShouldRun) -> ShouldRun,
make_run: fn(RunConfig),
name: &'static str,
}
#[derive(Debug, Clone, PartialOrd, Ord, PartialEq, Eq)]
pub enum PathSet {
Set(BTreeSet<PathBuf>),
Suite(PathBuf),
}
impl PathSet {
fn empty() -> PathSet {
PathSet::Set(BTreeSet::new())
}
fn one<P: Into<PathBuf>>(path: P) -> PathSet {
let mut set = BTreeSet::new();
set.insert(path.into());
PathSet::Set(set)
}
fn has(&self, needle: &Path) -> bool {
match self {
PathSet::Set(set) => set.iter().any(|p| p.ends_with(needle)),
PathSet::Suite(suite) => suite.ends_with(needle),
}
}
fn path(&self, builder: &Builder) -> PathBuf {
match self {
PathSet::Set(set) => set
.iter()
.next()
.unwrap_or(&builder.build.src)
.to_path_buf(),
PathSet::Suite(path) => PathBuf::from(path),
}
}
}
impl StepDescription {
fn from<S: Step>() -> StepDescription {
StepDescription {
default: S::DEFAULT,
only_hosts: S::ONLY_HOSTS,
should_run: S::should_run,
make_run: S::make_run,
name: unsafe { ::std::intrinsics::type_name::<S>() },
}
}
fn maybe_run(&self, builder: &Builder, pathset: &PathSet) {
if builder.config.exclude.iter().any(|e| pathset.has(e)) {
eprintln!("Skipping {:?} because it is excluded", pathset);
return;
} else if !builder.config.exclude.is_empty() {
eprintln!(
"{:?} not skipped for {:?} -- not in {:?}",
pathset, self.name, builder.config.exclude
);
}
let hosts = &builder.hosts;
// Determine the targets participating in this rule.
let targets = if self.only_hosts {
if !builder.config.run_host_only {
return; // don't run anything
} else {
&builder.hosts
}
} else {
&builder.targets
};
for host in hosts {
for target in targets {
let run = RunConfig {
builder,
path: pathset.path(builder),
host: *host,
target: *target,
};
(self.make_run)(run);
}
}
}
fn run(v: &[StepDescription], builder: &Builder, paths: &[PathBuf]) {
let should_runs = v
.iter()
.map(|desc| (desc.should_run)(ShouldRun::new(builder)))
.collect::<Vec<_>>();
// sanity checks on rules
for (desc, should_run) in v.iter().zip(&should_runs) {
assert!(
!should_run.paths.is_empty(),
"{:?} should have at least one pathset",
desc.name
);
}
if paths.is_empty() {
for (desc, should_run) in v.iter().zip(should_runs) {
if desc.default && should_run.is_really_default {
for pathset in &should_run.paths {
desc.maybe_run(builder, pathset);
}
}
}
} else {
for path in paths {
// strip CurDir prefix if present
let path = match path.strip_prefix(".") {
Ok(p) => p,
Err(_) => path,
};
let mut attempted_run = false;
for (desc, should_run) in v.iter().zip(&should_runs) {
if let Some(suite) = should_run.is_suite_path(path) {
attempted_run = true;
desc.maybe_run(builder, suite);
} else if let Some(pathset) = should_run.pathset_for_path(path) {
attempted_run = true;
desc.maybe_run(builder, pathset);
}
}
if !attempted_run {
panic!("Error: no rules matched {}.", path.display());
}
}
}
}
}
#[derive(Clone)]
pub struct ShouldRun<'a> {
pub builder: &'a Builder<'a>,
// use a BTreeSet to maintain sort order
paths: BTreeSet<PathSet>,
// If this is a default rule, this is an additional constraint placed on
// its run. Generally something like compiler docs being enabled.
is_really_default: bool,
}
impl<'a> ShouldRun<'a> {
fn new(builder: &'a Builder) -> ShouldRun<'a> {
ShouldRun {
builder,
paths: BTreeSet::new(),
is_really_default: true, // by default no additional conditions
}
}
pub fn default_condition(mut self, cond: bool) -> Self {
self.is_really_default = cond;
self
}
// Unlike `krate` this will create just one pathset. As such, it probably shouldn't actually
// ever be used, but as we transition to having all rules properly handle passing krate(...) by
// actually doing something different for every crate passed.
pub fn all_krates(mut self, name: &str) -> Self {
let mut set = BTreeSet::new();
for krate in self.builder.in_tree_crates(name) {
set.insert(PathBuf::from(&krate.path));
}
self.paths.insert(PathSet::Set(set));
self
}
pub fn krate(mut self, name: &str) -> Self {
for krate in self.builder.in_tree_crates(name) {
self.paths.insert(PathSet::one(&krate.path));
}
self
}
// single, non-aliased path
pub fn path(self, path: &str) -> Self {
self.paths(&[path])
}
// multiple aliases for the same job
pub fn paths(mut self, paths: &[&str]) -> Self {
self.paths
.insert(PathSet::Set(paths.iter().map(PathBuf::from).collect()));
self
}
pub fn is_suite_path(&self, path: &Path) -> Option<&PathSet> {
self.paths.iter().find(|pathset| match pathset {
PathSet::Suite(p) => path.starts_with(p),
PathSet::Set(_) => false,
})
}
pub fn suite_path(mut self, suite: &str) -> Self {
self.paths.insert(PathSet::Suite(PathBuf::from(suite)));
self
}
// allows being more explicit about why should_run in Step returns the value passed to it
pub fn never(mut self) -> ShouldRun<'a> {
self.paths.insert(PathSet::empty());
self
}
fn pathset_for_path(&self, path: &Path) -> Option<&PathSet> {
self.paths.iter().find(|pathset| pathset.has(path))
}
}
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub enum Kind {
Build,
Check,
Test,
Bench,
Dist,
Doc,
Install,
}
impl<'a> Builder<'a> {
fn get_step_descriptions(kind: Kind) -> Vec<StepDescription> {
macro_rules! describe {
($($rule:ty),+ $(,)*) => {{
vec![$(StepDescription::from::<$rule>()),+]
}};
}
match kind {
Kind::Build => describe!(
compile::Std,
compile::Test,
compile::Rustc,
compile::CodegenBackend,
compile::StartupObjects,
tool::BuildManifest,
tool::Rustbook,
tool::ErrorIndex,
tool::UnstableBookGen,
tool::Tidy,
tool::Linkchecker,
tool::CargoTest,
tool::Compiletest,
tool::RemoteTestServer,
tool::RemoteTestClient,
tool::RustInstaller,
tool::Cargo,
tool::Rls,
tool::Rustdoc,
tool::Clippy,
native::Llvm,
tool::Rustfmt,
tool::Miri,
native::Lld
),
Kind::Check => describe!(
check::Std,
check::Test,
check::Rustc,
check::CodegenBackend,
check::Rustdoc
),
Kind::Test => describe!(
test::Tidy,
test::Ui,
test::RunPass,
test::CompileFail,
test::RunFail,
test::RunPassValgrind,
test::MirOpt,
test::Codegen,
test::CodegenUnits,
test::Incremental,
test::Debuginfo,
test::UiFullDeps,
test::RunPassFullDeps,
test::RunFailFullDeps,
test::CompileFailFullDeps,
test::IncrementalFullDeps,
test::Rustdoc,
test::Pretty,
test::RunPassPretty,
test::RunFailPretty,
test::RunPassValgrindPretty,
test::RunPassFullDepsPretty,
test::RunFailFullDepsPretty,
test::Crate,
test::CrateLibrustc,
test::CrateRustdoc,
test::Linkcheck,
test::Cargotest,
test::Cargo,
test::Rls,
test::ErrorIndex,
test::Distcheck,
test::RunMakeFullDeps,
test::Nomicon,
test::Reference,
test::RustdocBook,
test::RustByExample,
test::TheBook,
test::UnstableBook,
test::RustcBook,
test::Rustfmt,
test::Miri,
test::Clippy,
test::RustdocJS,
test::RustdocTheme,
// Run bootstrap close to the end as it's unlikely to fail
test::Bootstrap,
// Run run-make last, since these won't pass without make on Windows
test::RunMake,
test::RustdocUi
),
Kind::Bench => describe!(test::Crate, test::CrateLibrustc),
Kind::Doc => describe!(
doc::UnstableBook,
doc::UnstableBookGen,
doc::TheBook,
doc::Standalone,
doc::Std,
doc::Test,
doc::WhitelistedRustc,
doc::Rustc,
doc::Rustdoc,
doc::ErrorIndex,
doc::Nomicon,
doc::Reference,
doc::RustdocBook,
doc::RustByExample,
doc::RustcBook,
doc::CargoBook
),
Kind::Dist => describe!(
dist::Docs,
dist::RustcDocs,
dist::Mingw,
dist::Rustc,
dist::DebuggerScripts,
dist::Std,
dist::Analysis,
dist::Src,
dist::PlainSourceTarball,
dist::Cargo,
dist::Rls,
dist::Rustfmt,
dist::Clippy,
dist::LlvmTools,
dist::Lldb,
dist::Extended,
dist::HashSign
),
Kind::Install => describe!(
install::Docs,
install::Std,
install::Cargo,
install::Rls,
install::Rustfmt,
install::Clippy,
install::Analysis,
install::Src,
install::Rustc
),
}
}
pub fn get_help(build: &Build, subcommand: &str) -> Option<String> {
let kind = match subcommand {
"build" => Kind::Build,
"doc" => Kind::Doc,
"test" => Kind::Test,
"bench" => Kind::Bench,
"dist" => Kind::Dist,
"install" => Kind::Install,
_ => return None,
};
let builder = Builder {
build,
top_stage: build.config.stage.unwrap_or(2),
kind,
cache: Cache::new(),
stack: RefCell::new(Vec::new()),
time_spent_on_dependencies: Cell::new(Duration::new(0, 0)),
paths: vec![],
graph_nodes: RefCell::new(HashMap::new()),
graph: RefCell::new(Graph::new()),
parent: Cell::new(None),
};
let builder = &builder;
let mut should_run = ShouldRun::new(builder);
for desc in Builder::get_step_descriptions(builder.kind) {
should_run = (desc.should_run)(should_run);
}
let mut help = String::from("Available paths:\n");
for pathset in should_run.paths {
if let PathSet::Set(set) = pathset {
set.iter().for_each(|path| {
help.push_str(
format!(" ./x.py {} {}\n", subcommand, path.display()).as_str(),
)
})
}
}
Some(help)
}
pub fn new(build: &Build) -> Builder {
let (kind, paths) = match build.config.cmd {
Subcommand::Build { ref paths } => (Kind::Build, &paths[..]),
Subcommand::Check { ref paths } => (Kind::Check, &paths[..]),
Subcommand::Doc { ref paths } => (Kind::Doc, &paths[..]),
Subcommand::Test { ref paths, .. } => (Kind::Test, &paths[..]),
Subcommand::Bench { ref paths, .. } => (Kind::Bench, &paths[..]),
Subcommand::Dist { ref paths } => (Kind::Dist, &paths[..]),
Subcommand::Install { ref paths } => (Kind::Install, &paths[..]),
Subcommand::Clean { .. } => panic!(),
};
let builder = Builder {
build,
top_stage: build.config.stage.unwrap_or(2),
kind,
cache: Cache::new(),
stack: RefCell::new(Vec::new()),
time_spent_on_dependencies: Cell::new(Duration::new(0, 0)),
paths: paths.to_owned(),
graph_nodes: RefCell::new(HashMap::new()),
graph: RefCell::new(Graph::new()),
parent: Cell::new(None),
};
if kind == Kind::Dist {
assert!(
!builder.config.test_miri,
"Do not distribute with miri enabled.\n\
The distributed libraries would include all MIR (increasing binary size).
The distributed MIR would include validation statements."
);
}
builder
}
pub fn execute_cli(&self) -> Graph<String, bool> {
self.run_step_descriptions(&Builder::get_step_descriptions(self.kind), &self.paths);
self.graph.borrow().clone()
}
pub fn default_doc(&self, paths: Option<&[PathBuf]>) {
let paths = paths.unwrap_or(&[]);
self.run_step_descriptions(&Builder::get_step_descriptions(Kind::Doc), paths);
}
fn run_step_descriptions(&self, v: &[StepDescription], paths: &[PathBuf]) {
StepDescription::run(v, self, paths);
}
/// Obtain a compiler at a given stage and for a given host. Explicitly does
/// not take `Compiler` since all `Compiler` instances are meant to be
/// obtained through this function, since it ensures that they are valid
/// (i.e., built and assembled).
pub fn compiler(&self, stage: u32, host: Interned<String>) -> Compiler {
self.ensure(compile::Assemble {
target_compiler: Compiler { stage, host },
})
}
pub fn sysroot(&self, compiler: Compiler) -> Interned<PathBuf> {
self.ensure(compile::Sysroot { compiler })
}
/// Returns the libdir where the standard library and other artifacts are
/// found for a compiler's sysroot.
pub fn sysroot_libdir(
&self,
compiler: Compiler,
target: Interned<String>,
) -> Interned<PathBuf> {
#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)]
struct Libdir {
compiler: Compiler,
target: Interned<String>,
}
impl Step for Libdir {
type Output = Interned<PathBuf>;
fn should_run(run: ShouldRun) -> ShouldRun {
run.never()
}
fn run(self, builder: &Builder) -> Interned<PathBuf> {
let compiler = self.compiler;
let config = &builder.build.config;
let lib = if compiler.stage >= 1 && config.libdir_relative().is_some() {
builder.build.config.libdir_relative().unwrap()
} else {
Path::new("lib")
};
let sysroot = builder
.sysroot(self.compiler)
.join(lib)
.join("rustlib")
.join(self.target)
.join("lib");
let _ = fs::remove_dir_all(&sysroot);
t!(fs::create_dir_all(&sysroot));
INTERNER.intern_path(sysroot)
}
}
self.ensure(Libdir { compiler, target })
}
pub fn sysroot_codegen_backends(&self, compiler: Compiler) -> PathBuf {
self.sysroot_libdir(compiler, compiler.host)
.with_file_name(self.config.rust_codegen_backends_dir.clone())
}
/// Returns the compiler's libdir where it stores the dynamic libraries that
/// it itself links against.
///
/// For example this returns `<sysroot>/lib` on Unix and `<sysroot>/bin` on
/// Windows.
pub fn rustc_libdir(&self, compiler: Compiler) -> PathBuf {
if compiler.is_snapshot(self) {
self.rustc_snapshot_libdir()
} else {
self.sysroot(compiler).join(libdir(&compiler.host))
}
}
/// Adds the compiler's directory of dynamic libraries to `cmd`'s dynamic
/// library lookup path.
pub fn add_rustc_lib_path(&self, compiler: Compiler, cmd: &mut Command) {
// Windows doesn't need dylib path munging because the dlls for the
// compiler live next to the compiler and the system will find them
// automatically.
if cfg!(windows) {
return;
}
add_lib_path(vec![self.rustc_libdir(compiler)], cmd);
}
/// Get a path to the compiler specified.
pub fn rustc(&self, compiler: Compiler) -> PathBuf {
if compiler.is_snapshot(self) {
self.initial_rustc.clone()
} else {
self.sysroot(compiler)
.join("bin")
.join(exe("rustc", &compiler.host))
}
}
pub fn rustdoc(&self, host: Interned<String>) -> PathBuf {
self.ensure(tool::Rustdoc { host })
}
pub fn rustdoc_cmd(&self, host: Interned<String>) -> Command {
let mut cmd = Command::new(&self.out.join("bootstrap/debug/rustdoc"));
let compiler = self.compiler(self.top_stage, host);
cmd.env("RUSTC_STAGE", compiler.stage.to_string())
.env("RUSTC_SYSROOT", self.sysroot(compiler))
.env(
"RUSTDOC_LIBDIR",
self.sysroot_libdir(compiler, self.config.build),
)
.env("CFG_RELEASE_CHANNEL", &self.config.channel)
.env("RUSTDOC_REAL", self.rustdoc(host))
.env("RUSTDOC_CRATE_VERSION", self.rust_version())
.env("RUSTC_BOOTSTRAP", "1");
if let Some(linker) = self.linker(host) {
cmd.env("RUSTC_TARGET_LINKER", linker);
}
cmd
}
/// Prepares an invocation of `cargo` to be run.
///
/// This will create a `Command` that represents a pending execution of
/// Cargo. This cargo will be configured to use `compiler` as the actual
/// rustc compiler, its output will be scoped by `mode`'s output directory,
/// it will pass the `--target` flag for the specified `target`, and will be
/// executing the Cargo command `cmd`.
pub fn cargo(
&self,
compiler: Compiler,
mode: Mode,
target: Interned<String>,
cmd: &str,
) -> Command {
let mut cargo = Command::new(&self.initial_cargo);
let out_dir = self.stage_out(compiler, mode);
// command specific path, we call clear_if_dirty with this
let mut my_out = match cmd {
"build" => self.cargo_out(compiler, mode, target),
// This is the intended out directory for crate documentation.
"doc" => self.crate_doc_out(target),
_ => self.stage_out(compiler, mode),
};
// This is for the original compiler, but if we're forced to use stage 1, then
// std/test/rustc stamps won't exist in stage 2, so we need to get those from stage 1, since
// we copy the libs forward.
let cmp = if self.force_use_stage1(compiler, target) {
self.compiler(1, compiler.host)
} else {
compiler
};
let libstd_stamp = match cmd {
"check" => check::libstd_stamp(self, cmp, target),
_ => compile::libstd_stamp(self, cmp, target),
};
let libtest_stamp = match cmd {
"check" => check::libtest_stamp(self, cmp, target),
_ => compile::libstd_stamp(self, cmp, target),
};
let librustc_stamp = match cmd {
"check" => check::librustc_stamp(self, cmp, target),
_ => compile::librustc_stamp(self, cmp, target),
};
if cmd == "doc" {
if mode == Mode::Rustc || mode == Mode::ToolRustc || mode == Mode::Codegen {
// This is the intended out directory for compiler documentation.
my_out = self.compiler_doc_out(target);
}
let rustdoc = self.rustdoc(compiler.host);
self.clear_if_dirty(&my_out, &rustdoc);
} else if cmd != "test" {
match mode {
Mode::Std => {
self.clear_if_dirty(&my_out, &self.rustc(compiler));
},
Mode::Test => {
self.clear_if_dirty(&my_out, &libstd_stamp);
},
Mode::Rustc => {
self.clear_if_dirty(&my_out, &self.rustc(compiler));
self.clear_if_dirty(&my_out, &libstd_stamp);
self.clear_if_dirty(&my_out, &libtest_stamp);
},
Mode::Codegen => {
self.clear_if_dirty(&my_out, &librustc_stamp);
},
Mode::ToolBootstrap => { },
Mode::ToolStd => {
self.clear_if_dirty(&my_out, &libstd_stamp);
},
Mode::ToolTest => {
self.clear_if_dirty(&my_out, &libstd_stamp);
self.clear_if_dirty(&my_out, &libtest_stamp);
},
Mode::ToolRustc => {
self.clear_if_dirty(&my_out, &libstd_stamp);
self.clear_if_dirty(&my_out, &libtest_stamp);
self.clear_if_dirty(&my_out, &librustc_stamp);
},
}
}
cargo
.env("CARGO_TARGET_DIR", out_dir)
.arg(cmd);
if cmd != "install" {
cargo.arg("--target")
.arg(target);
} else {
assert_eq!(target, compiler.host);
}
// Set a flag for `check` so that certain build scripts can do less work
// (e.g. not building/requiring LLVM).
if cmd == "check" {
cargo.env("RUST_CHECK", "1");
}
cargo.arg("-j").arg(self.jobs().to_string());
// Remove make-related flags to ensure Cargo can correctly set things up
cargo.env_remove("MAKEFLAGS");
cargo.env_remove("MFLAGS");
// FIXME: Temporary fix for https://github.com/rust-lang/cargo/issues/3005
// Force cargo to output binaries with disambiguating hashes in the name
let metadata = if compiler.stage == 0 {
// Treat stage0 like special channel, whether it's a normal prior-
// release rustc or a local rebuild with the same version, so we
// never mix these libraries by accident.
"bootstrap"
} else {
&self.config.channel
};
cargo.env("__CARGO_DEFAULT_LIB_METADATA", &metadata);
let stage;
if compiler.stage == 0 && self.local_rebuild {
// Assume the local-rebuild rustc already has stage1 features.
stage = 1;
} else {
stage = compiler.stage;
}
let mut extra_args = env::var(&format!("RUSTFLAGS_STAGE_{}", stage)).unwrap_or_default();
if stage != 0 {
let s = env::var("RUSTFLAGS_STAGE_NOT_0").unwrap_or_default();
if !extra_args.is_empty() {
extra_args.push_str(" ");
}
extra_args.push_str(&s);
}
if !extra_args.is_empty() {
cargo.env(
"RUSTFLAGS",
format!(
"{} {}",
env::var("RUSTFLAGS").unwrap_or_default(),
extra_args
),
);
}
let want_rustdoc = self.doc_tests != DocTests::No;
// We synthetically interpret a stage0 compiler used to build tools as a
// "raw" compiler in that it's the exact snapshot we download. Normally
// the stage0 build means it uses libraries build by the stage0
// compiler, but for tools we just use the precompiled libraries that
// we've downloaded
let use_snapshot = mode == Mode::ToolBootstrap;
assert!(!use_snapshot || stage == 0 || self.local_rebuild);
let maybe_sysroot = self.sysroot(compiler);
let sysroot = if use_snapshot {
self.rustc_snapshot_sysroot()
} else {
&maybe_sysroot
};
let libdir = sysroot.join(libdir(&compiler.host));
// Customize the compiler we're running. Specify the compiler to cargo
// as our shim and then pass it some various options used to configure
// how the actual compiler itself is called.
//
// These variables are primarily all read by
// src/bootstrap/bin/{rustc.rs,rustdoc.rs}
cargo
.env("RUSTBUILD_NATIVE_DIR", self.native_dir(target))
.env("RUSTC", self.out.join("bootstrap/debug/rustc"))
.env("RUSTC_REAL", self.rustc(compiler))
.env("RUSTC_STAGE", stage.to_string())
.env(
"RUSTC_DEBUG_ASSERTIONS",
self.config.rust_debug_assertions.to_string(),
)
.env("RUSTC_SYSROOT", &sysroot)
.env("RUSTC_LIBDIR", &libdir)
.env("RUSTC_RPATH", self.config.rust_rpath.to_string())
.env("RUSTDOC", self.out.join("bootstrap/debug/rustdoc"))
.env(
"RUSTDOC_REAL",
if cmd == "doc" || (cmd == "test" && want_rustdoc) {
self.rustdoc(compiler.host)
} else {
PathBuf::from("/path/to/nowhere/rustdoc/not/required")
},
)
.env("TEST_MIRI", self.config.test_miri.to_string())
.env("RUSTC_ERROR_METADATA_DST", self.extended_error_dir());
if let Some(host_linker) = self.linker(compiler.host) {
cargo.env("RUSTC_HOST_LINKER", host_linker);
}
if let Some(target_linker) = self.linker(target) {
cargo.env("RUSTC_TARGET_LINKER", target_linker);
}
if let Some(ref error_format) = self.config.rustc_error_format {
cargo.env("RUSTC_ERROR_FORMAT", error_format);
}
if cmd != "build" && cmd != "check" && cmd != "rustc" && want_rustdoc {
cargo.env("RUSTDOC_LIBDIR", self.sysroot_libdir(compiler, self.config.build));
}
if mode.is_tool() {
// Tools like cargo and rls don't get debuginfo by default right now, but this can be
// enabled in the config. Adding debuginfo makes them several times larger.
if self.config.rust_debuginfo_tools {
cargo.env("RUSTC_DEBUGINFO", self.config.rust_debuginfo.to_string());
cargo.env(
"RUSTC_DEBUGINFO_LINES",
self.config.rust_debuginfo_lines.to_string(),
);
}
} else {
cargo.env("RUSTC_DEBUGINFO", self.config.rust_debuginfo.to_string());
cargo.env(
"RUSTC_DEBUGINFO_LINES",
self.config.rust_debuginfo_lines.to_string(),
);
cargo.env("RUSTC_FORCE_UNSTABLE", "1");
// Currently the compiler depends on crates from crates.io, and
// then other crates can depend on the compiler (e.g. proc-macro
// crates). Let's say, for example that rustc itself depends on the
// bitflags crate. If an external crate then depends on the
// bitflags crate as well, we need to make sure they don't
// conflict, even if they pick the same version of bitflags. We'll
// want to make sure that e.g. a plugin and rustc each get their
// own copy of bitflags.
// Cargo ensures that this works in general through the -C metadata
// flag. This flag will frob the symbols in the binary to make sure
// they're different, even though the source code is the exact
// same. To solve this problem for the compiler we extend Cargo's
// already-passed -C metadata flag with our own. Our rustc.rs
// wrapper around the actual rustc will detect -C metadata being
// passed and frob it with this extra string we're passing in.
cargo.env("RUSTC_METADATA_SUFFIX", "rustc");
}
if let Some(x) = self.crt_static(target) {
cargo.env("RUSTC_CRT_STATIC", x.to_string());
}
if let Some(x) = self.crt_static(compiler.host) {
cargo.env("RUSTC_HOST_CRT_STATIC", x.to_string());
}
if let Some(map) = self.build.debuginfo_map(GitRepo::Rustc) {
cargo.env("RUSTC_DEBUGINFO_MAP", map);
}
// Enable usage of unstable features
cargo.env("RUSTC_BOOTSTRAP", "1");
self.add_rust_test_threads(&mut cargo);
// Almost all of the crates that we compile as part of the bootstrap may
// have a build script, including the standard library. To compile a
// build script, however, it itself needs a standard library! This
// introduces a bit of a pickle when we're compiling the standard
// library itself.
//
// To work around this we actually end up using the snapshot compiler
// (stage0) for compiling build scripts of the standard library itself.
// The stage0 compiler is guaranteed to have a libstd available for use.
//
// For other crates, however, we know that we've already got a standard
// library up and running, so we can use the normal compiler to compile
// build scripts in that situation.
//
// If LLVM support is disabled we need to use the snapshot compiler to compile
// build scripts, as the new compiler doesn't support executables.
if mode == Mode::Std || !self.config.llvm_enabled {
cargo
.env("RUSTC_SNAPSHOT", &self.initial_rustc)
.env("RUSTC_SNAPSHOT_LIBDIR", self.rustc_snapshot_libdir());
} else {
cargo
.env("RUSTC_SNAPSHOT", self.rustc(compiler))
.env("RUSTC_SNAPSHOT_LIBDIR", self.rustc_libdir(compiler));
}
if self.config.incremental {
cargo.env("CARGO_INCREMENTAL", "1");
}
if let Some(ref on_fail) = self.config.on_fail {
cargo.env("RUSTC_ON_FAIL", on_fail);
}
if self.config.print_step_timings {
cargo.env("RUSTC_PRINT_STEP_TIMINGS", "1");
}
if self.config.backtrace_on_ice {
cargo.env("RUSTC_BACKTRACE_ON_ICE", "1");
}
cargo.env("RUSTC_VERBOSE", self.verbosity.to_string());
// in std, we want to avoid denying warnings for stage 0 as that makes cfg's painful.
if self.config.deny_warnings && !(mode == Mode::Std && stage == 0) {
cargo.env("RUSTC_DENY_WARNINGS", "1");
}
// Throughout the build Cargo can execute a number of build scripts
// compiling C/C++ code and we need to pass compilers, archivers, flags, etc
// obtained previously to those build scripts.
// Build scripts use either the `cc` crate or `configure/make` so we pass
// the options through environment variables that are fetched and understood by both.
//
// FIXME: the guard against msvc shouldn't need to be here
if target.contains("msvc") {
if let Some(ref cl) = self.config.llvm_clang_cl {
cargo.env("CC", cl).env("CXX", cl);
}
} else {
let ccache = self.config.ccache.as_ref();
let ccacheify = |s: &Path| {
let ccache = match ccache {
Some(ref s) => s,
None => return s.display().to_string(),
};
// FIXME: the cc-rs crate only recognizes the literal strings
// `ccache` and `sccache` when doing caching compilations, so we
// mirror that here. It should probably be fixed upstream to
// accept a new env var or otherwise work with custom ccache
// vars.
match &ccache[..] {
"ccache" | "sccache" => format!("{} {}", ccache, s.display()),
_ => s.display().to_string(),
}
};
let cc = ccacheify(&self.cc(target));
cargo.env(format!("CC_{}", target), &cc).env("CC", &cc);
let cflags = self.cflags(target, GitRepo::Rustc).join(" ");
cargo
.env(format!("CFLAGS_{}", target), cflags.clone())
.env("CFLAGS", cflags.clone());
if let Some(ar) = self.ar(target) {
let ranlib = format!("{} s", ar.display());
cargo
.env(format!("AR_{}", target), ar)
.env("AR", ar)
.env(format!("RANLIB_{}", target), ranlib.clone())
.env("RANLIB", ranlib);
}
if let Ok(cxx) = self.cxx(target) {
let cxx = ccacheify(&cxx);
cargo
.env(format!("CXX_{}", target), &cxx)
.env("CXX", &cxx)
.env(format!("CXXFLAGS_{}", target), cflags.clone())
.env("CXXFLAGS", cflags);
}
}
if (cmd == "build" || cmd == "rustc")
&& mode == Mode::Std
&& self.config.extended
&& compiler.is_final_stage(self)
{
cargo.env("RUSTC_SAVE_ANALYSIS", "api".to_string());
}
// For `cargo doc` invocations, make rustdoc print the Rust version into the docs
cargo.env("RUSTDOC_CRATE_VERSION", self.rust_version());
// Environment variables *required* throughout the build
//
// FIXME: should update code to not require this env var
cargo.env("CFG_COMPILER_HOST_TRIPLE", target);
// Set this for all builds to make sure doc builds also get it.
cargo.env("CFG_RELEASE_CHANNEL", &self.config.channel);
// This one's a bit tricky. As of the time of this writing the compiler
// links to the `winapi` crate on crates.io. This crate provides raw
// bindings to Windows system functions, sort of like libc does for
// Unix. This crate also, however, provides "import libraries" for the
// MinGW targets. There's an import library per dll in the windows
// distribution which is what's linked to. These custom import libraries
// are used because the winapi crate can reference Windows functions not
// present in the MinGW import libraries.
//
// For example MinGW may ship libdbghelp.a, but it may not have
// references to all the functions in the dbghelp dll. Instead the
// custom import library for dbghelp in the winapi crates has all this
// information.
//
// Unfortunately for us though the import libraries are linked by
// default via `-ldylib=winapi_foo`. That is, they're linked with the
// `dylib` type with a `winapi_` prefix (so the winapi ones don't
// conflict with the system MinGW ones). This consequently means that
// the binaries we ship of things like rustc_codegen_llvm (aka the rustc_codegen_llvm
// DLL) when linked against *again*, for example with procedural macros
// or plugins, will trigger the propagation logic of `-ldylib`, passing
// `-lwinapi_foo` to the linker again. This isn't actually available in
// our distribution, however, so the link fails.
//
// To solve this problem we tell winapi to not use its bundled import
// libraries. This means that it will link to the system MinGW import
// libraries by default, and the `-ldylib=foo` directives will still get
// passed to the final linker, but they'll look like `-lfoo` which can
// be resolved because MinGW has the import library. The downside is we
// don't get newer functions from Windows, but we don't use any of them
// anyway.
if !mode.is_tool() {
cargo.env("WINAPI_NO_BUNDLED_LIBRARIES", "1");
}
for _ in 1..self.verbosity {
cargo.arg("-v");
}
// This must be kept before the thinlto check, as we set codegen units
// to 1 forcibly there.
if let Some(n) = self.config.rust_codegen_units {
cargo.env("RUSTC_CODEGEN_UNITS", n.to_string());
}
if self.config.rust_optimize {
// FIXME: cargo bench/install do not accept `--release`
if cmd != "bench" && cmd != "install" {
cargo.arg("--release");
}
}
if self.config.locked_deps {
cargo.arg("--locked");
}
if self.config.vendor || self.is_sudo {
cargo.arg("--frozen");
}
self.ci_env.force_coloring_in_ci(&mut cargo);
cargo
}
/// Ensure that a given step is built, returning its output. This will
/// cache the step, so it is safe (and good!) to call this as often as
/// needed to ensure that all dependencies are built.
pub fn ensure<S: Step>(&'a self, step: S) -> S::Output {
{
let mut stack = self.stack.borrow_mut();
for stack_step in stack.iter() {
// should skip
if stack_step
.downcast_ref::<S>()
.map_or(true, |stack_step| *stack_step != step)
{
continue;
}
let mut out = String::new();
out += &format!("\n\nCycle in build detected when adding {:?}\n", step);
for el in stack.iter().rev() {
out += &format!("\t{:?}\n", el);
}
panic!(out);
}
if let Some(out) = self.cache.get(&step) {
self.verbose(&format!("{}c {:?}", " ".repeat(stack.len()), step));
{
let mut graph = self.graph.borrow_mut();
let parent = self.parent.get();
let us = *self
.graph_nodes
.borrow_mut()
.entry(format!("{:?}", step))
.or_insert_with(|| graph.add_node(format!("{:?}", step)));
if let Some(parent) = parent {
graph.add_edge(parent, us, false);
}
}
return out;
}
self.verbose(&format!("{}> {:?}", " ".repeat(stack.len()), step));
stack.push(Box::new(step.clone()));
}
let prev_parent = self.parent.get();
{
let mut graph = self.graph.borrow_mut();
let parent = self.parent.get();
let us = *self
.graph_nodes
.borrow_mut()
.entry(format!("{:?}", step))
.or_insert_with(|| graph.add_node(format!("{:?}", step)));
self.parent.set(Some(us));
if let Some(parent) = parent {
graph.add_edge(parent, us, true);
}
}
let (out, dur) = {
let start = Instant::now();
let zero = Duration::new(0, 0);
let parent = self.time_spent_on_dependencies.replace(zero);
let out = step.clone().run(self);
let dur = start.elapsed();
let deps = self.time_spent_on_dependencies.replace(parent + dur);
(out, dur - deps)
};
self.parent.set(prev_parent);
if self.config.print_step_timings && dur > Duration::from_millis(100) {
println!(
"[TIMING] {:?} -- {}.{:03}",
step,
dur.as_secs(),
dur.subsec_nanos() / 1_000_000
);
}
{
let mut stack = self.stack.borrow_mut();
let cur_step = stack.pop().expect("step stack empty");
assert_eq!(cur_step.downcast_ref(), Some(&step));
}
self.verbose(&format!(
"{}< {:?}",
" ".repeat(self.stack.borrow().len()),
step
));
self.cache.put(step, out.clone());
out
}
}
#[cfg(test)]
mod __test {
use super::*;
use config::Config;
use std::thread;
fn configure(host: &[&str], target: &[&str]) -> Config {
let mut config = Config::default_opts();
// don't save toolstates
config.save_toolstates = None;
config.run_host_only = true;
config.dry_run = true;
// try to avoid spurious failures in dist where we create/delete each others file
let dir = config.out.join("tmp-rustbuild-tests").join(
&thread::current()
.name()
.unwrap_or("unknown")
.replace(":", "-"),
);
t!(fs::create_dir_all(&dir));
config.out = dir;
config.build = INTERNER.intern_str("A");
config.hosts = vec![config.build]
.clone()
.into_iter()
.chain(host.iter().map(|s| INTERNER.intern_str(s)))
.collect::<Vec<_>>();
config.targets = config
.hosts
.clone()
.into_iter()
.chain(target.iter().map(|s| INTERNER.intern_str(s)))
.collect::<Vec<_>>();
config
}
fn first<A, B>(v: Vec<(A, B)>) -> Vec<A> {
v.into_iter().map(|(a, _)| a).collect::<Vec<_>>()
}
#[test]
fn dist_baseline() {
let build = Build::new(configure(&[], &[]));
let mut builder = Builder::new(&build);
builder.run_step_descriptions(&Builder::get_step_descriptions(Kind::Dist), &[]);
let a = INTERNER.intern_str("A");
assert_eq!(
first(builder.cache.all::<dist::Docs>()),
&[dist::Docs { stage: 2, host: a },]
);
assert_eq!(
first(builder.cache.all::<dist::Mingw>()),
&[dist::Mingw { host: a },]
);
assert_eq!(
first(builder.cache.all::<dist::Rustc>()),
&[dist::Rustc {
compiler: Compiler { host: a, stage: 2 }
},]
);
assert_eq!(
first(builder.cache.all::<dist::Std>()),
&[dist::Std {
compiler: Compiler { host: a, stage: 2 },
target: a,
},]
);
assert_eq!(first(builder.cache.all::<dist::Src>()), &[dist::Src]);
}
#[test]
fn dist_with_targets() {
let build = Build::new(configure(&[], &["B"]));
let mut builder = Builder::new(&build);
builder.run_step_descriptions(&Builder::get_step_descriptions(Kind::Dist), &[]);
let a = INTERNER.intern_str("A");
let b = INTERNER.intern_str("B");
assert_eq!(
first(builder.cache.all::<dist::Docs>()),
&[
dist::Docs { stage: 2, host: a },
dist::Docs { stage: 2, host: b },
]
);
assert_eq!(
first(builder.cache.all::<dist::Mingw>()),
&[dist::Mingw { host: a }, dist::Mingw { host: b },]
);
assert_eq!(
first(builder.cache.all::<dist::Rustc>()),
&[dist::Rustc {
compiler: Compiler { host: a, stage: 2 }
},]
);
assert_eq!(
first(builder.cache.all::<dist::Std>()),
&[
dist::Std {
compiler: Compiler { host: a, stage: 2 },
target: a,
},
dist::Std {
compiler: Compiler { host: a, stage: 2 },
target: b,
},
]
);
assert_eq!(first(builder.cache.all::<dist::Src>()), &[dist::Src]);
}
#[test]
fn dist_with_hosts() {
let build = Build::new(configure(&["B"], &[]));
let mut builder = Builder::new(&build);
builder.run_step_descriptions(&Builder::get_step_descriptions(Kind::Dist), &[]);
let a = INTERNER.intern_str("A");
let b = INTERNER.intern_str("B");
assert_eq!(
first(builder.cache.all::<dist::Docs>()),
&[
dist::Docs { stage: 2, host: a },
dist::Docs { stage: 2, host: b },
]
);
assert_eq!(
first(builder.cache.all::<dist::Mingw>()),
&[dist::Mingw { host: a }, dist::Mingw { host: b },]
);
assert_eq!(
first(builder.cache.all::<dist::Rustc>()),
&[
dist::Rustc {
compiler: Compiler { host: a, stage: 2 }
},
dist::Rustc {
compiler: Compiler { host: b, stage: 2 }
},
]
);
assert_eq!(
first(builder.cache.all::<dist::Std>()),
&[
dist::Std {
compiler: Compiler { host: a, stage: 2 },
target: a,
},
dist::Std {
compiler: Compiler { host: a, stage: 2 },
target: b,
},
]
);
assert_eq!(first(builder.cache.all::<dist::Src>()), &[dist::Src]);
}
#[test]
fn dist_with_targets_and_hosts() {
let build = Build::new(configure(&["B"], &["C"]));
let mut builder = Builder::new(&build);
builder.run_step_descriptions(&Builder::get_step_descriptions(Kind::Dist), &[]);
let a = INTERNER.intern_str("A");
let b = INTERNER.intern_str("B");
let c = INTERNER.intern_str("C");
assert_eq!(
first(builder.cache.all::<dist::Docs>()),
&[
dist::Docs { stage: 2, host: a },
dist::Docs { stage: 2, host: b },
dist::Docs { stage: 2, host: c },
]
);
assert_eq!(
first(builder.cache.all::<dist::Mingw>()),
&[
dist::Mingw { host: a },
dist::Mingw { host: b },
dist::Mingw { host: c },
]
);
assert_eq!(
first(builder.cache.all::<dist::Rustc>()),
&[
dist::Rustc {
compiler: Compiler { host: a, stage: 2 }
},
dist::Rustc {
compiler: Compiler { host: b, stage: 2 }
},
]
);
assert_eq!(
first(builder.cache.all::<dist::Std>()),
&[
dist::Std {
compiler: Compiler { host: a, stage: 2 },
target: a,
},
dist::Std {
compiler: Compiler { host: a, stage: 2 },
target: b,
},
dist::Std {
compiler: Compiler { host: a, stage: 2 },
target: c,
},
]
);
assert_eq!(first(builder.cache.all::<dist::Src>()), &[dist::Src]);
}
#[test]
fn dist_with_target_flag() {
let mut config = configure(&["B"], &["C"]);
config.run_host_only = false; // as-if --target=C was passed
let build = Build::new(config);
let mut builder = Builder::new(&build);
builder.run_step_descriptions(&Builder::get_step_descriptions(Kind::Dist), &[]);
let a = INTERNER.intern_str("A");
let b = INTERNER.intern_str("B");
let c = INTERNER.intern_str("C");
assert_eq!(
first(builder.cache.all::<dist::Docs>()),
&[
dist::Docs { stage: 2, host: a },
dist::Docs { stage: 2, host: b },
dist::Docs { stage: 2, host: c },
]
);
assert_eq!(
first(builder.cache.all::<dist::Mingw>()),
&[
dist::Mingw { host: a },
dist::Mingw { host: b },
dist::Mingw { host: c },
]
);
assert_eq!(first(builder.cache.all::<dist::Rustc>()), &[]);
assert_eq!(
first(builder.cache.all::<dist::Std>()),
&[
dist::Std {
compiler: Compiler { host: a, stage: 2 },
target: a,
},
dist::Std {
compiler: Compiler { host: a, stage: 2 },
target: b,
},
dist::Std {
compiler: Compiler { host: a, stage: 2 },
target: c,
},
]
);
assert_eq!(first(builder.cache.all::<dist::Src>()), &[]);
}
#[test]
fn dist_with_same_targets_and_hosts() {
let build = Build::new(configure(&["B"], &["B"]));
let mut builder = Builder::new(&build);
builder.run_step_descriptions(&Builder::get_step_descriptions(Kind::Dist), &[]);
let a = INTERNER.intern_str("A");
let b = INTERNER.intern_str("B");
assert_eq!(
first(builder.cache.all::<dist::Docs>()),
&[
dist::Docs { stage: 2, host: a },
dist::Docs { stage: 2, host: b },
]
);
assert_eq!(
first(builder.cache.all::<dist::Mingw>()),
&[dist::Mingw { host: a }, dist::Mingw { host: b },]
);
assert_eq!(
first(builder.cache.all::<dist::Rustc>()),
&[
dist::Rustc {
compiler: Compiler { host: a, stage: 2 }
},
dist::Rustc {
compiler: Compiler { host: b, stage: 2 }
},
]
);
assert_eq!(
first(builder.cache.all::<dist::Std>()),
&[
dist::Std {
compiler: Compiler { host: a, stage: 2 },
target: a,
},
dist::Std {
compiler: Compiler { host: a, stage: 2 },
target: b,
},
]
);
assert_eq!(first(builder.cache.all::<dist::Src>()), &[dist::Src]);
assert_eq!(
first(builder.cache.all::<compile::Std>()),
&[
compile::Std {
compiler: Compiler { host: a, stage: 0 },
target: a,
},
compile::Std {
compiler: Compiler { host: a, stage: 1 },
target: a,
},
compile::Std {
compiler: Compiler { host: a, stage: 2 },
target: a,
},
compile::Std {
compiler: Compiler { host: a, stage: 1 },
target: b,
},
compile::Std {
compiler: Compiler { host: a, stage: 2 },
target: b,
},
]
);
assert_eq!(
first(builder.cache.all::<compile::Test>()),
&[
compile::Test {
compiler: Compiler { host: a, stage: 0 },
target: a,
},
compile::Test {
compiler: Compiler { host: a, stage: 1 },
target: a,
},
compile::Test {
compiler: Compiler { host: a, stage: 2 },
target: a,
},
compile::Test {
compiler: Compiler { host: a, stage: 1 },
target: b,
},
compile::Test {
compiler: Compiler { host: a, stage: 2 },
target: b,
},
]
);
assert_eq!(
first(builder.cache.all::<compile::Assemble>()),
&[
compile::Assemble {
target_compiler: Compiler { host: a, stage: 0 },
},
compile::Assemble {
target_compiler: Compiler { host: a, stage: 1 },
},
compile::Assemble {
target_compiler: Compiler { host: a, stage: 2 },
},
compile::Assemble {
target_compiler: Compiler { host: b, stage: 2 },
},
]
);
}
#[test]
fn build_default() {
let build = Build::new(configure(&["B"], &["C"]));
let mut builder = Builder::new(&build);
builder.run_step_descriptions(&Builder::get_step_descriptions(Kind::Build), &[]);
let a = INTERNER.intern_str("A");
let b = INTERNER.intern_str("B");
let c = INTERNER.intern_str("C");
assert!(!builder.cache.all::<compile::Std>().is_empty());
assert!(!builder.cache.all::<compile::Assemble>().is_empty());
assert_eq!(
first(builder.cache.all::<compile::Rustc>()),
&[
compile::Rustc {
compiler: Compiler { host: a, stage: 0 },
target: a,
},
compile::Rustc {
compiler: Compiler { host: a, stage: 1 },
target: a,
},
compile::Rustc {
compiler: Compiler { host: a, stage: 2 },
target: a,
},
compile::Rustc {
compiler: Compiler { host: b, stage: 2 },
target: a,
},
compile::Rustc {
compiler: Compiler { host: a, stage: 0 },
target: b,
},
compile::Rustc {
compiler: Compiler { host: a, stage: 1 },
target: b,
},
compile::Rustc {
compiler: Compiler { host: a, stage: 2 },
target: b,
},
compile::Rustc {
compiler: Compiler { host: b, stage: 2 },
target: b,
},
]
);
assert_eq!(
first(builder.cache.all::<compile::Test>()),
&[
compile::Test {
compiler: Compiler { host: a, stage: 0 },
target: a,
},
compile::Test {
compiler: Compiler { host: a, stage: 1 },
target: a,
},
compile::Test {
compiler: Compiler { host: a, stage: 2 },
target: a,
},
compile::Test {
compiler: Compiler { host: b, stage: 2 },
target: a,
},
compile::Test {
compiler: Compiler { host: a, stage: 0 },
target: b,
},
compile::Test {
compiler: Compiler { host: a, stage: 1 },
target: b,
},
compile::Test {
compiler: Compiler { host: a, stage: 2 },
target: b,
},
compile::Test {
compiler: Compiler { host: b, stage: 2 },
target: b,
},
compile::Test {
compiler: Compiler { host: a, stage: 2 },
target: c,
},
compile::Test {
compiler: Compiler { host: b, stage: 2 },
target: c,
},
]
);
}
#[test]
fn build_with_target_flag() {
let mut config = configure(&["B"], &["C"]);
config.run_host_only = false;
let build = Build::new(config);
let mut builder = Builder::new(&build);
builder.run_step_descriptions(&Builder::get_step_descriptions(Kind::Build), &[]);
let a = INTERNER.intern_str("A");
let b = INTERNER.intern_str("B");
let c = INTERNER.intern_str("C");
assert!(!builder.cache.all::<compile::Std>().is_empty());
assert_eq!(
first(builder.cache.all::<compile::Assemble>()),
&[
compile::Assemble {
target_compiler: Compiler { host: a, stage: 0 },
},
compile::Assemble {
target_compiler: Compiler { host: a, stage: 1 },
},
compile::Assemble {
target_compiler: Compiler { host: b, stage: 1 },
},
compile::Assemble {
target_compiler: Compiler { host: a, stage: 2 },
},
compile::Assemble {
target_compiler: Compiler { host: b, stage: 2 },
},
]
);
assert_eq!(
first(builder.cache.all::<compile::Rustc>()),
&[
compile::Rustc {
compiler: Compiler { host: a, stage: 0 },
target: a,
},
compile::Rustc {
compiler: Compiler { host: a, stage: 1 },
target: a,
},
compile::Rustc {
compiler: Compiler { host: a, stage: 0 },
target: b,
},
compile::Rustc {
compiler: Compiler { host: a, stage: 1 },
target: b,
},
]
);
assert_eq!(
first(builder.cache.all::<compile::Test>()),
&[
compile::Test {
compiler: Compiler { host: a, stage: 0 },
target: a,
},
compile::Test {
compiler: Compiler { host: a, stage: 1 },
target: a,
},
compile::Test {
compiler: Compiler { host: a, stage: 2 },
target: a,
},
compile::Test {
compiler: Compiler { host: b, stage: 2 },
target: a,
},
compile::Test {
compiler: Compiler { host: a, stage: 0 },
target: b,
},
compile::Test {
compiler: Compiler { host: a, stage: 1 },
target: b,
},
compile::Test {
compiler: Compiler { host: a, stage: 2 },
target: b,
},
compile::Test {
compiler: Compiler { host: b, stage: 2 },
target: b,
},
compile::Test {
compiler: Compiler { host: a, stage: 2 },
target: c,
},
compile::Test {
compiler: Compiler { host: b, stage: 2 },
target: c,
},
]
);
}
#[test]
fn test_with_no_doc_stage0() {
let mut config = configure(&[], &[]);
config.stage = Some(0);
config.cmd = Subcommand::Test {
paths: vec!["src/libstd".into()],
test_args: vec![],
rustc_args: vec![],
fail_fast: true,
doc_tests: DocTests::No,
bless: false,
compare_mode: None,
};
let build = Build::new(config);
let mut builder = Builder::new(&build);
let host = INTERNER.intern_str("A");
builder.run_step_descriptions(
&[StepDescription::from::<test::Crate>()],
&["src/libstd".into()],
);
// Ensure we don't build any compiler artifacts.
assert!(!builder.cache.contains::<compile::Rustc>());
assert_eq!(
first(builder.cache.all::<test::Crate>()),
&[test::Crate {
compiler: Compiler { host, stage: 0 },
target: host,
mode: Mode::Std,
test_kind: test::TestKind::Test,
krate: INTERNER.intern_str("std"),
},]
);
}
#[test]
fn test_exclude() {
let mut config = configure(&[], &[]);
config.exclude = vec![
"src/test/run-pass".into(),
"src/tools/tidy".into(),
];
config.cmd = Subcommand::Test {
paths: Vec::new(),
test_args: Vec::new(),
rustc_args: Vec::new(),
fail_fast: true,
doc_tests: DocTests::No,
bless: false,
compare_mode: None,
};
let build = Build::new(config);
let builder = Builder::new(&build);
builder.run_step_descriptions(&Builder::get_step_descriptions(Kind::Test), &[]);
// Ensure we have really excluded run-pass & tidy
assert!(!builder.cache.contains::<test::RunPass>());
assert!(!builder.cache.contains::<test::Tidy>());
// Ensure other tests are not affected.
assert!(builder.cache.contains::<test::RunPassFullDeps>());
assert!(builder.cache.contains::<test::RustdocUi>());
}
}