blob: c79b6be656066861dd9f0a76e2117f4dadd4afab [file] [log] [blame]
use std::cell::OnceCell;
use crate::{errors, FnCtxt, TypeckRootCtxt};
use rustc_data_structures::{
graph::{self, iterate::DepthFirstSearch, vec_graph::VecGraph},
unord::{UnordBag, UnordMap, UnordSet},
};
use rustc_hir as hir;
use rustc_hir::intravisit::Visitor;
use rustc_hir::HirId;
use rustc_infer::infer::{DefineOpaqueTypes, InferOk};
use rustc_middle::bug;
use rustc_middle::ty::{self, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable};
use rustc_session::lint;
use rustc_span::DUMMY_SP;
use rustc_span::{def_id::LocalDefId, Span};
#[derive(Copy, Clone)]
pub enum DivergingFallbackBehavior {
/// Always fallback to `()` (aka "always spontaneous decay")
FallbackToUnit,
/// Sometimes fallback to `!`, but mainly fallback to `()` so that most of the crates are not broken.
FallbackToNiko,
/// Always fallback to `!` (which should be equivalent to never falling back + not making
/// never-to-any coercions unless necessary)
FallbackToNever,
/// Don't fallback at all
NoFallback,
}
impl<'tcx> FnCtxt<'_, 'tcx> {
/// Performs type inference fallback, setting `FnCtxt::fallback_has_occurred`
/// if fallback has occurred.
pub(super) fn type_inference_fallback(&self) {
debug!(
"type-inference-fallback start obligations: {:#?}",
self.fulfillment_cx.borrow_mut().pending_obligations()
);
// All type checking constraints were added, try to fallback unsolved variables.
self.select_obligations_where_possible(|_| {});
debug!(
"type-inference-fallback post selection obligations: {:#?}",
self.fulfillment_cx.borrow_mut().pending_obligations()
);
let fallback_occurred = self.fallback_types() | self.fallback_effects();
if !fallback_occurred {
return;
}
// We now see if we can make progress. This might cause us to
// unify inference variables for opaque types, since we may
// have unified some other type variables during the first
// phase of fallback. This means that we only replace
// inference variables with their underlying opaque types as a
// last resort.
//
// In code like this:
//
// ```rust
// type MyType = impl Copy;
// fn produce() -> MyType { true }
// fn bad_produce() -> MyType { panic!() }
// ```
//
// we want to unify the opaque inference variable in `bad_produce`
// with the diverging fallback for `panic!` (e.g. `()` or `!`).
// This will produce a nice error message about conflicting concrete
// types for `MyType`.
//
// If we had tried to fallback the opaque inference variable to `MyType`,
// we will generate a confusing type-check error that does not explicitly
// refer to opaque types.
self.select_obligations_where_possible(|_| {});
}
fn fallback_types(&self) -> bool {
// Check if we have any unresolved variables. If not, no need for fallback.
let unresolved_variables = self.unresolved_variables();
if unresolved_variables.is_empty() {
return false;
}
let diverging_fallback = self
.calculate_diverging_fallback(&unresolved_variables, self.diverging_fallback_behavior);
// We do fallback in two passes, to try to generate
// better error messages.
// The first time, we do *not* replace opaque types.
let mut fallback_occurred = false;
for ty in unresolved_variables {
debug!("unsolved_variable = {:?}", ty);
fallback_occurred |= self.fallback_if_possible(ty, &diverging_fallback);
}
fallback_occurred
}
fn fallback_effects(&self) -> bool {
let unsolved_effects = self.unsolved_effects();
if unsolved_effects.is_empty() {
return false;
}
// not setting the `fallback_has_occurred` field here because
// that field is only used for type fallback diagnostics.
for effect in unsolved_effects {
let expected = self.tcx.consts.true_;
let cause = self.misc(DUMMY_SP);
match self.at(&cause, self.param_env).eq(DefineOpaqueTypes::Yes, expected, effect) {
Ok(InferOk { obligations, value: () }) => {
self.register_predicates(obligations);
}
Err(e) => {
bug!("cannot eq unsolved effect: {e:?}")
}
}
}
true
}
// Tries to apply a fallback to `ty` if it is an unsolved variable.
//
// - Unconstrained ints are replaced with `i32`.
//
// - Unconstrained floats are replaced with `f64`.
//
// - Non-numerics may get replaced with `()` or `!`, depending on
// how they were categorized by `calculate_diverging_fallback`
// (and the setting of `#![feature(never_type_fallback)]`).
//
// Fallback becomes very dubious if we have encountered
// type-checking errors. In that case, fallback to Error.
//
// Sets `FnCtxt::fallback_has_occurred` if fallback is performed
// during this call.
fn fallback_if_possible(
&self,
ty: Ty<'tcx>,
diverging_fallback: &UnordMap<Ty<'tcx>, Ty<'tcx>>,
) -> bool {
// Careful: we do NOT shallow-resolve `ty`. We know that `ty`
// is an unsolved variable, and we determine its fallback
// based solely on how it was created, not what other type
// variables it may have been unified with since then.
//
// The reason this matters is that other attempts at fallback
// may (in principle) conflict with this fallback, and we wish
// to generate a type error in that case. (However, this
// actually isn't true right now, because we're only using the
// builtin fallback rules. This would be true if we were using
// user-supplied fallbacks. But it's still useful to write the
// code to detect bugs.)
//
// (Note though that if we have a general type variable `?T`
// that is then unified with an integer type variable `?I`
// that ultimately never gets resolved to a special integral
// type, `?T` is not considered unsolved, but `?I` is. The
// same is true for float variables.)
let fallback = match ty.kind() {
_ if let Some(e) = self.tainted_by_errors() => Ty::new_error(self.tcx, e),
ty::Infer(ty::IntVar(_)) => self.tcx.types.i32,
ty::Infer(ty::FloatVar(_)) => self.tcx.types.f64,
_ => match diverging_fallback.get(&ty) {
Some(&fallback_ty) => fallback_ty,
None => return false,
},
};
debug!("fallback_if_possible(ty={:?}): defaulting to `{:?}`", ty, fallback);
let span = self.infcx.type_var_origin(ty).map(|origin| origin.span).unwrap_or(DUMMY_SP);
self.demand_eqtype(span, ty, fallback);
self.fallback_has_occurred.set(true);
true
}
/// The "diverging fallback" system is rather complicated. This is
/// a result of our need to balance 'do the right thing' with
/// backwards compatibility.
///
/// "Diverging" type variables are variables created when we
/// coerce a `!` type into an unbound type variable `?X`. If they
/// never wind up being constrained, the "right and natural" thing
/// is that `?X` should "fallback" to `!`. This means that e.g. an
/// expression like `Some(return)` will ultimately wind up with a
/// type like `Option<!>` (presuming it is not assigned or
/// constrained to have some other type).
///
/// However, the fallback used to be `()` (before the `!` type was
/// added). Moreover, there are cases where the `!` type 'leaks
/// out' from dead code into type variables that affect live
/// code. The most common case is something like this:
///
/// ```rust
/// # fn foo() -> i32 { 4 }
/// match foo() {
/// 22 => Default::default(), // call this type `?D`
/// _ => return, // return has type `!`
/// } // call the type of this match `?M`
/// ```
///
/// Here, coercing the type `!` into `?M` will create a diverging
/// type variable `?X` where `?X <: ?M`. We also have that `?D <:
/// ?M`. If `?M` winds up unconstrained, then `?X` will
/// fallback. If it falls back to `!`, then all the type variables
/// will wind up equal to `!` -- this includes the type `?D`
/// (since `!` doesn't implement `Default`, we wind up a "trait
/// not implemented" error in code like this). But since the
/// original fallback was `()`, this code used to compile with `?D
/// = ()`. This is somewhat surprising, since `Default::default()`
/// on its own would give an error because the types are
/// insufficiently constrained.
///
/// Our solution to this dilemma is to modify diverging variables
/// so that they can *either* fallback to `!` (the default) or to
/// `()` (the backwards compatibility case). We decide which
/// fallback to use based on whether there is a coercion pattern
/// like this:
///
/// ```ignore (not-rust)
/// ?Diverging -> ?V
/// ?NonDiverging -> ?V
/// ?V != ?NonDiverging
/// ```
///
/// Here `?Diverging` represents some diverging type variable and
/// `?NonDiverging` represents some non-diverging type
/// variable. `?V` can be any type variable (diverging or not), so
/// long as it is not equal to `?NonDiverging`.
///
/// Intuitively, what we are looking for is a case where a
/// "non-diverging" type variable (like `?M` in our example above)
/// is coerced *into* some variable `?V` that would otherwise
/// fallback to `!`. In that case, we make `?V` fallback to `!`,
/// along with anything that would flow into `?V`.
///
/// The algorithm we use:
/// * Identify all variables that are coerced *into* by a
/// diverging variable. Do this by iterating over each
/// diverging, unsolved variable and finding all variables
/// reachable from there. Call that set `D`.
/// * Walk over all unsolved, non-diverging variables, and find
/// any variable that has an edge into `D`.
fn calculate_diverging_fallback(
&self,
unresolved_variables: &[Ty<'tcx>],
behavior: DivergingFallbackBehavior,
) -> UnordMap<Ty<'tcx>, Ty<'tcx>> {
debug!("calculate_diverging_fallback({:?})", unresolved_variables);
// Construct a coercion graph where an edge `A -> B` indicates
// a type variable is that is coerced
let coercion_graph = self.create_coercion_graph();
// Extract the unsolved type inference variable vids; note that some
// unsolved variables are integer/float variables and are excluded.
let unsolved_vids = unresolved_variables.iter().filter_map(|ty| ty.ty_vid());
// Compute the diverging root vids D -- that is, the root vid of
// those type variables that (a) are the target of a coercion from
// a `!` type and (b) have not yet been solved.
//
// These variables are the ones that are targets for fallback to
// either `!` or `()`.
let diverging_roots: UnordSet<ty::TyVid> = self
.diverging_type_vars
.borrow()
.items()
.map(|&ty| self.shallow_resolve(ty))
.filter_map(|ty| ty.ty_vid())
.map(|vid| self.root_var(vid))
.collect();
debug!(
"calculate_diverging_fallback: diverging_type_vars={:?}",
self.diverging_type_vars.borrow()
);
debug!("calculate_diverging_fallback: diverging_roots={:?}", diverging_roots);
// Find all type variables that are reachable from a diverging
// type variable. These will typically default to `!`, unless
// we find later that they are *also* reachable from some
// other type variable outside this set.
let mut roots_reachable_from_diverging = DepthFirstSearch::new(&coercion_graph);
let mut diverging_vids = vec![];
let mut non_diverging_vids = vec![];
for unsolved_vid in unsolved_vids {
let root_vid = self.root_var(unsolved_vid);
debug!(
"calculate_diverging_fallback: unsolved_vid={:?} root_vid={:?} diverges={:?}",
unsolved_vid,
root_vid,
diverging_roots.contains(&root_vid),
);
if diverging_roots.contains(&root_vid) {
diverging_vids.push(unsolved_vid);
roots_reachable_from_diverging.push_start_node(root_vid);
debug!(
"calculate_diverging_fallback: root_vid={:?} reaches {:?}",
root_vid,
graph::depth_first_search(&coercion_graph, root_vid).collect::<Vec<_>>()
);
// drain the iterator to visit all nodes reachable from this node
roots_reachable_from_diverging.complete_search();
} else {
non_diverging_vids.push(unsolved_vid);
}
}
debug!(
"calculate_diverging_fallback: roots_reachable_from_diverging={:?}",
roots_reachable_from_diverging,
);
// Find all type variables N0 that are not reachable from a
// diverging variable, and then compute the set reachable from
// N0, which we call N. These are the *non-diverging* type
// variables. (Note that this set consists of "root variables".)
let mut roots_reachable_from_non_diverging = DepthFirstSearch::new(&coercion_graph);
for &non_diverging_vid in &non_diverging_vids {
let root_vid = self.root_var(non_diverging_vid);
if roots_reachable_from_diverging.visited(root_vid) {
continue;
}
roots_reachable_from_non_diverging.push_start_node(root_vid);
roots_reachable_from_non_diverging.complete_search();
}
debug!(
"calculate_diverging_fallback: roots_reachable_from_non_diverging={:?}",
roots_reachable_from_non_diverging,
);
debug!("obligations: {:#?}", self.fulfillment_cx.borrow_mut().pending_obligations());
// For each diverging variable, figure out whether it can
// reach a member of N. If so, it falls back to `()`. Else
// `!`.
let mut diverging_fallback = UnordMap::with_capacity(diverging_vids.len());
let unsafe_infer_vars = OnceCell::new();
for &diverging_vid in &diverging_vids {
let diverging_ty = Ty::new_var(self.tcx, diverging_vid);
let root_vid = self.root_var(diverging_vid);
let can_reach_non_diverging = graph::depth_first_search(&coercion_graph, root_vid)
.any(|n| roots_reachable_from_non_diverging.visited(n));
let infer_var_infos: UnordBag<_> = self
.infer_var_info
.borrow()
.items()
.filter(|&(vid, _)| self.infcx.root_var(*vid) == root_vid)
.map(|(_, info)| *info)
.collect();
let found_infer_var_info = ty::InferVarInfo {
self_in_trait: infer_var_infos.items().any(|info| info.self_in_trait),
output: infer_var_infos.items().any(|info| info.output),
};
let mut fallback_to = |ty| {
let unsafe_infer_vars = unsafe_infer_vars.get_or_init(|| {
let unsafe_infer_vars = compute_unsafe_infer_vars(self.root_ctxt, self.body_id);
debug!(?unsafe_infer_vars);
unsafe_infer_vars
});
let affected_unsafe_infer_vars =
graph::depth_first_search_as_undirected(&coercion_graph, root_vid)
.filter_map(|x| unsafe_infer_vars.get(&x).copied())
.collect::<Vec<_>>();
for (hir_id, span, reason) in affected_unsafe_infer_vars {
self.tcx.emit_node_span_lint(
lint::builtin::NEVER_TYPE_FALLBACK_FLOWING_INTO_UNSAFE,
hir_id,
span,
match reason {
UnsafeUseReason::Call => {
errors::NeverTypeFallbackFlowingIntoUnsafe::Call
}
UnsafeUseReason::Method => {
errors::NeverTypeFallbackFlowingIntoUnsafe::Method
}
UnsafeUseReason::Path => {
errors::NeverTypeFallbackFlowingIntoUnsafe::Path
}
UnsafeUseReason::UnionField => {
errors::NeverTypeFallbackFlowingIntoUnsafe::UnionField
}
UnsafeUseReason::Deref => {
errors::NeverTypeFallbackFlowingIntoUnsafe::Deref
}
},
);
}
diverging_fallback.insert(diverging_ty, ty);
};
use DivergingFallbackBehavior::*;
match behavior {
FallbackToUnit => {
debug!("fallback to () - legacy: {:?}", diverging_vid);
fallback_to(self.tcx.types.unit);
}
FallbackToNiko => {
if found_infer_var_info.self_in_trait && found_infer_var_info.output {
// This case falls back to () to ensure that the code pattern in
// tests/ui/never_type/fallback-closure-ret.rs continues to
// compile when never_type_fallback is enabled.
//
// This rule is not readily explainable from first principles,
// but is rather intended as a patchwork fix to ensure code
// which compiles before the stabilization of never type
// fallback continues to work.
//
// Typically this pattern is encountered in a function taking a
// closure as a parameter, where the return type of that closure
// (checked by `relationship.output`) is expected to implement
// some trait (checked by `relationship.self_in_trait`). This
// can come up in non-closure cases too, so we do not limit this
// rule to specifically `FnOnce`.
//
// When the closure's body is something like `panic!()`, the
// return type would normally be inferred to `!`. However, it
// needs to fall back to `()` in order to still compile, as the
// trait is specifically implemented for `()` but not `!`.
//
// For details on the requirements for these relationships to be
// set, see the relationship finding module in
// compiler/rustc_trait_selection/src/traits/relationships.rs.
debug!("fallback to () - found trait and projection: {:?}", diverging_vid);
fallback_to(self.tcx.types.unit);
} else if can_reach_non_diverging {
debug!("fallback to () - reached non-diverging: {:?}", diverging_vid);
fallback_to(self.tcx.types.unit);
} else {
debug!("fallback to ! - all diverging: {:?}", diverging_vid);
fallback_to(self.tcx.types.never);
}
}
FallbackToNever => {
debug!(
"fallback to ! - `rustc_never_type_mode = \"fallback_to_never\")`: {:?}",
diverging_vid
);
fallback_to(self.tcx.types.never);
}
NoFallback => {
debug!(
"no fallback - `rustc_never_type_mode = \"no_fallback\"`: {:?}",
diverging_vid
);
}
}
}
diverging_fallback
}
/// Returns a graph whose nodes are (unresolved) inference variables and where
/// an edge `?A -> ?B` indicates that the variable `?A` is coerced to `?B`.
fn create_coercion_graph(&self) -> VecGraph<ty::TyVid, true> {
let pending_obligations = self.fulfillment_cx.borrow_mut().pending_obligations();
debug!("create_coercion_graph: pending_obligations={:?}", pending_obligations);
let coercion_edges: Vec<(ty::TyVid, ty::TyVid)> = pending_obligations
.into_iter()
.filter_map(|obligation| {
// The predicates we are looking for look like `Coerce(?A -> ?B)`.
// They will have no bound variables.
obligation.predicate.kind().no_bound_vars()
})
.filter_map(|atom| {
// We consider both subtyping and coercion to imply 'flow' from
// some position in the code `a` to a different position `b`.
// This is then used to determine which variables interact with
// live code, and as such must fall back to `()` to preserve
// soundness.
//
// In practice currently the two ways that this happens is
// coercion and subtyping.
let (a, b) = match atom {
ty::PredicateKind::Coerce(ty::CoercePredicate { a, b }) => (a, b),
ty::PredicateKind::Subtype(ty::SubtypePredicate { a_is_expected: _, a, b }) => {
(a, b)
}
_ => return None,
};
let a_vid = self.root_vid(a)?;
let b_vid = self.root_vid(b)?;
Some((a_vid, b_vid))
})
.collect();
debug!("create_coercion_graph: coercion_edges={:?}", coercion_edges);
let num_ty_vars = self.num_ty_vars();
VecGraph::new(num_ty_vars, coercion_edges)
}
/// If `ty` is an unresolved type variable, returns its root vid.
fn root_vid(&self, ty: Ty<'tcx>) -> Option<ty::TyVid> {
Some(self.root_var(self.shallow_resolve(ty).ty_vid()?))
}
}
#[derive(Debug, Copy, Clone)]
pub(crate) enum UnsafeUseReason {
Call,
Method,
Path,
UnionField,
Deref,
}
/// Finds all type variables which are passed to an `unsafe` operation.
///
/// For example, for this function `f`:
/// ```ignore (demonstrative)
/// fn f() {
/// unsafe {
/// let x /* ?X */ = core::mem::zeroed();
/// // ^^^^^^^^^^^^^^^^^^^ -- hir_id, span, reason
///
/// let y = core::mem::zeroed::<Option<_ /* ?Y */>>();
/// // ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ -- hir_id, span, reason
/// }
/// }
/// ```
///
/// `compute_unsafe_infer_vars` will return `{ id(?X) -> (hir_id, span, Call) }`
fn compute_unsafe_infer_vars<'a, 'tcx>(
root_ctxt: &'a TypeckRootCtxt<'tcx>,
body_id: LocalDefId,
) -> UnordMap<ty::TyVid, (HirId, Span, UnsafeUseReason)> {
let body_id =
root_ctxt.tcx.hir().maybe_body_owned_by(body_id).expect("body id must have an owner");
let body = root_ctxt.tcx.hir().body(body_id);
let mut res = UnordMap::default();
struct UnsafeInferVarsVisitor<'a, 'tcx, 'r> {
root_ctxt: &'a TypeckRootCtxt<'tcx>,
res: &'r mut UnordMap<ty::TyVid, (HirId, Span, UnsafeUseReason)>,
}
impl Visitor<'_> for UnsafeInferVarsVisitor<'_, '_, '_> {
fn visit_expr(&mut self, ex: &'_ hir::Expr<'_>) {
let typeck_results = self.root_ctxt.typeck_results.borrow();
match ex.kind {
hir::ExprKind::MethodCall(..) => {
if let Some(def_id) = typeck_results.type_dependent_def_id(ex.hir_id)
&& let method_ty = self.root_ctxt.tcx.type_of(def_id).instantiate_identity()
&& let sig = method_ty.fn_sig(self.root_ctxt.tcx)
&& let hir::Unsafety::Unsafe = sig.unsafety()
{
let mut collector = InferVarCollector {
value: (ex.hir_id, ex.span, UnsafeUseReason::Method),
res: self.res,
};
// Collect generic arguments (incl. `Self`) of the method
typeck_results
.node_args(ex.hir_id)
.types()
.for_each(|t| t.visit_with(&mut collector));
}
}
hir::ExprKind::Call(func, ..) => {
let func_ty = typeck_results.expr_ty(func);
if func_ty.is_fn()
&& let sig = func_ty.fn_sig(self.root_ctxt.tcx)
&& let hir::Unsafety::Unsafe = sig.unsafety()
{
let mut collector = InferVarCollector {
value: (ex.hir_id, ex.span, UnsafeUseReason::Call),
res: self.res,
};
// Try collecting generic arguments of the function.
// Note that we do this below for any paths (that don't have to be called),
// but there we do it with a different span/reason.
// This takes priority.
typeck_results
.node_args(func.hir_id)
.types()
.for_each(|t| t.visit_with(&mut collector));
// Also check the return type, for cases like `returns_unsafe_fn_ptr()()`
sig.output().visit_with(&mut collector);
}
}
// Check paths which refer to functions.
// We do this, instead of only checking `Call` to make sure the lint can't be
// avoided by storing unsafe function in a variable.
hir::ExprKind::Path(_) => {
let ty = typeck_results.expr_ty(ex);
// If this path refers to an unsafe function, collect inference variables which may affect it.
// `is_fn` excludes closures, but those can't be unsafe.
if ty.is_fn()
&& let sig = ty.fn_sig(self.root_ctxt.tcx)
&& let hir::Unsafety::Unsafe = sig.unsafety()
{
let mut collector = InferVarCollector {
value: (ex.hir_id, ex.span, UnsafeUseReason::Path),
res: self.res,
};
// Collect generic arguments of the function
typeck_results
.node_args(ex.hir_id)
.types()
.for_each(|t| t.visit_with(&mut collector));
}
}
hir::ExprKind::Unary(hir::UnOp::Deref, pointer) => {
if let ty::RawPtr(pointee, _) = typeck_results.expr_ty(pointer).kind() {
pointee.visit_with(&mut InferVarCollector {
value: (ex.hir_id, ex.span, UnsafeUseReason::Deref),
res: self.res,
});
}
}
hir::ExprKind::Field(base, _) => {
let base_ty = typeck_results.expr_ty(base);
if base_ty.is_union() {
typeck_results.expr_ty(ex).visit_with(&mut InferVarCollector {
value: (ex.hir_id, ex.span, UnsafeUseReason::UnionField),
res: self.res,
});
}
}
_ => (),
};
hir::intravisit::walk_expr(self, ex);
}
}
struct InferVarCollector<'r, V> {
value: V,
res: &'r mut UnordMap<ty::TyVid, V>,
}
impl<'tcx, V: Copy> ty::TypeVisitor<TyCtxt<'tcx>> for InferVarCollector<'_, V> {
fn visit_ty(&mut self, t: Ty<'tcx>) {
if let Some(vid) = t.ty_vid() {
_ = self.res.try_insert(vid, self.value);
} else {
t.super_visit_with(self)
}
}
}
UnsafeInferVarsVisitor { root_ctxt, res: &mut res }.visit_expr(&body.value);
debug!(?res, "collected the following unsafe vars for {body_id:?}");
res
}