blob: 164be73f4929651bec22c8375ba7d428fd66c0b6 [file] [log] [blame]
//! Code to extract the universally quantified regions declared on a
//! function and the relationships between them. For example:
//!
//! ```
//! fn foo<'a, 'b, 'c: 'b>() { }
//! ```
//!
//! here we would return a map assigning each of `{'a, 'b, 'c}`
//! to an index, as well as the `FreeRegionMap` which can compute
//! relationships between them.
//!
//! The code in this file doesn't *do anything* with those results; it
//! just returns them for other code to use.
#![allow(rustc::diagnostic_outside_of_impl)]
#![allow(rustc::untranslatable_diagnostic)]
use std::cell::Cell;
use std::iter;
use rustc_data_structures::fx::FxIndexMap;
use rustc_errors::Diag;
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_hir::lang_items::LangItem;
use rustc_hir::BodyOwnerKind;
use rustc_index::IndexVec;
use rustc_infer::infer::NllRegionVariableOrigin;
use rustc_macros::extension;
use rustc_middle::ty::fold::TypeFoldable;
use rustc_middle::ty::print::with_no_trimmed_paths;
use rustc_middle::ty::{
self, GenericArgs, GenericArgsRef, InlineConstArgs, InlineConstArgsParts, RegionVid, Ty,
TyCtxt, TypeVisitableExt,
};
use rustc_middle::{bug, span_bug};
use rustc_span::symbol::{kw, sym};
use rustc_span::{ErrorGuaranteed, Symbol};
use tracing::{debug, instrument};
use crate::renumber::RegionCtxt;
use crate::BorrowckInferCtxt;
#[derive(Debug)]
pub(crate) struct UniversalRegions<'tcx> {
indices: UniversalRegionIndices<'tcx>,
/// The vid assigned to `'static`
pub fr_static: RegionVid,
/// A special region vid created to represent the current MIR fn
/// body. It will outlive the entire CFG but it will not outlive
/// any other universal regions.
pub fr_fn_body: RegionVid,
/// We create region variables such that they are ordered by their
/// `RegionClassification`. The first block are globals, then
/// externals, then locals. So, things from:
/// - `FIRST_GLOBAL_INDEX..first_extern_index` are global,
/// - `first_extern_index..first_local_index` are external,
/// - `first_local_index..num_universals` are local.
first_extern_index: usize,
/// See `first_extern_index`.
first_local_index: usize,
/// The total number of universal region variables instantiated.
num_universals: usize,
/// The "defining" type for this function, with all universal
/// regions instantiated. For a closure or coroutine, this is the
/// closure type, but for a top-level function it's the `FnDef`.
pub defining_ty: DefiningTy<'tcx>,
/// The return type of this function, with all regions replaced by
/// their universal `RegionVid` equivalents.
///
/// N.B., associated types in this type have not been normalized,
/// as the name suggests. =)
pub unnormalized_output_ty: Ty<'tcx>,
/// The fully liberated input types of this function, with all
/// regions replaced by their universal `RegionVid` equivalents.
///
/// N.B., associated types in these types have not been normalized,
/// as the name suggests. =)
pub unnormalized_input_tys: &'tcx [Ty<'tcx>],
pub yield_ty: Option<Ty<'tcx>>,
pub resume_ty: Option<Ty<'tcx>>,
}
/// The "defining type" for this MIR. The key feature of the "defining
/// type" is that it contains the information needed to derive all the
/// universal regions that are in scope as well as the types of the
/// inputs/output from the MIR. In general, early-bound universal
/// regions appear free in the defining type and late-bound regions
/// appear bound in the signature.
#[derive(Copy, Clone, Debug)]
pub(crate) enum DefiningTy<'tcx> {
/// The MIR is a closure. The signature is found via
/// `ClosureArgs::closure_sig_ty`.
Closure(DefId, GenericArgsRef<'tcx>),
/// The MIR is a coroutine. The signature is that coroutines take
/// no parameters and return the result of
/// `ClosureArgs::coroutine_return_ty`.
Coroutine(DefId, GenericArgsRef<'tcx>),
/// The MIR is a special kind of closure that returns coroutines.
///
/// See the documentation on `CoroutineClosureSignature` for details
/// on how to construct the callable signature of the coroutine from
/// its args.
CoroutineClosure(DefId, GenericArgsRef<'tcx>),
/// The MIR is a fn item with the given `DefId` and args. The signature
/// of the function can be bound then with the `fn_sig` query.
FnDef(DefId, GenericArgsRef<'tcx>),
/// The MIR represents some form of constant. The signature then
/// is that it has no inputs and a single return value, which is
/// the value of the constant.
Const(DefId, GenericArgsRef<'tcx>),
/// The MIR represents an inline const. The signature has no inputs and a
/// single return value found via `InlineConstArgs::ty`.
InlineConst(DefId, GenericArgsRef<'tcx>),
}
impl<'tcx> DefiningTy<'tcx> {
/// Returns a list of all the upvar types for this MIR. If this is
/// not a closure or coroutine, there are no upvars, and hence it
/// will be an empty list. The order of types in this list will
/// match up with the upvar order in the HIR, typesystem, and MIR.
pub(crate) fn upvar_tys(self) -> &'tcx ty::List<Ty<'tcx>> {
match self {
DefiningTy::Closure(_, args) => args.as_closure().upvar_tys(),
DefiningTy::CoroutineClosure(_, args) => args.as_coroutine_closure().upvar_tys(),
DefiningTy::Coroutine(_, args) => args.as_coroutine().upvar_tys(),
DefiningTy::FnDef(..) | DefiningTy::Const(..) | DefiningTy::InlineConst(..) => {
ty::List::empty()
}
}
}
/// Number of implicit inputs -- notably the "environment"
/// parameter for closures -- that appear in MIR but not in the
/// user's code.
pub(crate) fn implicit_inputs(self) -> usize {
match self {
DefiningTy::Closure(..)
| DefiningTy::CoroutineClosure(..)
| DefiningTy::Coroutine(..) => 1,
DefiningTy::FnDef(..) | DefiningTy::Const(..) | DefiningTy::InlineConst(..) => 0,
}
}
pub(crate) fn is_fn_def(&self) -> bool {
matches!(*self, DefiningTy::FnDef(..))
}
pub(crate) fn is_const(&self) -> bool {
matches!(*self, DefiningTy::Const(..) | DefiningTy::InlineConst(..))
}
pub(crate) fn def_id(&self) -> DefId {
match *self {
DefiningTy::Closure(def_id, ..)
| DefiningTy::CoroutineClosure(def_id, ..)
| DefiningTy::Coroutine(def_id, ..)
| DefiningTy::FnDef(def_id, ..)
| DefiningTy::Const(def_id, ..)
| DefiningTy::InlineConst(def_id, ..) => def_id,
}
}
}
#[derive(Debug)]
struct UniversalRegionIndices<'tcx> {
/// For those regions that may appear in the parameter environment
/// ('static and early-bound regions), we maintain a map from the
/// `ty::Region` to the internal `RegionVid` we are using. This is
/// used because trait matching and type-checking will feed us
/// region constraints that reference those regions and we need to
/// be able to map them to our internal `RegionVid`. This is
/// basically equivalent to an `GenericArgs`, except that it also
/// contains an entry for `ReStatic` -- it might be nice to just
/// use an args, and then handle `ReStatic` another way.
indices: FxIndexMap<ty::Region<'tcx>, RegionVid>,
/// The vid assigned to `'static`. Used only for diagnostics.
pub fr_static: RegionVid,
/// Whether we've encountered an error region. If we have, cancel all
/// outlives errors, as they are likely bogus.
pub tainted_by_errors: Cell<Option<ErrorGuaranteed>>,
}
#[derive(Debug, PartialEq)]
pub(crate) enum RegionClassification {
/// A **global** region is one that can be named from
/// anywhere. There is only one, `'static`.
Global,
/// An **external** region is only relevant for
/// closures, coroutines, and inline consts. In that
/// case, it refers to regions that are free in the type
/// -- basically, something bound in the surrounding context.
///
/// Consider this example:
///
/// ```ignore (pseudo-rust)
/// fn foo<'a, 'b>(a: &'a u32, b: &'b u32, c: &'static u32) {
/// let closure = for<'x> |x: &'x u32| { .. };
/// // ^^^^^^^ pretend this were legal syntax
/// // for declaring a late-bound region in
/// // a closure signature
/// }
/// ```
///
/// Here, the lifetimes `'a` and `'b` would be **external** to the
/// closure.
///
/// If we are not analyzing a closure/coroutine/inline-const,
/// there are no external lifetimes.
External,
/// A **local** lifetime is one about which we know the full set
/// of relevant constraints (that is, relationships to other named
/// regions). For a closure, this includes any region bound in
/// the closure's signature. For a fn item, this includes all
/// regions other than global ones.
///
/// Continuing with the example from `External`, if we were
/// analyzing the closure, then `'x` would be local (and `'a` and
/// `'b` are external). If we are analyzing the function item
/// `foo`, then `'a` and `'b` are local (and `'x` is not in
/// scope).
Local,
}
const FIRST_GLOBAL_INDEX: usize = 0;
impl<'tcx> UniversalRegions<'tcx> {
/// Creates a new and fully initialized `UniversalRegions` that
/// contains indices for all the free regions found in the given
/// MIR -- that is, all the regions that appear in the function's
/// signature. This will also compute the relationships that are
/// known between those regions.
pub(crate) fn new(
infcx: &BorrowckInferCtxt<'tcx>,
mir_def: LocalDefId,
param_env: ty::ParamEnv<'tcx>,
) -> Self {
UniversalRegionsBuilder { infcx, mir_def, param_env }.build()
}
/// Given a reference to a closure type, extracts all the values
/// from its free regions and returns a vector with them. This is
/// used when the closure's creator checks that the
/// `ClosureRegionRequirements` are met. The requirements from
/// `ClosureRegionRequirements` are expressed in terms of
/// `RegionVid` entries that map into the returned vector `V`: so
/// if the `ClosureRegionRequirements` contains something like
/// `'1: '2`, then the caller would impose the constraint that
/// `V[1]: V[2]`.
pub(crate) fn closure_mapping(
tcx: TyCtxt<'tcx>,
closure_args: GenericArgsRef<'tcx>,
expected_num_vars: usize,
closure_def_id: LocalDefId,
) -> IndexVec<RegionVid, ty::Region<'tcx>> {
let mut region_mapping = IndexVec::with_capacity(expected_num_vars);
region_mapping.push(tcx.lifetimes.re_static);
tcx.for_each_free_region(&closure_args, |fr| {
region_mapping.push(fr);
});
for_each_late_bound_region_in_recursive_scope(tcx, tcx.local_parent(closure_def_id), |r| {
region_mapping.push(r);
});
assert_eq!(
region_mapping.len(),
expected_num_vars,
"index vec had unexpected number of variables"
);
region_mapping
}
/// Returns `true` if `r` is a member of this set of universal regions.
pub(crate) fn is_universal_region(&self, r: RegionVid) -> bool {
(FIRST_GLOBAL_INDEX..self.num_universals).contains(&r.index())
}
/// Classifies `r` as a universal region, returning `None` if this
/// is not a member of this set of universal regions.
pub(crate) fn region_classification(&self, r: RegionVid) -> Option<RegionClassification> {
let index = r.index();
if (FIRST_GLOBAL_INDEX..self.first_extern_index).contains(&index) {
Some(RegionClassification::Global)
} else if (self.first_extern_index..self.first_local_index).contains(&index) {
Some(RegionClassification::External)
} else if (self.first_local_index..self.num_universals).contains(&index) {
Some(RegionClassification::Local)
} else {
None
}
}
/// Returns an iterator over all the RegionVids corresponding to
/// universally quantified free regions.
pub(crate) fn universal_regions(&self) -> impl Iterator<Item = RegionVid> {
(FIRST_GLOBAL_INDEX..self.num_universals).map(RegionVid::from_usize)
}
/// Returns `true` if `r` is classified as a local region.
pub(crate) fn is_local_free_region(&self, r: RegionVid) -> bool {
self.region_classification(r) == Some(RegionClassification::Local)
}
/// Returns the number of universal regions created in any category.
pub(crate) fn len(&self) -> usize {
self.num_universals
}
/// Returns the number of global plus external universal regions.
/// For closures, these are the regions that appear free in the
/// closure type (versus those bound in the closure
/// signature). They are therefore the regions between which the
/// closure may impose constraints that its creator must verify.
pub(crate) fn num_global_and_external_regions(&self) -> usize {
self.first_local_index
}
/// Gets an iterator over all the early-bound regions that have names.
pub(crate) fn named_universal_regions<'s>(
&'s self,
) -> impl Iterator<Item = (ty::Region<'tcx>, ty::RegionVid)> + 's {
self.indices.indices.iter().map(|(&r, &v)| (r, v))
}
/// See `UniversalRegionIndices::to_region_vid`.
pub(crate) fn to_region_vid(&self, r: ty::Region<'tcx>) -> RegionVid {
self.indices.to_region_vid(r)
}
/// As part of the NLL unit tests, you can annotate a function with
/// `#[rustc_regions]`, and we will emit information about the region
/// inference context and -- in particular -- the external constraints
/// that this region imposes on others. The methods in this file
/// handle the part about dumping the inference context internal
/// state.
pub(crate) fn annotate(&self, tcx: TyCtxt<'tcx>, err: &mut Diag<'_, ()>) {
match self.defining_ty {
DefiningTy::Closure(def_id, args) => {
let v = with_no_trimmed_paths!(
args[tcx.generics_of(def_id).parent_count..]
.iter()
.map(|arg| arg.to_string())
.collect::<Vec<_>>()
);
err.note(format!(
"defining type: {} with closure args [\n {},\n]",
tcx.def_path_str_with_args(def_id, args),
v.join(",\n "),
));
// FIXME: It'd be nice to print the late-bound regions
// here, but unfortunately these wind up stored into
// tests, and the resulting print-outs include def-ids
// and other things that are not stable across tests!
// So we just include the region-vid. Annoying.
for_each_late_bound_region_in_recursive_scope(tcx, def_id.expect_local(), |r| {
err.note(format!("late-bound region is {:?}", self.to_region_vid(r)));
});
}
DefiningTy::CoroutineClosure(..) => {
todo!()
}
DefiningTy::Coroutine(def_id, args) => {
let v = with_no_trimmed_paths!(
args[tcx.generics_of(def_id).parent_count..]
.iter()
.map(|arg| arg.to_string())
.collect::<Vec<_>>()
);
err.note(format!(
"defining type: {} with coroutine args [\n {},\n]",
tcx.def_path_str_with_args(def_id, args),
v.join(",\n "),
));
// FIXME: As above, we'd like to print out the region
// `r` but doing so is not stable across architectures
// and so forth.
for_each_late_bound_region_in_recursive_scope(tcx, def_id.expect_local(), |r| {
err.note(format!("late-bound region is {:?}", self.to_region_vid(r)));
});
}
DefiningTy::FnDef(def_id, args) => {
err.note(format!("defining type: {}", tcx.def_path_str_with_args(def_id, args),));
}
DefiningTy::Const(def_id, args) => {
err.note(format!(
"defining constant type: {}",
tcx.def_path_str_with_args(def_id, args),
));
}
DefiningTy::InlineConst(def_id, args) => {
err.note(format!(
"defining inline constant type: {}",
tcx.def_path_str_with_args(def_id, args),
));
}
}
}
pub(crate) fn tainted_by_errors(&self) -> Option<ErrorGuaranteed> {
self.indices.tainted_by_errors.get()
}
}
struct UniversalRegionsBuilder<'cx, 'tcx> {
infcx: &'cx BorrowckInferCtxt<'tcx>,
mir_def: LocalDefId,
param_env: ty::ParamEnv<'tcx>,
}
const FR: NllRegionVariableOrigin = NllRegionVariableOrigin::FreeRegion;
impl<'cx, 'tcx> UniversalRegionsBuilder<'cx, 'tcx> {
fn build(self) -> UniversalRegions<'tcx> {
debug!("build(mir_def={:?})", self.mir_def);
let param_env = self.param_env;
debug!("build: param_env={:?}", param_env);
assert_eq!(FIRST_GLOBAL_INDEX, self.infcx.num_region_vars());
// Create the "global" region that is always free in all contexts: 'static.
let fr_static =
self.infcx.next_nll_region_var(FR, || RegionCtxt::Free(kw::Static)).as_var();
// We've now added all the global regions. The next ones we
// add will be external.
let first_extern_index = self.infcx.num_region_vars();
let defining_ty = self.defining_ty();
debug!("build: defining_ty={:?}", defining_ty);
let mut indices = self.compute_indices(fr_static, defining_ty);
debug!("build: indices={:?}", indices);
let typeck_root_def_id = self.infcx.tcx.typeck_root_def_id(self.mir_def.to_def_id());
// If this is a 'root' body (not a closure/coroutine/inline const), then
// there are no extern regions, so the local regions start at the same
// position as the (empty) sub-list of extern regions
let first_local_index = if self.mir_def.to_def_id() == typeck_root_def_id {
first_extern_index
} else {
// If this is a closure, coroutine, or inline-const, then the late-bound regions from the enclosing
// function/closures are actually external regions to us. For example, here, 'a is not local
// to the closure c (although it is local to the fn foo):
// fn foo<'a>() {
// let c = || { let x: &'a u32 = ...; }
// }
for_each_late_bound_region_in_recursive_scope(
self.infcx.tcx,
self.infcx.tcx.local_parent(self.mir_def),
|r| {
debug!(?r);
if !indices.indices.contains_key(&r) {
let region_vid = {
let name = r.get_name_or_anon();
self.infcx.next_nll_region_var(FR, || RegionCtxt::LateBound(name))
};
debug!(?region_vid);
indices.insert_late_bound_region(r, region_vid.as_var());
}
},
);
// Any regions created during the execution of `defining_ty` or during the above
// late-bound region replacement are all considered 'extern' regions
self.infcx.num_region_vars()
};
// "Liberate" the late-bound regions. These correspond to
// "local" free regions.
let bound_inputs_and_output = self.compute_inputs_and_output(&indices, defining_ty);
let inputs_and_output = self.infcx.replace_bound_regions_with_nll_infer_vars(
FR,
self.mir_def,
bound_inputs_and_output,
&mut indices,
);
// Converse of above, if this is a function/closure then the late-bound regions declared on its
// signature are local.
for_each_late_bound_region_in_item(self.infcx.tcx, self.mir_def, |r| {
debug!(?r);
if !indices.indices.contains_key(&r) {
let region_vid = {
let name = r.get_name_or_anon();
self.infcx.next_nll_region_var(FR, || RegionCtxt::LateBound(name))
};
debug!(?region_vid);
indices.insert_late_bound_region(r, region_vid.as_var());
}
});
let (unnormalized_output_ty, mut unnormalized_input_tys) =
inputs_and_output.split_last().unwrap();
// C-variadic fns also have a `VaList` input that's not listed in the signature
// (as it's created inside the body itself, not passed in from outside).
if let DefiningTy::FnDef(def_id, _) = defining_ty {
if self.infcx.tcx.fn_sig(def_id).skip_binder().c_variadic() {
let va_list_did = self.infcx.tcx.require_lang_item(
LangItem::VaList,
Some(self.infcx.tcx.def_span(self.mir_def)),
);
let reg_vid = self
.infcx
.next_nll_region_var(FR, || RegionCtxt::Free(Symbol::intern("c-variadic")))
.as_var();
let region = ty::Region::new_var(self.infcx.tcx, reg_vid);
let va_list_ty = self
.infcx
.tcx
.type_of(va_list_did)
.instantiate(self.infcx.tcx, &[region.into()]);
unnormalized_input_tys = self.infcx.tcx.mk_type_list_from_iter(
unnormalized_input_tys.iter().copied().chain(iter::once(va_list_ty)),
);
}
}
let fr_fn_body = self
.infcx
.next_nll_region_var(FR, || RegionCtxt::Free(Symbol::intern("fn_body")))
.as_var();
let num_universals = self.infcx.num_region_vars();
debug!("build: global regions = {}..{}", FIRST_GLOBAL_INDEX, first_extern_index);
debug!("build: extern regions = {}..{}", first_extern_index, first_local_index);
debug!("build: local regions = {}..{}", first_local_index, num_universals);
let (resume_ty, yield_ty) = match defining_ty {
DefiningTy::Coroutine(_, args) => {
let tys = args.as_coroutine();
(Some(tys.resume_ty()), Some(tys.yield_ty()))
}
_ => (None, None),
};
UniversalRegions {
indices,
fr_static,
fr_fn_body,
first_extern_index,
first_local_index,
num_universals,
defining_ty,
unnormalized_output_ty: *unnormalized_output_ty,
unnormalized_input_tys,
yield_ty,
resume_ty,
}
}
/// Returns the "defining type" of the current MIR;
/// see `DefiningTy` for details.
fn defining_ty(&self) -> DefiningTy<'tcx> {
let tcx = self.infcx.tcx;
let typeck_root_def_id = tcx.typeck_root_def_id(self.mir_def.to_def_id());
match tcx.hir().body_owner_kind(self.mir_def) {
BodyOwnerKind::Closure | BodyOwnerKind::Fn => {
let defining_ty = tcx.type_of(self.mir_def).instantiate_identity();
debug!("defining_ty (pre-replacement): {:?}", defining_ty);
let defining_ty =
self.infcx.replace_free_regions_with_nll_infer_vars(FR, defining_ty);
match *defining_ty.kind() {
ty::Closure(def_id, args) => DefiningTy::Closure(def_id, args),
ty::Coroutine(def_id, args) => DefiningTy::Coroutine(def_id, args),
ty::CoroutineClosure(def_id, args) => {
DefiningTy::CoroutineClosure(def_id, args)
}
ty::FnDef(def_id, args) => DefiningTy::FnDef(def_id, args),
_ => span_bug!(
tcx.def_span(self.mir_def),
"expected defining type for `{:?}`: `{:?}`",
self.mir_def,
defining_ty
),
}
}
BodyOwnerKind::Const { .. } | BodyOwnerKind::Static(..) => {
let identity_args = GenericArgs::identity_for_item(tcx, typeck_root_def_id);
if self.mir_def.to_def_id() == typeck_root_def_id {
let args =
self.infcx.replace_free_regions_with_nll_infer_vars(FR, identity_args);
DefiningTy::Const(self.mir_def.to_def_id(), args)
} else {
// FIXME this line creates a dependency between borrowck and typeck.
//
// This is required for `AscribeUserType` canonical query, which will call
// `type_of(inline_const_def_id)`. That `type_of` would inject erased lifetimes
// into borrowck, which is ICE #78174.
//
// As a workaround, inline consts have an additional generic param (`ty`
// below), so that `type_of(inline_const_def_id).args(args)` uses the
// proper type with NLL infer vars.
let ty = tcx
.typeck(self.mir_def)
.node_type(tcx.local_def_id_to_hir_id(self.mir_def));
let args = InlineConstArgs::new(
tcx,
InlineConstArgsParts { parent_args: identity_args, ty },
)
.args;
let args = self.infcx.replace_free_regions_with_nll_infer_vars(FR, args);
DefiningTy::InlineConst(self.mir_def.to_def_id(), args)
}
}
}
}
/// Builds a hashmap that maps from the universal regions that are
/// in scope (as a `ty::Region<'tcx>`) to their indices (as a
/// `RegionVid`). The map returned by this function contains only
/// the early-bound regions.
fn compute_indices(
&self,
fr_static: RegionVid,
defining_ty: DefiningTy<'tcx>,
) -> UniversalRegionIndices<'tcx> {
let tcx = self.infcx.tcx;
let typeck_root_def_id = tcx.typeck_root_def_id(self.mir_def.to_def_id());
let identity_args = GenericArgs::identity_for_item(tcx, typeck_root_def_id);
let fr_args = match defining_ty {
DefiningTy::Closure(_, args)
| DefiningTy::CoroutineClosure(_, args)
| DefiningTy::Coroutine(_, args)
| DefiningTy::InlineConst(_, args) => {
// In the case of closures, we rely on the fact that
// the first N elements in the ClosureArgs are
// inherited from the `typeck_root_def_id`.
// Therefore, when we zip together (below) with
// `identity_args`, we will get only those regions
// that correspond to early-bound regions declared on
// the `typeck_root_def_id`.
assert!(args.len() >= identity_args.len());
assert_eq!(args.regions().count(), identity_args.regions().count());
args
}
DefiningTy::FnDef(_, args) | DefiningTy::Const(_, args) => args,
};
let global_mapping = iter::once((tcx.lifetimes.re_static, fr_static));
let arg_mapping = iter::zip(identity_args.regions(), fr_args.regions().map(|r| r.as_var()));
UniversalRegionIndices {
indices: global_mapping.chain(arg_mapping).collect(),
fr_static,
tainted_by_errors: Cell::new(None),
}
}
fn compute_inputs_and_output(
&self,
indices: &UniversalRegionIndices<'tcx>,
defining_ty: DefiningTy<'tcx>,
) -> ty::Binder<'tcx, &'tcx ty::List<Ty<'tcx>>> {
let tcx = self.infcx.tcx;
let inputs_and_output = match defining_ty {
DefiningTy::Closure(def_id, args) => {
assert_eq!(self.mir_def.to_def_id(), def_id);
let closure_sig = args.as_closure().sig();
let inputs_and_output = closure_sig.inputs_and_output();
let bound_vars = tcx.mk_bound_variable_kinds_from_iter(
inputs_and_output
.bound_vars()
.iter()
.chain(iter::once(ty::BoundVariableKind::Region(ty::BrEnv))),
);
let br = ty::BoundRegion {
var: ty::BoundVar::from_usize(bound_vars.len() - 1),
kind: ty::BrEnv,
};
let env_region = ty::Region::new_bound(tcx, ty::INNERMOST, br);
let closure_ty = tcx.closure_env_ty(
Ty::new_closure(tcx, def_id, args),
args.as_closure().kind(),
env_region,
);
// The "inputs" of the closure in the
// signature appear as a tuple. The MIR side
// flattens this tuple.
let (&output, tuplized_inputs) =
inputs_and_output.skip_binder().split_last().unwrap();
assert_eq!(tuplized_inputs.len(), 1, "multiple closure inputs");
let &ty::Tuple(inputs) = tuplized_inputs[0].kind() else {
bug!("closure inputs not a tuple: {:?}", tuplized_inputs[0]);
};
ty::Binder::bind_with_vars(
tcx.mk_type_list_from_iter(
iter::once(closure_ty).chain(inputs).chain(iter::once(output)),
),
bound_vars,
)
}
DefiningTy::Coroutine(def_id, args) => {
assert_eq!(self.mir_def.to_def_id(), def_id);
let resume_ty = args.as_coroutine().resume_ty();
let output = args.as_coroutine().return_ty();
let coroutine_ty = Ty::new_coroutine(tcx, def_id, args);
let inputs_and_output =
self.infcx.tcx.mk_type_list(&[coroutine_ty, resume_ty, output]);
ty::Binder::dummy(inputs_and_output)
}
// Construct the signature of the CoroutineClosure for the purposes of borrowck.
// This is pretty straightforward -- we:
// 1. first grab the `coroutine_closure_sig`,
// 2. compute the self type (`&`/`&mut`/no borrow),
// 3. flatten the tupled_input_tys,
// 4. construct the correct generator type to return with
// `CoroutineClosureSignature::to_coroutine_given_kind_and_upvars`.
// Then we wrap it all up into a list of inputs and output.
DefiningTy::CoroutineClosure(def_id, args) => {
assert_eq!(self.mir_def.to_def_id(), def_id);
let closure_sig = args.as_coroutine_closure().coroutine_closure_sig();
let bound_vars = tcx.mk_bound_variable_kinds_from_iter(
closure_sig
.bound_vars()
.iter()
.chain(iter::once(ty::BoundVariableKind::Region(ty::BrEnv))),
);
let br = ty::BoundRegion {
var: ty::BoundVar::from_usize(bound_vars.len() - 1),
kind: ty::BrEnv,
};
let env_region = ty::Region::new_bound(tcx, ty::INNERMOST, br);
let closure_kind = args.as_coroutine_closure().kind();
let closure_ty = tcx.closure_env_ty(
Ty::new_coroutine_closure(tcx, def_id, args),
closure_kind,
env_region,
);
let inputs = closure_sig.skip_binder().tupled_inputs_ty.tuple_fields();
let output = closure_sig.skip_binder().to_coroutine_given_kind_and_upvars(
tcx,
args.as_coroutine_closure().parent_args(),
tcx.coroutine_for_closure(def_id),
closure_kind,
env_region,
args.as_coroutine_closure().tupled_upvars_ty(),
args.as_coroutine_closure().coroutine_captures_by_ref_ty(),
);
ty::Binder::bind_with_vars(
tcx.mk_type_list_from_iter(
iter::once(closure_ty).chain(inputs).chain(iter::once(output)),
),
bound_vars,
)
}
DefiningTy::FnDef(def_id, _) => {
let sig = tcx.fn_sig(def_id).instantiate_identity();
let sig = indices.fold_to_region_vids(tcx, sig);
sig.inputs_and_output()
}
DefiningTy::Const(def_id, _) => {
// For a constant body, there are no inputs, and one
// "output" (the type of the constant).
assert_eq!(self.mir_def.to_def_id(), def_id);
let ty = tcx.type_of(self.mir_def).instantiate_identity();
let ty = indices.fold_to_region_vids(tcx, ty);
ty::Binder::dummy(tcx.mk_type_list(&[ty]))
}
DefiningTy::InlineConst(def_id, args) => {
assert_eq!(self.mir_def.to_def_id(), def_id);
let ty = args.as_inline_const().ty();
ty::Binder::dummy(tcx.mk_type_list(&[ty]))
}
};
// FIXME(#129952): We probably want a more principled approach here.
if let Err(terr) = inputs_and_output.skip_binder().error_reported() {
self.infcx.set_tainted_by_errors(terr);
}
inputs_and_output
}
}
#[extension(trait InferCtxtExt<'tcx>)]
impl<'tcx> BorrowckInferCtxt<'tcx> {
#[instrument(skip(self), level = "debug")]
fn replace_free_regions_with_nll_infer_vars<T>(
&self,
origin: NllRegionVariableOrigin,
value: T,
) -> T
where
T: TypeFoldable<TyCtxt<'tcx>>,
{
self.infcx.tcx.fold_regions(value, |region, _depth| {
let name = region.get_name_or_anon();
debug!(?region, ?name);
self.next_nll_region_var(origin, || RegionCtxt::Free(name))
})
}
#[instrument(level = "debug", skip(self, indices))]
fn replace_bound_regions_with_nll_infer_vars<T>(
&self,
origin: NllRegionVariableOrigin,
all_outlive_scope: LocalDefId,
value: ty::Binder<'tcx, T>,
indices: &mut UniversalRegionIndices<'tcx>,
) -> T
where
T: TypeFoldable<TyCtxt<'tcx>>,
{
let (value, _map) = self.tcx.instantiate_bound_regions(value, |br| {
debug!(?br);
let liberated_region =
ty::Region::new_late_param(self.tcx, all_outlive_scope.to_def_id(), br.kind);
let region_vid = {
let name = match br.kind.get_name() {
Some(name) => name,
_ => sym::anon,
};
self.next_nll_region_var(origin, || RegionCtxt::Bound(name))
};
indices.insert_late_bound_region(liberated_region, region_vid.as_var());
debug!(?liberated_region, ?region_vid);
region_vid
});
value
}
}
impl<'tcx> UniversalRegionIndices<'tcx> {
/// Initially, the `UniversalRegionIndices` map contains only the
/// early-bound regions in scope. Once that is all setup, we come
/// in later and instantiate the late-bound regions, and then we
/// insert the `ReLateParam` version of those into the map as
/// well. These are used for error reporting.
fn insert_late_bound_region(&mut self, r: ty::Region<'tcx>, vid: ty::RegionVid) {
debug!("insert_late_bound_region({:?}, {:?})", r, vid);
self.indices.insert(r, vid);
}
/// Converts `r` into a local inference variable: `r` can either
/// be a `ReVar` (i.e., already a reference to an inference
/// variable) or it can be `'static` or some early-bound
/// region. This is useful when taking the results from
/// type-checking and trait-matching, which may sometimes
/// reference those regions from the `ParamEnv`. It is also used
/// during initialization. Relies on the `indices` map having been
/// fully initialized.
fn to_region_vid(&self, r: ty::Region<'tcx>) -> RegionVid {
if let ty::ReVar(..) = *r {
r.as_var()
} else if let ty::ReError(guar) = *r {
self.tainted_by_errors.set(Some(guar));
// We use the `'static` `RegionVid` because `ReError` doesn't actually exist in the
// `UniversalRegionIndices`. This is fine because 1) it is a fallback only used if
// errors are being emitted and 2) it leaves the happy path unaffected.
self.fr_static
} else {
*self
.indices
.get(&r)
.unwrap_or_else(|| bug!("cannot convert `{:?}` to a region vid", r))
}
}
/// Replaces all free regions in `value` with region vids, as
/// returned by `to_region_vid`.
fn fold_to_region_vids<T>(&self, tcx: TyCtxt<'tcx>, value: T) -> T
where
T: TypeFoldable<TyCtxt<'tcx>>,
{
tcx.fold_regions(value, |region, _| ty::Region::new_var(tcx, self.to_region_vid(region)))
}
}
/// Iterates over the late-bound regions defined on `mir_def_id` and all of its
/// parents, up to the typeck root, and invokes `f` with the liberated form
/// of each one.
fn for_each_late_bound_region_in_recursive_scope<'tcx>(
tcx: TyCtxt<'tcx>,
mut mir_def_id: LocalDefId,
mut f: impl FnMut(ty::Region<'tcx>),
) {
let typeck_root_def_id = tcx.typeck_root_def_id(mir_def_id.to_def_id());
// Walk up the tree, collecting late-bound regions until we hit the typeck root
loop {
for_each_late_bound_region_in_item(tcx, mir_def_id, &mut f);
if mir_def_id.to_def_id() == typeck_root_def_id {
break;
} else {
mir_def_id = tcx.local_parent(mir_def_id);
}
}
}
/// Iterates over the late-bound regions defined on `mir_def_id` and all of its
/// parents, up to the typeck root, and invokes `f` with the liberated form
/// of each one.
fn for_each_late_bound_region_in_item<'tcx>(
tcx: TyCtxt<'tcx>,
mir_def_id: LocalDefId,
mut f: impl FnMut(ty::Region<'tcx>),
) {
if !tcx.def_kind(mir_def_id).is_fn_like() {
return;
}
for bound_var in tcx.late_bound_vars(tcx.local_def_id_to_hir_id(mir_def_id)) {
let ty::BoundVariableKind::Region(bound_region) = bound_var else {
continue;
};
let liberated_region =
ty::Region::new_late_param(tcx, mir_def_id.to_def_id(), bound_region);
f(liberated_region);
}
}