blob: ad6b821b1d771edf2b5c60166a125d6fe68a22c7 [file] [log] [blame]
//! "Object safety" refers to the ability for a trait to be converted
//! to an object. In general, traits may only be converted to an
//! object if all of their methods meet certain criteria. In particular,
//! they must:
//!
//! - have a suitable receiver from which we can extract a vtable and coerce to a "thin" version
//! that doesn't contain the vtable;
//! - not reference the erased type `Self` except for in this receiver;
//! - not have generic type parameters.
use super::elaborate_predicates;
use crate::traits::{self, Obligation, ObligationCause};
use crate::ty::subst::{InternalSubsts, Subst};
use crate::ty::{self, Predicate, ToPredicate, Ty, TyCtxt, TypeFoldable};
use rustc_hir as hir;
use rustc_hir::def_id::DefId;
use rustc_session::lint::builtin::WHERE_CLAUSES_OBJECT_SAFETY;
use rustc_span::symbol::Symbol;
use rustc_span::{Span, DUMMY_SP};
use syntax::ast;
use std::borrow::Cow;
use std::iter::{self};
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub enum ObjectSafetyViolation {
/// `Self: Sized` declared on the trait.
SizedSelf,
/// Supertrait reference references `Self` an in illegal location
/// (e.g., `trait Foo : Bar<Self>`).
SupertraitSelf,
/// Method has something illegal.
Method(ast::Name, MethodViolationCode, Span),
/// Associated const.
AssocConst(ast::Name, Span),
}
impl ObjectSafetyViolation {
pub fn error_msg(&self) -> Cow<'static, str> {
match *self {
ObjectSafetyViolation::SizedSelf => {
"the trait cannot require that `Self : Sized`".into()
}
ObjectSafetyViolation::SupertraitSelf => {
"the trait cannot use `Self` as a type parameter \
in the supertraits or where-clauses"
.into()
}
ObjectSafetyViolation::Method(name, MethodViolationCode::StaticMethod, _) => {
format!("associated function `{}` has no `self` parameter", name).into()
}
ObjectSafetyViolation::Method(name, MethodViolationCode::ReferencesSelf, _) => format!(
"method `{}` references the `Self` type in its parameters or return type",
name,
)
.into(),
ObjectSafetyViolation::Method(
name,
MethodViolationCode::WhereClauseReferencesSelf,
_,
) => format!("method `{}` references the `Self` type in where clauses", name).into(),
ObjectSafetyViolation::Method(name, MethodViolationCode::Generic, _) => {
format!("method `{}` has generic type parameters", name).into()
}
ObjectSafetyViolation::Method(name, MethodViolationCode::UndispatchableReceiver, _) => {
format!("method `{}`'s `self` parameter cannot be dispatched on", name).into()
}
ObjectSafetyViolation::AssocConst(name, _) => {
format!("the trait cannot contain associated consts like `{}`", name).into()
}
}
}
pub fn span(&self) -> Option<Span> {
// When `span` comes from a separate crate, it'll be `DUMMY_SP`. Treat it as `None` so
// diagnostics use a `note` instead of a `span_label`.
match *self {
ObjectSafetyViolation::AssocConst(_, span)
| ObjectSafetyViolation::Method(_, _, span)
if span != DUMMY_SP =>
{
Some(span)
}
_ => None,
}
}
}
/// Reasons a method might not be object-safe.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub enum MethodViolationCode {
/// e.g., `fn foo()`
StaticMethod,
/// e.g., `fn foo(&self, x: Self)` or `fn foo(&self) -> Self`
ReferencesSelf,
/// e.g., `fn foo(&self) where Self: Clone`
WhereClauseReferencesSelf,
/// e.g., `fn foo<A>()`
Generic,
/// the method's receiver (`self` argument) can't be dispatched on
UndispatchableReceiver,
}
/// Returns the object safety violations that affect
/// astconv -- currently, `Self` in supertraits. This is needed
/// because `object_safety_violations` can't be used during
/// type collection.
pub fn astconv_object_safety_violations(
tcx: TyCtxt<'_>,
trait_def_id: DefId,
) -> Vec<ObjectSafetyViolation> {
debug_assert!(tcx.generics_of(trait_def_id).has_self);
let violations = traits::supertrait_def_ids(tcx, trait_def_id)
.filter(|&def_id| predicates_reference_self(tcx, def_id, true))
.map(|_| ObjectSafetyViolation::SupertraitSelf)
.collect();
debug!("astconv_object_safety_violations(trait_def_id={:?}) = {:?}", trait_def_id, violations);
violations
}
pub fn object_safety_violations(
tcx: TyCtxt<'_>,
trait_def_id: DefId,
) -> Vec<ObjectSafetyViolation> {
debug_assert!(tcx.generics_of(trait_def_id).has_self);
debug!("object_safety_violations: {:?}", trait_def_id);
traits::supertrait_def_ids(tcx, trait_def_id)
.flat_map(|def_id| object_safety_violations_for_trait(tcx, def_id))
.collect()
}
/// We say a method is *vtable safe* if it can be invoked on a trait
/// object. Note that object-safe traits can have some
/// non-vtable-safe methods, so long as they require `Self: Sized` or
/// otherwise ensure that they cannot be used when `Self = Trait`.
pub fn is_vtable_safe_method(tcx: TyCtxt<'_>, trait_def_id: DefId, method: &ty::AssocItem) -> bool {
debug_assert!(tcx.generics_of(trait_def_id).has_self);
debug!("is_vtable_safe_method({:?}, {:?})", trait_def_id, method);
// Any method that has a `Self: Sized` bound cannot be called.
if generics_require_sized_self(tcx, method.def_id) {
return false;
}
match virtual_call_violation_for_method(tcx, trait_def_id, method) {
None | Some(MethodViolationCode::WhereClauseReferencesSelf) => true,
Some(_) => false,
}
}
fn object_safety_violations_for_trait(
tcx: TyCtxt<'_>,
trait_def_id: DefId,
) -> Vec<ObjectSafetyViolation> {
// Check methods for violations.
let mut violations: Vec<_> = tcx
.associated_items(trait_def_id)
.filter(|item| item.kind == ty::AssocKind::Method)
.filter_map(|item| {
object_safety_violation_for_method(tcx, trait_def_id, &item)
.map(|code| ObjectSafetyViolation::Method(item.ident.name, code, item.ident.span))
})
.filter(|violation| {
if let ObjectSafetyViolation::Method(
_,
MethodViolationCode::WhereClauseReferencesSelf,
span,
) = violation
{
// Using `CRATE_NODE_ID` is wrong, but it's hard to get a more precise id.
// It's also hard to get a use site span, so we use the method definition span.
tcx.struct_span_lint_hir(
WHERE_CLAUSES_OBJECT_SAFETY,
hir::CRATE_HIR_ID,
*span,
&format!(
"the trait `{}` cannot be made into an object",
tcx.def_path_str(trait_def_id)
),
)
.note(&violation.error_msg())
.emit();
false
} else {
true
}
})
.collect();
// Check the trait itself.
if trait_has_sized_self(tcx, trait_def_id) {
violations.push(ObjectSafetyViolation::SizedSelf);
}
if predicates_reference_self(tcx, trait_def_id, false) {
violations.push(ObjectSafetyViolation::SupertraitSelf);
}
violations.extend(
tcx.associated_items(trait_def_id)
.filter(|item| item.kind == ty::AssocKind::Const)
.map(|item| ObjectSafetyViolation::AssocConst(item.ident.name, item.ident.span)),
);
debug!(
"object_safety_violations_for_trait(trait_def_id={:?}) = {:?}",
trait_def_id, violations
);
violations
}
fn predicates_reference_self(tcx: TyCtxt<'_>, trait_def_id: DefId, supertraits_only: bool) -> bool {
let trait_ref = ty::Binder::dummy(ty::TraitRef::identity(tcx, trait_def_id));
let predicates = if supertraits_only {
tcx.super_predicates_of(trait_def_id)
} else {
tcx.predicates_of(trait_def_id)
};
let self_ty = tcx.types.self_param;
let has_self_ty = |t: Ty<'_>| t.walk().any(|t| t == self_ty);
predicates
.predicates
.iter()
.map(|(predicate, _)| predicate.subst_supertrait(tcx, &trait_ref))
.any(|predicate| {
match predicate {
ty::Predicate::Trait(ref data, _) => {
// In the case of a trait predicate, we can skip the "self" type.
data.skip_binder().input_types().skip(1).any(has_self_ty)
}
ty::Predicate::Projection(ref data) => {
// And similarly for projections. This should be redundant with
// the previous check because any projection should have a
// matching `Trait` predicate with the same inputs, but we do
// the check to be safe.
//
// Note that we *do* allow projection *outputs* to contain
// `self` (i.e., `trait Foo: Bar<Output=Self::Result> { type Result; }`),
// we just require the user to specify *both* outputs
// in the object type (i.e., `dyn Foo<Output=(), Result=()>`).
//
// This is ALT2 in issue #56288, see that for discussion of the
// possible alternatives.
data.skip_binder()
.projection_ty
.trait_ref(tcx)
.input_types()
.skip(1)
.any(has_self_ty)
}
ty::Predicate::WellFormed(..)
| ty::Predicate::ObjectSafe(..)
| ty::Predicate::TypeOutlives(..)
| ty::Predicate::RegionOutlives(..)
| ty::Predicate::ClosureKind(..)
| ty::Predicate::Subtype(..)
| ty::Predicate::ConstEvaluatable(..) => false,
}
})
}
fn trait_has_sized_self(tcx: TyCtxt<'_>, trait_def_id: DefId) -> bool {
generics_require_sized_self(tcx, trait_def_id)
}
fn generics_require_sized_self(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
let sized_def_id = match tcx.lang_items().sized_trait() {
Some(def_id) => def_id,
None => {
return false; /* No Sized trait, can't require it! */
}
};
// Search for a predicate like `Self : Sized` amongst the trait bounds.
let predicates = tcx.predicates_of(def_id);
let predicates = predicates.instantiate_identity(tcx).predicates;
elaborate_predicates(tcx, predicates).any(|predicate| match predicate {
ty::Predicate::Trait(ref trait_pred, _) => {
trait_pred.def_id() == sized_def_id && trait_pred.skip_binder().self_ty().is_param(0)
}
ty::Predicate::Projection(..)
| ty::Predicate::Subtype(..)
| ty::Predicate::RegionOutlives(..)
| ty::Predicate::WellFormed(..)
| ty::Predicate::ObjectSafe(..)
| ty::Predicate::ClosureKind(..)
| ty::Predicate::TypeOutlives(..)
| ty::Predicate::ConstEvaluatable(..) => false,
})
}
/// Returns `Some(_)` if this method makes the containing trait not object safe.
fn object_safety_violation_for_method(
tcx: TyCtxt<'_>,
trait_def_id: DefId,
method: &ty::AssocItem,
) -> Option<MethodViolationCode> {
debug!("object_safety_violation_for_method({:?}, {:?})", trait_def_id, method);
// Any method that has a `Self : Sized` requisite is otherwise
// exempt from the regulations.
if generics_require_sized_self(tcx, method.def_id) {
return None;
}
virtual_call_violation_for_method(tcx, trait_def_id, method)
}
/// Returns `Some(_)` if this method cannot be called on a trait
/// object; this does not necessarily imply that the enclosing trait
/// is not object safe, because the method might have a where clause
/// `Self:Sized`.
fn virtual_call_violation_for_method<'tcx>(
tcx: TyCtxt<'tcx>,
trait_def_id: DefId,
method: &ty::AssocItem,
) -> Option<MethodViolationCode> {
// The method's first parameter must be named `self`
if !method.method_has_self_argument {
return Some(MethodViolationCode::StaticMethod);
}
let sig = tcx.fn_sig(method.def_id);
for input_ty in &sig.skip_binder().inputs()[1..] {
if contains_illegal_self_type_reference(tcx, trait_def_id, input_ty) {
return Some(MethodViolationCode::ReferencesSelf);
}
}
if contains_illegal_self_type_reference(tcx, trait_def_id, sig.output().skip_binder()) {
return Some(MethodViolationCode::ReferencesSelf);
}
// We can't monomorphize things like `fn foo<A>(...)`.
let own_counts = tcx.generics_of(method.def_id).own_counts();
if own_counts.types + own_counts.consts != 0 {
return Some(MethodViolationCode::Generic);
}
if tcx
.predicates_of(method.def_id)
.predicates
.iter()
// A trait object can't claim to live more than the concrete type,
// so outlives predicates will always hold.
.cloned()
.filter(|(p, _)| p.to_opt_type_outlives().is_none())
.collect::<Vec<_>>()
// Do a shallow visit so that `contains_illegal_self_type_reference`
// may apply it's custom visiting.
.visit_tys_shallow(|t| contains_illegal_self_type_reference(tcx, trait_def_id, t))
{
return Some(MethodViolationCode::WhereClauseReferencesSelf);
}
let receiver_ty =
tcx.liberate_late_bound_regions(method.def_id, &sig.map_bound(|sig| sig.inputs()[0]));
// Until `unsized_locals` is fully implemented, `self: Self` can't be dispatched on.
// However, this is already considered object-safe. We allow it as a special case here.
// FIXME(mikeyhew) get rid of this `if` statement once `receiver_is_dispatchable` allows
// `Receiver: Unsize<Receiver[Self => dyn Trait]>`.
if receiver_ty != tcx.types.self_param {
if !receiver_is_dispatchable(tcx, method, receiver_ty) {
return Some(MethodViolationCode::UndispatchableReceiver);
} else {
// Do sanity check to make sure the receiver actually has the layout of a pointer.
use crate::ty::layout::Abi;
let param_env = tcx.param_env(method.def_id);
let abi_of_ty = |ty: Ty<'tcx>| -> &Abi {
match tcx.layout_of(param_env.and(ty)) {
Ok(layout) => &layout.abi,
Err(err) => bug!("error: {}\n while computing layout for type {:?}", err, ty),
}
};
// e.g., `Rc<()>`
let unit_receiver_ty =
receiver_for_self_ty(tcx, receiver_ty, tcx.mk_unit(), method.def_id);
match abi_of_ty(unit_receiver_ty) {
&Abi::Scalar(..) => (),
abi => {
tcx.sess.delay_span_bug(
tcx.def_span(method.def_id),
&format!(
"receiver when `Self = ()` should have a Scalar ABI; found {:?}",
abi
),
);
}
}
let trait_object_ty =
object_ty_for_trait(tcx, trait_def_id, tcx.mk_region(ty::ReStatic));
// e.g., `Rc<dyn Trait>`
let trait_object_receiver =
receiver_for_self_ty(tcx, receiver_ty, trait_object_ty, method.def_id);
match abi_of_ty(trait_object_receiver) {
&Abi::ScalarPair(..) => (),
abi => {
tcx.sess.delay_span_bug(
tcx.def_span(method.def_id),
&format!(
"receiver when `Self = {}` should have a ScalarPair ABI; \
found {:?}",
trait_object_ty, abi
),
);
}
}
}
}
None
}
/// Performs a type substitution to produce the version of `receiver_ty` when `Self = self_ty`.
/// For example, for `receiver_ty = Rc<Self>` and `self_ty = Foo`, returns `Rc<Foo>`.
fn receiver_for_self_ty<'tcx>(
tcx: TyCtxt<'tcx>,
receiver_ty: Ty<'tcx>,
self_ty: Ty<'tcx>,
method_def_id: DefId,
) -> Ty<'tcx> {
debug!("receiver_for_self_ty({:?}, {:?}, {:?})", receiver_ty, self_ty, method_def_id);
let substs = InternalSubsts::for_item(tcx, method_def_id, |param, _| {
if param.index == 0 { self_ty.into() } else { tcx.mk_param_from_def(param) }
});
let result = receiver_ty.subst(tcx, substs);
debug!(
"receiver_for_self_ty({:?}, {:?}, {:?}) = {:?}",
receiver_ty, self_ty, method_def_id, result
);
result
}
/// Creates the object type for the current trait. For example,
/// if the current trait is `Deref`, then this will be
/// `dyn Deref<Target = Self::Target> + 'static`.
fn object_ty_for_trait<'tcx>(
tcx: TyCtxt<'tcx>,
trait_def_id: DefId,
lifetime: ty::Region<'tcx>,
) -> Ty<'tcx> {
debug!("object_ty_for_trait: trait_def_id={:?}", trait_def_id);
let trait_ref = ty::TraitRef::identity(tcx, trait_def_id);
let trait_predicate =
ty::ExistentialPredicate::Trait(ty::ExistentialTraitRef::erase_self_ty(tcx, trait_ref));
let mut associated_types = traits::supertraits(tcx, ty::Binder::dummy(trait_ref))
.flat_map(|super_trait_ref| {
tcx.associated_items(super_trait_ref.def_id()).map(move |item| (super_trait_ref, item))
})
.filter(|(_, item)| item.kind == ty::AssocKind::Type)
.collect::<Vec<_>>();
// existential predicates need to be in a specific order
associated_types.sort_by_cached_key(|(_, item)| tcx.def_path_hash(item.def_id));
let projection_predicates = associated_types.into_iter().map(|(super_trait_ref, item)| {
// We *can* get bound lifetimes here in cases like
// `trait MyTrait: for<'s> OtherTrait<&'s T, Output=bool>`.
//
// binder moved to (*)...
let super_trait_ref = super_trait_ref.skip_binder();
ty::ExistentialPredicate::Projection(ty::ExistentialProjection {
ty: tcx.mk_projection(item.def_id, super_trait_ref.substs),
item_def_id: item.def_id,
substs: super_trait_ref.substs,
})
});
let existential_predicates =
tcx.mk_existential_predicates(iter::once(trait_predicate).chain(projection_predicates));
let object_ty = tcx.mk_dynamic(
// (*) ... binder re-introduced here
ty::Binder::bind(existential_predicates),
lifetime,
);
debug!("object_ty_for_trait: object_ty=`{}`", object_ty);
object_ty
}
/// Checks the method's receiver (the `self` argument) can be dispatched on when `Self` is a
/// trait object. We require that `DispatchableFromDyn` be implemented for the receiver type
/// in the following way:
/// - let `Receiver` be the type of the `self` argument, i.e `Self`, `&Self`, `Rc<Self>`,
/// - require the following bound:
///
/// ```
/// Receiver[Self => T]: DispatchFromDyn<Receiver[Self => dyn Trait]>
/// ```
///
/// where `Foo[X => Y]` means "the same type as `Foo`, but with `X` replaced with `Y`"
/// (substitution notation).
///
/// Some examples of receiver types and their required obligation:
/// - `&'a mut self` requires `&'a mut Self: DispatchFromDyn<&'a mut dyn Trait>`,
/// - `self: Rc<Self>` requires `Rc<Self>: DispatchFromDyn<Rc<dyn Trait>>`,
/// - `self: Pin<Box<Self>>` requires `Pin<Box<Self>>: DispatchFromDyn<Pin<Box<dyn Trait>>>`.
///
/// The only case where the receiver is not dispatchable, but is still a valid receiver
/// type (just not object-safe), is when there is more than one level of pointer indirection.
/// E.g., `self: &&Self`, `self: &Rc<Self>`, `self: Box<Box<Self>>`. In these cases, there
/// is no way, or at least no inexpensive way, to coerce the receiver from the version where
/// `Self = dyn Trait` to the version where `Self = T`, where `T` is the unknown erased type
/// contained by the trait object, because the object that needs to be coerced is behind
/// a pointer.
///
/// In practice, we cannot use `dyn Trait` explicitly in the obligation because it would result
/// in a new check that `Trait` is object safe, creating a cycle (until object_safe_for_dispatch
/// is stabilized, see tracking issue https://github.com/rust-lang/rust/issues/43561).
/// Instead, we fudge a little by introducing a new type parameter `U` such that
/// `Self: Unsize<U>` and `U: Trait + ?Sized`, and use `U` in place of `dyn Trait`.
/// Written as a chalk-style query:
///
/// forall (U: Trait + ?Sized) {
/// if (Self: Unsize<U>) {
/// Receiver: DispatchFromDyn<Receiver[Self => U]>
/// }
/// }
///
/// for `self: &'a mut Self`, this means `&'a mut Self: DispatchFromDyn<&'a mut U>`
/// for `self: Rc<Self>`, this means `Rc<Self>: DispatchFromDyn<Rc<U>>`
/// for `self: Pin<Box<Self>>`, this means `Pin<Box<Self>>: DispatchFromDyn<Pin<Box<U>>>`
//
// FIXME(mikeyhew) when unsized receivers are implemented as part of unsized rvalues, add this
// fallback query: `Receiver: Unsize<Receiver[Self => U]>` to support receivers like
// `self: Wrapper<Self>`.
#[allow(dead_code)]
fn receiver_is_dispatchable<'tcx>(
tcx: TyCtxt<'tcx>,
method: &ty::AssocItem,
receiver_ty: Ty<'tcx>,
) -> bool {
debug!("receiver_is_dispatchable: method = {:?}, receiver_ty = {:?}", method, receiver_ty);
let traits = (tcx.lang_items().unsize_trait(), tcx.lang_items().dispatch_from_dyn_trait());
let (unsize_did, dispatch_from_dyn_did) = if let (Some(u), Some(cu)) = traits {
(u, cu)
} else {
debug!("receiver_is_dispatchable: Missing Unsize or DispatchFromDyn traits");
return false;
};
// the type `U` in the query
// use a bogus type parameter to mimick a forall(U) query using u32::MAX for now.
// FIXME(mikeyhew) this is a total hack. Once object_safe_for_dispatch is stabilized, we can
// replace this with `dyn Trait`
let unsized_self_ty: Ty<'tcx> =
tcx.mk_ty_param(::std::u32::MAX, Symbol::intern("RustaceansAreAwesome"));
// `Receiver[Self => U]`
let unsized_receiver_ty =
receiver_for_self_ty(tcx, receiver_ty, unsized_self_ty, method.def_id);
// create a modified param env, with `Self: Unsize<U>` and `U: Trait` added to caller bounds
// `U: ?Sized` is already implied here
let param_env = {
let mut param_env = tcx.param_env(method.def_id);
// Self: Unsize<U>
let unsize_predicate = ty::TraitRef {
def_id: unsize_did,
substs: tcx.mk_substs_trait(tcx.types.self_param, &[unsized_self_ty.into()]),
}
.to_predicate();
// U: Trait<Arg1, ..., ArgN>
let trait_predicate = {
let substs =
InternalSubsts::for_item(tcx, method.container.assert_trait(), |param, _| {
if param.index == 0 {
unsized_self_ty.into()
} else {
tcx.mk_param_from_def(param)
}
});
ty::TraitRef { def_id: unsize_did, substs }.to_predicate()
};
let caller_bounds: Vec<Predicate<'tcx>> = param_env
.caller_bounds
.iter()
.cloned()
.chain(iter::once(unsize_predicate))
.chain(iter::once(trait_predicate))
.collect();
param_env.caller_bounds = tcx.intern_predicates(&caller_bounds);
param_env
};
// Receiver: DispatchFromDyn<Receiver[Self => U]>
let obligation = {
let predicate = ty::TraitRef {
def_id: dispatch_from_dyn_did,
substs: tcx.mk_substs_trait(receiver_ty, &[unsized_receiver_ty.into()]),
}
.to_predicate();
Obligation::new(ObligationCause::dummy(), param_env, predicate)
};
tcx.infer_ctxt().enter(|ref infcx| {
// the receiver is dispatchable iff the obligation holds
infcx.predicate_must_hold_modulo_regions(&obligation)
})
}
fn contains_illegal_self_type_reference<'tcx>(
tcx: TyCtxt<'tcx>,
trait_def_id: DefId,
ty: Ty<'tcx>,
) -> bool {
// This is somewhat subtle. In general, we want to forbid
// references to `Self` in the argument and return types,
// since the value of `Self` is erased. However, there is one
// exception: it is ok to reference `Self` in order to access
// an associated type of the current trait, since we retain
// the value of those associated types in the object type
// itself.
//
// ```rust
// trait SuperTrait {
// type X;
// }
//
// trait Trait : SuperTrait {
// type Y;
// fn foo(&self, x: Self) // bad
// fn foo(&self) -> Self // bad
// fn foo(&self) -> Option<Self> // bad
// fn foo(&self) -> Self::Y // OK, desugars to next example
// fn foo(&self) -> <Self as Trait>::Y // OK
// fn foo(&self) -> Self::X // OK, desugars to next example
// fn foo(&self) -> <Self as SuperTrait>::X // OK
// }
// ```
//
// However, it is not as simple as allowing `Self` in a projected
// type, because there are illegal ways to use `Self` as well:
//
// ```rust
// trait Trait : SuperTrait {
// ...
// fn foo(&self) -> <Self as SomeOtherTrait>::X;
// }
// ```
//
// Here we will not have the type of `X` recorded in the
// object type, and we cannot resolve `Self as SomeOtherTrait`
// without knowing what `Self` is.
let mut supertraits: Option<Vec<ty::PolyTraitRef<'tcx>>> = None;
let mut error = false;
let self_ty = tcx.types.self_param;
ty.maybe_walk(|ty| {
match ty.kind {
ty::Param(_) => {
if ty == self_ty {
error = true;
}
false // no contained types to walk
}
ty::Projection(ref data) => {
// This is a projected type `<Foo as SomeTrait>::X`.
// Compute supertraits of current trait lazily.
if supertraits.is_none() {
let trait_ref = ty::Binder::bind(ty::TraitRef::identity(tcx, trait_def_id));
supertraits = Some(traits::supertraits(tcx, trait_ref).collect());
}
// Determine whether the trait reference `Foo as
// SomeTrait` is in fact a supertrait of the
// current trait. In that case, this type is
// legal, because the type `X` will be specified
// in the object type. Note that we can just use
// direct equality here because all of these types
// are part of the formal parameter listing, and
// hence there should be no inference variables.
let projection_trait_ref = ty::Binder::bind(data.trait_ref(tcx));
let is_supertrait_of_current_trait =
supertraits.as_ref().unwrap().contains(&projection_trait_ref);
if is_supertrait_of_current_trait {
false // do not walk contained types, do not report error, do collect $200
} else {
true // DO walk contained types, POSSIBLY reporting an error
}
}
_ => true, // walk contained types, if any
}
});
error
}
pub(super) fn is_object_safe_provider(tcx: TyCtxt<'_>, trait_def_id: DefId) -> bool {
object_safety_violations(tcx, trait_def_id).is_empty()
}