blob: aba09c3c8185006495db0a8ef055392a5096c29d [file] [log] [blame]
use crate::infer::opaque_types::required_region_bounds;
use crate::infer::InferCtxt;
use crate::middle::lang_items;
use crate::traits::{self, AssocTypeBoundData};
use crate::ty::subst::SubstsRef;
use crate::ty::{self, ToPredicate, Ty, TyCtxt, TypeFoldable};
use rustc_hir as hir;
use rustc_hir::def_id::DefId;
use rustc_span::symbol::{kw, Ident};
use rustc_span::Span;
use std::iter::once;
/// Returns the set of obligations needed to make `ty` well-formed.
/// If `ty` contains unresolved inference variables, this may include
/// further WF obligations. However, if `ty` IS an unresolved
/// inference variable, returns `None`, because we are not able to
/// make any progress at all. This is to prevent "livelock" where we
/// say "$0 is WF if $0 is WF".
pub fn obligations<'a, 'tcx>(
infcx: &InferCtxt<'a, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
body_id: hir::HirId,
ty: Ty<'tcx>,
span: Span,
) -> Option<Vec<traits::PredicateObligation<'tcx>>> {
let mut wf = WfPredicates { infcx, param_env, body_id, span, out: vec![], item: None };
if wf.compute(ty) {
debug!("wf::obligations({:?}, body_id={:?}) = {:?}", ty, body_id, wf.out);
let result = wf.normalize();
debug!("wf::obligations({:?}, body_id={:?}) ~~> {:?}", ty, body_id, result);
Some(result)
} else {
None // no progress made, return None
}
}
/// Returns the obligations that make this trait reference
/// well-formed. For example, if there is a trait `Set` defined like
/// `trait Set<K:Eq>`, then the trait reference `Foo: Set<Bar>` is WF
/// if `Bar: Eq`.
pub fn trait_obligations<'a, 'tcx>(
infcx: &InferCtxt<'a, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
body_id: hir::HirId,
trait_ref: &ty::TraitRef<'tcx>,
span: Span,
item: Option<&'tcx hir::Item<'tcx>>,
) -> Vec<traits::PredicateObligation<'tcx>> {
let mut wf = WfPredicates { infcx, param_env, body_id, span, out: vec![], item };
wf.compute_trait_ref(trait_ref, Elaborate::All);
wf.normalize()
}
pub fn predicate_obligations<'a, 'tcx>(
infcx: &InferCtxt<'a, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
body_id: hir::HirId,
predicate: &ty::Predicate<'tcx>,
span: Span,
) -> Vec<traits::PredicateObligation<'tcx>> {
let mut wf = WfPredicates { infcx, param_env, body_id, span, out: vec![], item: None };
// (*) ok to skip binders, because wf code is prepared for it
match *predicate {
ty::Predicate::Trait(ref t, _) => {
wf.compute_trait_ref(&t.skip_binder().trait_ref, Elaborate::None); // (*)
}
ty::Predicate::RegionOutlives(..) => {}
ty::Predicate::TypeOutlives(ref t) => {
wf.compute(t.skip_binder().0);
}
ty::Predicate::Projection(ref t) => {
let t = t.skip_binder(); // (*)
wf.compute_projection(t.projection_ty);
wf.compute(t.ty);
}
ty::Predicate::WellFormed(t) => {
wf.compute(t);
}
ty::Predicate::ObjectSafe(_) => {}
ty::Predicate::ClosureKind(..) => {}
ty::Predicate::Subtype(ref data) => {
wf.compute(data.skip_binder().a); // (*)
wf.compute(data.skip_binder().b); // (*)
}
ty::Predicate::ConstEvaluatable(def_id, substs) => {
let obligations = wf.nominal_obligations(def_id, substs);
wf.out.extend(obligations);
for ty in substs.types() {
wf.compute(ty);
}
}
}
wf.normalize()
}
struct WfPredicates<'a, 'tcx> {
infcx: &'a InferCtxt<'a, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
body_id: hir::HirId,
span: Span,
out: Vec<traits::PredicateObligation<'tcx>>,
item: Option<&'tcx hir::Item<'tcx>>,
}
/// Controls whether we "elaborate" supertraits and so forth on the WF
/// predicates. This is a kind of hack to address #43784. The
/// underlying problem in that issue was a trait structure like:
///
/// ```
/// trait Foo: Copy { }
/// trait Bar: Foo { }
/// impl<T: Bar> Foo for T { }
/// impl<T> Bar for T { }
/// ```
///
/// Here, in the `Foo` impl, we will check that `T: Copy` holds -- but
/// we decide that this is true because `T: Bar` is in the
/// where-clauses (and we can elaborate that to include `T:
/// Copy`). This wouldn't be a problem, except that when we check the
/// `Bar` impl, we decide that `T: Foo` must hold because of the `Foo`
/// impl. And so nowhere did we check that `T: Copy` holds!
///
/// To resolve this, we elaborate the WF requirements that must be
/// proven when checking impls. This means that (e.g.) the `impl Bar
/// for T` will be forced to prove not only that `T: Foo` but also `T:
/// Copy` (which it won't be able to do, because there is no `Copy`
/// impl for `T`).
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
enum Elaborate {
All,
None,
}
impl<'a, 'tcx> WfPredicates<'a, 'tcx> {
fn cause(&mut self, code: traits::ObligationCauseCode<'tcx>) -> traits::ObligationCause<'tcx> {
traits::ObligationCause::new(self.span, self.body_id, code)
}
fn normalize(&mut self) -> Vec<traits::PredicateObligation<'tcx>> {
let cause = self.cause(traits::MiscObligation);
let infcx = &mut self.infcx;
let param_env = self.param_env;
self.out
.iter()
.inspect(|pred| assert!(!pred.has_escaping_bound_vars()))
.flat_map(|pred| {
let mut selcx = traits::SelectionContext::new(infcx);
let pred = traits::normalize(&mut selcx, param_env, cause.clone(), pred);
once(pred.value).chain(pred.obligations)
})
.collect()
}
/// Pushes the obligations required for `trait_ref` to be WF into `self.out`.
fn compute_trait_ref(&mut self, trait_ref: &ty::TraitRef<'tcx>, elaborate: Elaborate) {
let tcx = self.infcx.tcx;
let obligations = self.nominal_obligations(trait_ref.def_id, trait_ref.substs);
let cause = self.cause(traits::MiscObligation);
let param_env = self.param_env;
let item = &self.item;
let extend_cause_with_original_assoc_item_obligation =
|cause: &mut traits::ObligationCause<'_>,
pred: &ty::Predicate<'_>,
trait_assoc_items: ty::AssocItemsIterator<'_>| {
let trait_item = tcx
.hir()
.as_local_hir_id(trait_ref.def_id)
.and_then(|trait_id| tcx.hir().find(trait_id));
let (trait_name, trait_generics) = match trait_item {
Some(hir::Node::Item(hir::Item {
ident,
kind: hir::ItemKind::Trait(.., generics, _, _),
..
}))
| Some(hir::Node::Item(hir::Item {
ident,
kind: hir::ItemKind::TraitAlias(generics, _),
..
})) => (Some(ident), Some(generics)),
_ => (None, None),
};
let item_span = item.map(|i| tcx.sess.source_map().def_span(i.span));
match pred {
ty::Predicate::Projection(proj) => {
// The obligation comes not from the current `impl` nor the `trait` being
// implemented, but rather from a "second order" obligation, like in
// `src/test/ui/associated-types/point-at-type-on-obligation-failure.rs`:
//
// error[E0271]: type mismatch resolving `<Foo2 as Bar2>::Ok == ()`
// --> $DIR/point-at-type-on-obligation-failure.rs:13:5
// |
// LL | type Ok;
// | -- associated type defined here
// ...
// LL | impl Bar for Foo {
// | ---------------- in this `impl` item
// LL | type Ok = ();
// | ^^^^^^^^^^^^^ expected `u32`, found `()`
// |
// = note: expected type `u32`
// found type `()`
//
// FIXME: we would want to point a span to all places that contributed to this
// obligation. In the case above, it should be closer to:
//
// error[E0271]: type mismatch resolving `<Foo2 as Bar2>::Ok == ()`
// --> $DIR/point-at-type-on-obligation-failure.rs:13:5
// |
// LL | type Ok;
// | -- associated type defined here
// LL | type Sibling: Bar2<Ok=Self::Ok>;
// | -------------------------------- obligation set here
// ...
// LL | impl Bar for Foo {
// | ---------------- in this `impl` item
// LL | type Ok = ();
// | ^^^^^^^^^^^^^ expected `u32`, found `()`
// ...
// LL | impl Bar2 for Foo2 {
// | ---------------- in this `impl` item
// LL | type Ok = u32;
// | -------------- obligation set here
// |
// = note: expected type `u32`
// found type `()`
if let Some(hir::ItemKind::Impl { items, .. }) = item.map(|i| &i.kind) {
let trait_assoc_item = tcx.associated_item(proj.projection_def_id());
if let Some(impl_item) = items
.iter()
.filter(|item| item.ident == trait_assoc_item.ident)
.next()
{
cause.span = impl_item.span;
cause.code = traits::AssocTypeBound(Box::new(AssocTypeBoundData {
impl_span: item_span,
original: trait_assoc_item.ident.span,
bounds: vec![],
}));
}
}
}
ty::Predicate::Trait(proj, _) => {
// An associated item obligation born out of the `trait` failed to be met.
// Point at the `impl` that failed the obligation, the associated item that
// needed to meet the obligation, and the definition of that associated item,
// which should hold the obligation in most cases. An example can be seen in
// `src/test/ui/associated-types/point-at-type-on-obligation-failure-2.rs`:
//
// error[E0277]: the trait bound `bool: Bar` is not satisfied
// --> $DIR/point-at-type-on-obligation-failure-2.rs:8:5
// |
// LL | type Assoc: Bar;
// | ----- associated type defined here
// ...
// LL | impl Foo for () {
// | --------------- in this `impl` item
// LL | type Assoc = bool;
// | ^^^^^^^^^^^^^^^^^^ the trait `Bar` is not implemented for `bool`
//
// If the obligation comes from the where clause in the `trait`, we point at it:
//
// error[E0277]: the trait bound `bool: Bar` is not satisfied
// --> $DIR/point-at-type-on-obligation-failure-2.rs:8:5
// |
// | trait Foo where <Self as Foo>>::Assoc: Bar {
// | -------------------------- restricted in this bound
// LL | type Assoc;
// | ----- associated type defined here
// ...
// LL | impl Foo for () {
// | --------------- in this `impl` item
// LL | type Assoc = bool;
// | ^^^^^^^^^^^^^^^^^^ the trait `Bar` is not implemented for `bool`
if let (
ty::Projection(ty::ProjectionTy { item_def_id, .. }),
Some(hir::ItemKind::Impl { items, .. }),
) = (&proj.skip_binder().self_ty().kind, item.map(|i| &i.kind))
{
if let Some((impl_item, trait_assoc_item)) = trait_assoc_items
.filter(|i| i.def_id == *item_def_id)
.next()
.and_then(|trait_assoc_item| {
items
.iter()
.filter(|i| i.ident == trait_assoc_item.ident)
.next()
.map(|impl_item| (impl_item, trait_assoc_item))
})
{
let bounds = trait_generics
.map(|generics| {
get_generic_bound_spans(
&generics,
trait_name,
trait_assoc_item.ident,
)
})
.unwrap_or_else(Vec::new);
cause.span = impl_item.span;
cause.code = traits::AssocTypeBound(Box::new(AssocTypeBoundData {
impl_span: item_span,
original: trait_assoc_item.ident.span,
bounds,
}));
}
}
}
_ => {}
}
};
if let Elaborate::All = elaborate {
let trait_assoc_items = tcx.associated_items(trait_ref.def_id);
let predicates =
obligations.iter().map(|obligation| obligation.predicate.clone()).collect();
let implied_obligations = traits::elaborate_predicates(tcx, predicates);
let implied_obligations = implied_obligations.map(|pred| {
let mut cause = cause.clone();
extend_cause_with_original_assoc_item_obligation(
&mut cause,
&pred,
trait_assoc_items.clone(),
);
traits::Obligation::new(cause, param_env, pred)
});
self.out.extend(implied_obligations);
}
self.out.extend(obligations);
self.out.extend(trait_ref.substs.types().filter(|ty| !ty.has_escaping_bound_vars()).map(
|ty| traits::Obligation::new(cause.clone(), param_env, ty::Predicate::WellFormed(ty)),
));
}
/// Pushes the obligations required for `trait_ref::Item` to be WF
/// into `self.out`.
fn compute_projection(&mut self, data: ty::ProjectionTy<'tcx>) {
// A projection is well-formed if (a) the trait ref itself is
// WF and (b) the trait-ref holds. (It may also be
// normalizable and be WF that way.)
let trait_ref = data.trait_ref(self.infcx.tcx);
self.compute_trait_ref(&trait_ref, Elaborate::None);
if !data.has_escaping_bound_vars() {
let predicate = trait_ref.to_predicate();
let cause = self.cause(traits::ProjectionWf(data));
self.out.push(traits::Obligation::new(cause, self.param_env, predicate));
}
}
/// Pushes the obligations required for an array length to be WF
/// into `self.out`.
fn compute_array_len(&mut self, constant: ty::Const<'tcx>) {
if let ty::ConstKind::Unevaluated(def_id, substs, promoted) = constant.val {
assert!(promoted.is_none());
let obligations = self.nominal_obligations(def_id, substs);
self.out.extend(obligations);
let predicate = ty::Predicate::ConstEvaluatable(def_id, substs);
let cause = self.cause(traits::MiscObligation);
self.out.push(traits::Obligation::new(cause, self.param_env, predicate));
}
}
fn require_sized(&mut self, subty: Ty<'tcx>, cause: traits::ObligationCauseCode<'tcx>) {
if !subty.has_escaping_bound_vars() {
let cause = self.cause(cause);
let trait_ref = ty::TraitRef {
def_id: self.infcx.tcx.require_lang_item(lang_items::SizedTraitLangItem, None),
substs: self.infcx.tcx.mk_substs_trait(subty, &[]),
};
self.out.push(traits::Obligation::new(cause, self.param_env, trait_ref.to_predicate()));
}
}
/// Pushes new obligations into `out`. Returns `true` if it was able
/// to generate all the predicates needed to validate that `ty0`
/// is WF. Returns false if `ty0` is an unresolved type variable,
/// in which case we are not able to simplify at all.
fn compute(&mut self, ty0: Ty<'tcx>) -> bool {
let mut subtys = ty0.walk();
let param_env = self.param_env;
while let Some(ty) = subtys.next() {
match ty.kind {
ty::Bool
| ty::Char
| ty::Int(..)
| ty::Uint(..)
| ty::Float(..)
| ty::Error
| ty::Str
| ty::GeneratorWitness(..)
| ty::Never
| ty::Param(_)
| ty::Bound(..)
| ty::Placeholder(..)
| ty::Foreign(..) => {
// WfScalar, WfParameter, etc
}
ty::Slice(subty) => {
self.require_sized(subty, traits::SliceOrArrayElem);
}
ty::Array(subty, len) => {
self.require_sized(subty, traits::SliceOrArrayElem);
self.compute_array_len(*len);
}
ty::Tuple(ref tys) => {
if let Some((_last, rest)) = tys.split_last() {
for elem in rest {
self.require_sized(elem.expect_ty(), traits::TupleElem);
}
}
}
ty::RawPtr(_) => {
// simple cases that are WF if their type args are WF
}
ty::Projection(data) => {
subtys.skip_current_subtree(); // subtree handled by compute_projection
self.compute_projection(data);
}
ty::UnnormalizedProjection(..) => bug!("only used with chalk-engine"),
ty::Adt(def, substs) => {
// WfNominalType
let obligations = self.nominal_obligations(def.did, substs);
self.out.extend(obligations);
}
ty::FnDef(did, substs) => {
let obligations = self.nominal_obligations(did, substs);
self.out.extend(obligations);
}
ty::Ref(r, rty, _) => {
// WfReference
if !r.has_escaping_bound_vars() && !rty.has_escaping_bound_vars() {
let cause = self.cause(traits::ReferenceOutlivesReferent(ty));
self.out.push(traits::Obligation::new(
cause,
param_env,
ty::Predicate::TypeOutlives(ty::Binder::dummy(ty::OutlivesPredicate(
rty, r,
))),
));
}
}
ty::Generator(..) => {
// Walk ALL the types in the generator: this will
// include the upvar types as well as the yield
// type. Note that this is mildly distinct from
// the closure case, where we have to be careful
// about the signature of the closure. We don't
// have the problem of implied bounds here since
// generators don't take arguments.
}
ty::Closure(def_id, substs) => {
// Only check the upvar types for WF, not the rest
// of the types within. This is needed because we
// capture the signature and it may not be WF
// without the implied bounds. Consider a closure
// like `|x: &'a T|` -- it may be that `T: 'a` is
// not known to hold in the creator's context (and
// indeed the closure may not be invoked by its
// creator, but rather turned to someone who *can*
// verify that).
//
// The special treatment of closures here really
// ought not to be necessary either; the problem
// is related to #25860 -- there is no way for us
// to express a fn type complete with the implied
// bounds that it is assuming. I think in reality
// the WF rules around fn are a bit messed up, and
// that is the rot problem: `fn(&'a T)` should
// probably always be WF, because it should be
// shorthand for something like `where(T: 'a) {
// fn(&'a T) }`, as discussed in #25860.
//
// Note that we are also skipping the generic
// types. This is consistent with the `outlives`
// code, but anyway doesn't matter: within the fn
// body where they are created, the generics will
// always be WF, and outside of that fn body we
// are not directly inspecting closure types
// anyway, except via auto trait matching (which
// only inspects the upvar types).
subtys.skip_current_subtree(); // subtree handled by compute_projection
for upvar_ty in substs.as_closure().upvar_tys(def_id, self.infcx.tcx) {
self.compute(upvar_ty);
}
}
ty::FnPtr(_) => {
// let the loop iterate into the argument/return
// types appearing in the fn signature
}
ty::Opaque(did, substs) => {
// all of the requirements on type parameters
// should've been checked by the instantiation
// of whatever returned this exact `impl Trait`.
// for named opaque `impl Trait` types we still need to check them
if ty::is_impl_trait_defn(self.infcx.tcx, did).is_none() {
let obligations = self.nominal_obligations(did, substs);
self.out.extend(obligations);
}
}
ty::Dynamic(data, r) => {
// WfObject
//
// Here, we defer WF checking due to higher-ranked
// regions. This is perhaps not ideal.
self.from_object_ty(ty, data, r);
// FIXME(#27579) RFC also considers adding trait
// obligations that don't refer to Self and
// checking those
let defer_to_coercion = self.infcx.tcx.features().object_safe_for_dispatch;
if !defer_to_coercion {
let cause = self.cause(traits::MiscObligation);
let component_traits = data.auto_traits().chain(data.principal_def_id());
self.out.extend(component_traits.map(|did| {
traits::Obligation::new(
cause.clone(),
param_env,
ty::Predicate::ObjectSafe(did),
)
}));
}
}
// Inference variables are the complicated case, since we don't
// know what type they are. We do two things:
//
// 1. Check if they have been resolved, and if so proceed with
// THAT type.
// 2. If not, check whether this is the type that we
// started with (ty0). In that case, we've made no
// progress at all, so return false. Otherwise,
// we've at least simplified things (i.e., we went
// from `Vec<$0>: WF` to `$0: WF`, so we can
// register a pending obligation and keep
// moving. (Goal is that an "inductive hypothesis"
// is satisfied to ensure termination.)
ty::Infer(_) => {
let ty = self.infcx.shallow_resolve(ty);
if let ty::Infer(_) = ty.kind {
// not yet resolved...
if ty == ty0 {
// ...this is the type we started from! no progress.
return false;
}
let cause = self.cause(traits::MiscObligation);
self.out.push(
// ...not the type we started from, so we made progress.
traits::Obligation::new(
cause,
self.param_env,
ty::Predicate::WellFormed(ty),
),
);
} else {
// Yes, resolved, proceed with the
// result. Should never return false because
// `ty` is not a Infer.
assert!(self.compute(ty));
}
}
}
}
// if we made it through that loop above, we made progress!
return true;
}
fn nominal_obligations(
&mut self,
def_id: DefId,
substs: SubstsRef<'tcx>,
) -> Vec<traits::PredicateObligation<'tcx>> {
let predicates = self.infcx.tcx.predicates_of(def_id).instantiate(self.infcx.tcx, substs);
let cause = self.cause(traits::ItemObligation(def_id));
predicates
.predicates
.into_iter()
.map(|pred| traits::Obligation::new(cause.clone(), self.param_env, pred))
.filter(|pred| !pred.has_escaping_bound_vars())
.collect()
}
fn from_object_ty(
&mut self,
ty: Ty<'tcx>,
data: ty::Binder<&'tcx ty::List<ty::ExistentialPredicate<'tcx>>>,
region: ty::Region<'tcx>,
) {
// Imagine a type like this:
//
// trait Foo { }
// trait Bar<'c> : 'c { }
//
// &'b (Foo+'c+Bar<'d>)
// ^
//
// In this case, the following relationships must hold:
//
// 'b <= 'c
// 'd <= 'c
//
// The first conditions is due to the normal region pointer
// rules, which say that a reference cannot outlive its
// referent.
//
// The final condition may be a bit surprising. In particular,
// you may expect that it would have been `'c <= 'd`, since
// usually lifetimes of outer things are conservative
// approximations for inner things. However, it works somewhat
// differently with trait objects: here the idea is that if the
// user specifies a region bound (`'c`, in this case) it is the
// "master bound" that *implies* that bounds from other traits are
// all met. (Remember that *all bounds* in a type like
// `Foo+Bar+Zed` must be met, not just one, hence if we write
// `Foo<'x>+Bar<'y>`, we know that the type outlives *both* 'x and
// 'y.)
//
// Note: in fact we only permit builtin traits, not `Bar<'d>`, I
// am looking forward to the future here.
if !data.has_escaping_bound_vars() && !region.has_escaping_bound_vars() {
let implicit_bounds = object_region_bounds(self.infcx.tcx, data);
let explicit_bound = region;
self.out.reserve(implicit_bounds.len());
for implicit_bound in implicit_bounds {
let cause = self.cause(traits::ObjectTypeBound(ty, explicit_bound));
let outlives =
ty::Binder::dummy(ty::OutlivesPredicate(explicit_bound, implicit_bound));
self.out.push(traits::Obligation::new(
cause,
self.param_env,
outlives.to_predicate(),
));
}
}
}
}
/// Given an object type like `SomeTrait + Send`, computes the lifetime
/// bounds that must hold on the elided self type. These are derived
/// from the declarations of `SomeTrait`, `Send`, and friends -- if
/// they declare `trait SomeTrait : 'static`, for example, then
/// `'static` would appear in the list. The hard work is done by
/// `infer::required_region_bounds`, see that for more information.
pub fn object_region_bounds<'tcx>(
tcx: TyCtxt<'tcx>,
existential_predicates: ty::Binder<&'tcx ty::List<ty::ExistentialPredicate<'tcx>>>,
) -> Vec<ty::Region<'tcx>> {
// Since we don't actually *know* the self type for an object,
// this "open(err)" serves as a kind of dummy standin -- basically
// a placeholder type.
let open_ty = tcx.mk_ty_infer(ty::FreshTy(0));
let predicates = existential_predicates
.iter()
.filter_map(|predicate| {
if let ty::ExistentialPredicate::Projection(_) = *predicate.skip_binder() {
None
} else {
Some(predicate.with_self_ty(tcx, open_ty))
}
})
.collect();
required_region_bounds(tcx, open_ty, predicates)
}
/// Find the span of a generic bound affecting an associated type.
fn get_generic_bound_spans(
generics: &hir::Generics<'_>,
trait_name: Option<&Ident>,
assoc_item_name: Ident,
) -> Vec<Span> {
let mut bounds = vec![];
for clause in generics.where_clause.predicates.iter() {
if let hir::WherePredicate::BoundPredicate(pred) = clause {
match &pred.bounded_ty.kind {
hir::TyKind::Path(hir::QPath::Resolved(Some(ty), path)) => {
let mut s = path.segments.iter();
if let (a, Some(b), None) = (s.next(), s.next(), s.next()) {
if a.map(|s| &s.ident) == trait_name
&& b.ident == assoc_item_name
&& is_self_path(&ty.kind)
{
// `<Self as Foo>::Bar`
bounds.push(pred.span);
}
}
}
hir::TyKind::Path(hir::QPath::TypeRelative(ty, segment)) => {
if segment.ident == assoc_item_name {
if is_self_path(&ty.kind) {
// `Self::Bar`
bounds.push(pred.span);
}
}
}
_ => {}
}
}
}
bounds
}
fn is_self_path(kind: &hir::TyKind<'_>) -> bool {
match kind {
hir::TyKind::Path(hir::QPath::Resolved(None, path)) => {
let mut s = path.segments.iter();
if let (Some(segment), None) = (s.next(), s.next()) {
if segment.ident.name == kw::SelfUpper {
// `type(Self)`
return true;
}
}
}
_ => {}
}
false
}