blob: a5a16a147122575ee34040db1cbbbf8a9c537a15 [file] [log] [blame]
use rustc_errors::DiagnosticBuilder;
use rustc_span::Span;
use smallvec::SmallVec;
use crate::ty::outlives::Component;
use crate::ty::subst::{GenericArg, Subst, SubstsRef};
use crate::ty::{self, ToPolyTraitRef, ToPredicate, Ty, TyCtxt};
use rustc_data_structures::fx::FxHashSet;
use rustc_hir as hir;
use rustc_hir::def_id::DefId;
use super::{Normalized, Obligation, ObligationCause, PredicateObligation, SelectionContext};
fn anonymize_predicate<'tcx>(tcx: TyCtxt<'tcx>, pred: &ty::Predicate<'tcx>) -> ty::Predicate<'tcx> {
match *pred {
ty::Predicate::Trait(ref data, constness) => {
ty::Predicate::Trait(tcx.anonymize_late_bound_regions(data), constness)
}
ty::Predicate::RegionOutlives(ref data) => {
ty::Predicate::RegionOutlives(tcx.anonymize_late_bound_regions(data))
}
ty::Predicate::TypeOutlives(ref data) => {
ty::Predicate::TypeOutlives(tcx.anonymize_late_bound_regions(data))
}
ty::Predicate::Projection(ref data) => {
ty::Predicate::Projection(tcx.anonymize_late_bound_regions(data))
}
ty::Predicate::WellFormed(data) => ty::Predicate::WellFormed(data),
ty::Predicate::ObjectSafe(data) => ty::Predicate::ObjectSafe(data),
ty::Predicate::ClosureKind(closure_def_id, closure_substs, kind) => {
ty::Predicate::ClosureKind(closure_def_id, closure_substs, kind)
}
ty::Predicate::Subtype(ref data) => {
ty::Predicate::Subtype(tcx.anonymize_late_bound_regions(data))
}
ty::Predicate::ConstEvaluatable(def_id, substs) => {
ty::Predicate::ConstEvaluatable(def_id, substs)
}
}
}
struct PredicateSet<'tcx> {
tcx: TyCtxt<'tcx>,
set: FxHashSet<ty::Predicate<'tcx>>,
}
impl PredicateSet<'tcx> {
fn new(tcx: TyCtxt<'tcx>) -> Self {
Self { tcx: tcx, set: Default::default() }
}
fn insert(&mut self, pred: &ty::Predicate<'tcx>) -> bool {
// We have to be careful here because we want
//
// for<'a> Foo<&'a int>
//
// and
//
// for<'b> Foo<&'b int>
//
// to be considered equivalent. So normalize all late-bound
// regions before we throw things into the underlying set.
self.set.insert(anonymize_predicate(self.tcx, pred))
}
}
impl<T: AsRef<ty::Predicate<'tcx>>> Extend<T> for PredicateSet<'tcx> {
fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
for pred in iter {
self.insert(pred.as_ref());
}
}
}
///////////////////////////////////////////////////////////////////////////
// `Elaboration` iterator
///////////////////////////////////////////////////////////////////////////
/// "Elaboration" is the process of identifying all the predicates that
/// are implied by a source predicate. Currently, this basically means
/// walking the "supertraits" and other similar assumptions. For example,
/// if we know that `T: Ord`, the elaborator would deduce that `T: PartialOrd`
/// holds as well. Similarly, if we have `trait Foo: 'static`, and we know that
/// `T: Foo`, then we know that `T: 'static`.
pub struct Elaborator<'tcx> {
stack: Vec<ty::Predicate<'tcx>>,
visited: PredicateSet<'tcx>,
}
pub fn elaborate_trait_ref<'tcx>(
tcx: TyCtxt<'tcx>,
trait_ref: ty::PolyTraitRef<'tcx>,
) -> Elaborator<'tcx> {
elaborate_predicates(tcx, vec![trait_ref.to_predicate()])
}
pub fn elaborate_trait_refs<'tcx>(
tcx: TyCtxt<'tcx>,
trait_refs: impl Iterator<Item = ty::PolyTraitRef<'tcx>>,
) -> Elaborator<'tcx> {
let predicates = trait_refs.map(|trait_ref| trait_ref.to_predicate()).collect();
elaborate_predicates(tcx, predicates)
}
pub fn elaborate_predicates<'tcx>(
tcx: TyCtxt<'tcx>,
mut predicates: Vec<ty::Predicate<'tcx>>,
) -> Elaborator<'tcx> {
let mut visited = PredicateSet::new(tcx);
predicates.retain(|pred| visited.insert(pred));
Elaborator { stack: predicates, visited }
}
impl Elaborator<'tcx> {
pub fn filter_to_traits(self) -> FilterToTraits<Self> {
FilterToTraits::new(self)
}
fn elaborate(&mut self, predicate: &ty::Predicate<'tcx>) {
let tcx = self.visited.tcx;
match *predicate {
ty::Predicate::Trait(ref data, _) => {
// Get predicates declared on the trait.
let predicates = tcx.super_predicates_of(data.def_id());
let predicates = predicates
.predicates
.iter()
.map(|(pred, _)| pred.subst_supertrait(tcx, &data.to_poly_trait_ref()));
debug!("super_predicates: data={:?} predicates={:?}", data, predicates.clone());
// Only keep those bounds that we haven't already seen.
// This is necessary to prevent infinite recursion in some
// cases. One common case is when people define
// `trait Sized: Sized { }` rather than `trait Sized { }`.
let visited = &mut self.visited;
let predicates = predicates.filter(|pred| visited.insert(pred));
self.stack.extend(predicates);
}
ty::Predicate::WellFormed(..) => {
// Currently, we do not elaborate WF predicates,
// although we easily could.
}
ty::Predicate::ObjectSafe(..) => {
// Currently, we do not elaborate object-safe
// predicates.
}
ty::Predicate::Subtype(..) => {
// Currently, we do not "elaborate" predicates like `X <: Y`,
// though conceivably we might.
}
ty::Predicate::Projection(..) => {
// Nothing to elaborate in a projection predicate.
}
ty::Predicate::ClosureKind(..) => {
// Nothing to elaborate when waiting for a closure's kind to be inferred.
}
ty::Predicate::ConstEvaluatable(..) => {
// Currently, we do not elaborate const-evaluatable
// predicates.
}
ty::Predicate::RegionOutlives(..) => {
// Nothing to elaborate from `'a: 'b`.
}
ty::Predicate::TypeOutlives(ref data) => {
// We know that `T: 'a` for some type `T`. We can
// often elaborate this. For example, if we know that
// `[U]: 'a`, that implies that `U: 'a`. Similarly, if
// we know `&'a U: 'b`, then we know that `'a: 'b` and
// `U: 'b`.
//
// We can basically ignore bound regions here. So for
// example `for<'c> Foo<'a,'c>: 'b` can be elaborated to
// `'a: 'b`.
// Ignore `for<'a> T: 'a` -- we might in the future
// consider this as evidence that `T: 'static`, but
// I'm a bit wary of such constructions and so for now
// I want to be conservative. --nmatsakis
let ty_max = data.skip_binder().0;
let r_min = data.skip_binder().1;
if r_min.is_late_bound() {
return;
}
let visited = &mut self.visited;
let mut components = smallvec![];
tcx.push_outlives_components(ty_max, &mut components);
self.stack.extend(
components
.into_iter()
.filter_map(|component| match component {
Component::Region(r) => {
if r.is_late_bound() {
None
} else {
Some(ty::Predicate::RegionOutlives(ty::Binder::dummy(
ty::OutlivesPredicate(r, r_min),
)))
}
}
Component::Param(p) => {
let ty = tcx.mk_ty_param(p.index, p.name);
Some(ty::Predicate::TypeOutlives(ty::Binder::dummy(
ty::OutlivesPredicate(ty, r_min),
)))
}
Component::UnresolvedInferenceVariable(_) => None,
Component::Projection(_) | Component::EscapingProjection(_) => {
// We can probably do more here. This
// corresponds to a case like `<T as
// Foo<'a>>::U: 'b`.
None
}
})
.filter(|p| visited.insert(p)),
);
}
}
}
}
impl Iterator for Elaborator<'tcx> {
type Item = ty::Predicate<'tcx>;
fn size_hint(&self) -> (usize, Option<usize>) {
(self.stack.len(), None)
}
fn next(&mut self) -> Option<ty::Predicate<'tcx>> {
// Extract next item from top-most stack frame, if any.
if let Some(pred) = self.stack.pop() {
self.elaborate(&pred);
Some(pred)
} else {
None
}
}
}
///////////////////////////////////////////////////////////////////////////
// Supertrait iterator
///////////////////////////////////////////////////////////////////////////
pub type Supertraits<'tcx> = FilterToTraits<Elaborator<'tcx>>;
pub fn supertraits<'tcx>(
tcx: TyCtxt<'tcx>,
trait_ref: ty::PolyTraitRef<'tcx>,
) -> Supertraits<'tcx> {
elaborate_trait_ref(tcx, trait_ref).filter_to_traits()
}
pub fn transitive_bounds<'tcx>(
tcx: TyCtxt<'tcx>,
bounds: impl Iterator<Item = ty::PolyTraitRef<'tcx>>,
) -> Supertraits<'tcx> {
elaborate_trait_refs(tcx, bounds).filter_to_traits()
}
///////////////////////////////////////////////////////////////////////////
// `TraitAliasExpander` iterator
///////////////////////////////////////////////////////////////////////////
/// "Trait alias expansion" is the process of expanding a sequence of trait
/// references into another sequence by transitively following all trait
/// aliases. e.g. If you have bounds like `Foo + Send`, a trait alias
/// `trait Foo = Bar + Sync;`, and another trait alias
/// `trait Bar = Read + Write`, then the bounds would expand to
/// `Read + Write + Sync + Send`.
/// Expansion is done via a DFS (depth-first search), and the `visited` field
/// is used to avoid cycles.
pub struct TraitAliasExpander<'tcx> {
tcx: TyCtxt<'tcx>,
stack: Vec<TraitAliasExpansionInfo<'tcx>>,
}
/// Stores information about the expansion of a trait via a path of zero or more trait aliases.
#[derive(Debug, Clone)]
pub struct TraitAliasExpansionInfo<'tcx> {
pub path: SmallVec<[(ty::PolyTraitRef<'tcx>, Span); 4]>,
}
impl<'tcx> TraitAliasExpansionInfo<'tcx> {
fn new(trait_ref: ty::PolyTraitRef<'tcx>, span: Span) -> Self {
Self { path: smallvec![(trait_ref, span)] }
}
/// Adds diagnostic labels to `diag` for the expansion path of a trait through all intermediate
/// trait aliases.
pub fn label_with_exp_info(
&self,
diag: &mut DiagnosticBuilder<'_>,
top_label: &str,
use_desc: &str,
) {
diag.span_label(self.top().1, top_label);
if self.path.len() > 1 {
for (_, sp) in self.path.iter().rev().skip(1).take(self.path.len() - 2) {
diag.span_label(*sp, format!("referenced here ({})", use_desc));
}
}
diag.span_label(
self.bottom().1,
format!("trait alias used in trait object type ({})", use_desc),
);
}
pub fn trait_ref(&self) -> &ty::PolyTraitRef<'tcx> {
&self.top().0
}
pub fn top(&self) -> &(ty::PolyTraitRef<'tcx>, Span) {
self.path.last().unwrap()
}
pub fn bottom(&self) -> &(ty::PolyTraitRef<'tcx>, Span) {
self.path.first().unwrap()
}
fn clone_and_push(&self, trait_ref: ty::PolyTraitRef<'tcx>, span: Span) -> Self {
let mut path = self.path.clone();
path.push((trait_ref, span));
Self { path }
}
}
pub fn expand_trait_aliases<'tcx>(
tcx: TyCtxt<'tcx>,
trait_refs: impl IntoIterator<Item = (ty::PolyTraitRef<'tcx>, Span)>,
) -> TraitAliasExpander<'tcx> {
let items: Vec<_> = trait_refs
.into_iter()
.map(|(trait_ref, span)| TraitAliasExpansionInfo::new(trait_ref, span))
.collect();
TraitAliasExpander { tcx, stack: items }
}
impl<'tcx> TraitAliasExpander<'tcx> {
/// If `item` is a trait alias and its predicate has not yet been visited, then expands `item`
/// to the definition, pushes the resulting expansion onto `self.stack`, and returns `false`.
/// Otherwise, immediately returns `true` if `item` is a regular trait, or `false` if it is a
/// trait alias.
/// The return value indicates whether `item` should be yielded to the user.
fn expand(&mut self, item: &TraitAliasExpansionInfo<'tcx>) -> bool {
let tcx = self.tcx;
let trait_ref = item.trait_ref();
let pred = trait_ref.to_predicate();
debug!("expand_trait_aliases: trait_ref={:?}", trait_ref);
// Don't recurse if this bound is not a trait alias.
let is_alias = tcx.is_trait_alias(trait_ref.def_id());
if !is_alias {
return true;
}
// Don't recurse if this trait alias is already on the stack for the DFS search.
let anon_pred = anonymize_predicate(tcx, &pred);
if item
.path
.iter()
.rev()
.skip(1)
.any(|(tr, _)| anonymize_predicate(tcx, &tr.to_predicate()) == anon_pred)
{
return false;
}
// Get components of trait alias.
let predicates = tcx.super_predicates_of(trait_ref.def_id());
let items = predicates.predicates.iter().rev().filter_map(|(pred, span)| {
pred.subst_supertrait(tcx, &trait_ref)
.to_opt_poly_trait_ref()
.map(|trait_ref| item.clone_and_push(trait_ref, *span))
});
debug!("expand_trait_aliases: items={:?}", items.clone());
self.stack.extend(items);
false
}
}
impl<'tcx> Iterator for TraitAliasExpander<'tcx> {
type Item = TraitAliasExpansionInfo<'tcx>;
fn size_hint(&self) -> (usize, Option<usize>) {
(self.stack.len(), None)
}
fn next(&mut self) -> Option<TraitAliasExpansionInfo<'tcx>> {
while let Some(item) = self.stack.pop() {
if self.expand(&item) {
return Some(item);
}
}
None
}
}
///////////////////////////////////////////////////////////////////////////
// Iterator over def-IDs of supertraits
///////////////////////////////////////////////////////////////////////////
pub struct SupertraitDefIds<'tcx> {
tcx: TyCtxt<'tcx>,
stack: Vec<DefId>,
visited: FxHashSet<DefId>,
}
pub fn supertrait_def_ids(tcx: TyCtxt<'_>, trait_def_id: DefId) -> SupertraitDefIds<'_> {
SupertraitDefIds {
tcx,
stack: vec![trait_def_id],
visited: Some(trait_def_id).into_iter().collect(),
}
}
impl Iterator for SupertraitDefIds<'tcx> {
type Item = DefId;
fn next(&mut self) -> Option<DefId> {
let def_id = self.stack.pop()?;
let predicates = self.tcx.super_predicates_of(def_id);
let visited = &mut self.visited;
self.stack.extend(
predicates
.predicates
.iter()
.filter_map(|(pred, _)| pred.to_opt_poly_trait_ref())
.map(|trait_ref| trait_ref.def_id())
.filter(|&super_def_id| visited.insert(super_def_id)),
);
Some(def_id)
}
}
///////////////////////////////////////////////////////////////////////////
// Other
///////////////////////////////////////////////////////////////////////////
/// A filter around an iterator of predicates that makes it yield up
/// just trait references.
pub struct FilterToTraits<I> {
base_iterator: I,
}
impl<I> FilterToTraits<I> {
fn new(base: I) -> FilterToTraits<I> {
FilterToTraits { base_iterator: base }
}
}
impl<'tcx, I: Iterator<Item = ty::Predicate<'tcx>>> Iterator for FilterToTraits<I> {
type Item = ty::PolyTraitRef<'tcx>;
fn next(&mut self) -> Option<ty::PolyTraitRef<'tcx>> {
while let Some(pred) = self.base_iterator.next() {
if let ty::Predicate::Trait(data, _) = pred {
return Some(data.to_poly_trait_ref());
}
}
None
}
fn size_hint(&self) -> (usize, Option<usize>) {
let (_, upper) = self.base_iterator.size_hint();
(0, upper)
}
}
///////////////////////////////////////////////////////////////////////////
// Other
///////////////////////////////////////////////////////////////////////////
/// Instantiate all bound parameters of the impl with the given substs,
/// returning the resulting trait ref and all obligations that arise.
/// The obligations are closed under normalization.
pub fn impl_trait_ref_and_oblig<'a, 'tcx>(
selcx: &mut SelectionContext<'a, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
impl_def_id: DefId,
impl_substs: SubstsRef<'tcx>,
) -> (ty::TraitRef<'tcx>, Vec<PredicateObligation<'tcx>>) {
let impl_trait_ref = selcx.tcx().impl_trait_ref(impl_def_id).unwrap();
let impl_trait_ref = impl_trait_ref.subst(selcx.tcx(), impl_substs);
let Normalized { value: impl_trait_ref, obligations: normalization_obligations1 } =
super::normalize(selcx, param_env, ObligationCause::dummy(), &impl_trait_ref);
let predicates = selcx.tcx().predicates_of(impl_def_id);
let predicates = predicates.instantiate(selcx.tcx(), impl_substs);
let Normalized { value: predicates, obligations: normalization_obligations2 } =
super::normalize(selcx, param_env, ObligationCause::dummy(), &predicates);
let impl_obligations =
predicates_for_generics(ObligationCause::dummy(), 0, param_env, &predicates);
let impl_obligations: Vec<_> = impl_obligations
.into_iter()
.chain(normalization_obligations1)
.chain(normalization_obligations2)
.collect();
(impl_trait_ref, impl_obligations)
}
/// See [`super::obligations_for_generics`].
pub fn predicates_for_generics<'tcx>(
cause: ObligationCause<'tcx>,
recursion_depth: usize,
param_env: ty::ParamEnv<'tcx>,
generic_bounds: &ty::InstantiatedPredicates<'tcx>,
) -> Vec<PredicateObligation<'tcx>> {
debug!("predicates_for_generics(generic_bounds={:?})", generic_bounds);
generic_bounds
.predicates
.iter()
.map(|predicate| Obligation {
cause: cause.clone(),
recursion_depth,
param_env,
predicate: predicate.clone(),
})
.collect()
}
pub fn predicate_for_trait_ref<'tcx>(
cause: ObligationCause<'tcx>,
param_env: ty::ParamEnv<'tcx>,
trait_ref: ty::TraitRef<'tcx>,
recursion_depth: usize,
) -> PredicateObligation<'tcx> {
Obligation { cause, param_env, recursion_depth, predicate: trait_ref.to_predicate() }
}
pub fn predicate_for_trait_def(
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
cause: ObligationCause<'tcx>,
trait_def_id: DefId,
recursion_depth: usize,
self_ty: Ty<'tcx>,
params: &[GenericArg<'tcx>],
) -> PredicateObligation<'tcx> {
let trait_ref =
ty::TraitRef { def_id: trait_def_id, substs: tcx.mk_substs_trait(self_ty, params) };
predicate_for_trait_ref(cause, param_env, trait_ref, recursion_depth)
}
/// Casts a trait reference into a reference to one of its super
/// traits; returns `None` if `target_trait_def_id` is not a
/// supertrait.
pub fn upcast_choices(
tcx: TyCtxt<'tcx>,
source_trait_ref: ty::PolyTraitRef<'tcx>,
target_trait_def_id: DefId,
) -> Vec<ty::PolyTraitRef<'tcx>> {
if source_trait_ref.def_id() == target_trait_def_id {
return vec![source_trait_ref]; // Shortcut the most common case.
}
supertraits(tcx, source_trait_ref).filter(|r| r.def_id() == target_trait_def_id).collect()
}
/// Given a trait `trait_ref`, returns the number of vtable entries
/// that come from `trait_ref`, excluding its supertraits. Used in
/// computing the vtable base for an upcast trait of a trait object.
pub fn count_own_vtable_entries(tcx: TyCtxt<'tcx>, trait_ref: ty::PolyTraitRef<'tcx>) -> usize {
let mut entries = 0;
// Count number of methods and add them to the total offset.
// Skip over associated types and constants.
for trait_item in tcx.associated_items(trait_ref.def_id()) {
if trait_item.kind == ty::AssocKind::Method {
entries += 1;
}
}
entries
}
/// Given an upcast trait object described by `object`, returns the
/// index of the method `method_def_id` (which should be part of
/// `object.upcast_trait_ref`) within the vtable for `object`.
pub fn get_vtable_index_of_object_method<N>(
tcx: TyCtxt<'tcx>,
object: &super::VtableObjectData<'tcx, N>,
method_def_id: DefId,
) -> usize {
// Count number of methods preceding the one we are selecting and
// add them to the total offset.
// Skip over associated types and constants.
let mut entries = object.vtable_base;
for trait_item in tcx.associated_items(object.upcast_trait_ref.def_id()) {
if trait_item.def_id == method_def_id {
// The item with the ID we were given really ought to be a method.
assert_eq!(trait_item.kind, ty::AssocKind::Method);
return entries;
}
if trait_item.kind == ty::AssocKind::Method {
entries += 1;
}
}
bug!("get_vtable_index_of_object_method: {:?} was not found", method_def_id);
}
pub fn closure_trait_ref_and_return_type(
tcx: TyCtxt<'tcx>,
fn_trait_def_id: DefId,
self_ty: Ty<'tcx>,
sig: ty::PolyFnSig<'tcx>,
tuple_arguments: TupleArgumentsFlag,
) -> ty::Binder<(ty::TraitRef<'tcx>, Ty<'tcx>)> {
let arguments_tuple = match tuple_arguments {
TupleArgumentsFlag::No => sig.skip_binder().inputs()[0],
TupleArgumentsFlag::Yes => tcx.intern_tup(sig.skip_binder().inputs()),
};
let trait_ref = ty::TraitRef {
def_id: fn_trait_def_id,
substs: tcx.mk_substs_trait(self_ty, &[arguments_tuple.into()]),
};
ty::Binder::bind((trait_ref, sig.skip_binder().output()))
}
pub fn generator_trait_ref_and_outputs(
tcx: TyCtxt<'tcx>,
fn_trait_def_id: DefId,
self_ty: Ty<'tcx>,
sig: ty::PolyGenSig<'tcx>,
) -> ty::Binder<(ty::TraitRef<'tcx>, Ty<'tcx>, Ty<'tcx>)> {
let trait_ref =
ty::TraitRef { def_id: fn_trait_def_id, substs: tcx.mk_substs_trait(self_ty, &[]) };
ty::Binder::bind((trait_ref, sig.skip_binder().yield_ty, sig.skip_binder().return_ty))
}
pub fn impl_is_default(tcx: TyCtxt<'_>, node_item_def_id: DefId) -> bool {
match tcx.hir().as_local_hir_id(node_item_def_id) {
Some(hir_id) => {
let item = tcx.hir().expect_item(hir_id);
if let hir::ItemKind::Impl { defaultness, .. } = item.kind {
defaultness.is_default()
} else {
false
}
}
None => tcx.impl_defaultness(node_item_def_id).is_default(),
}
}
pub fn impl_item_is_final(tcx: TyCtxt<'_>, assoc_item: &ty::AssocItem) -> bool {
assoc_item.defaultness.is_final() && !impl_is_default(tcx, assoc_item.container.id())
}
pub enum TupleArgumentsFlag {
Yes,
No,
}