| use std::cell::{Cell, RefCell}; | 
 | use std::fmt; | 
 |  | 
 | pub use BoundRegionConversionTime::*; | 
 | pub use RegionVariableOrigin::*; | 
 | pub use SubregionOrigin::*; | 
 | pub use at::DefineOpaqueTypes; | 
 | use free_regions::RegionRelations; | 
 | pub use freshen::TypeFreshener; | 
 | use lexical_region_resolve::LexicalRegionResolutions; | 
 | pub use lexical_region_resolve::RegionResolutionError; | 
 | pub use opaque_types::{OpaqueTypeStorage, OpaqueTypeStorageEntries, OpaqueTypeTable}; | 
 | use region_constraints::{ | 
 |     GenericKind, RegionConstraintCollector, RegionConstraintStorage, VarInfos, VerifyBound, | 
 | }; | 
 | pub use relate::StructurallyRelateAliases; | 
 | pub use relate::combine::PredicateEmittingRelation; | 
 | use rustc_data_structures::fx::{FxHashSet, FxIndexMap}; | 
 | use rustc_data_structures::undo_log::{Rollback, UndoLogs}; | 
 | use rustc_data_structures::unify as ut; | 
 | use rustc_errors::{DiagCtxtHandle, ErrorGuaranteed}; | 
 | use rustc_hir as hir; | 
 | use rustc_hir::def_id::{DefId, LocalDefId}; | 
 | use rustc_macros::extension; | 
 | pub use rustc_macros::{TypeFoldable, TypeVisitable}; | 
 | use rustc_middle::bug; | 
 | use rustc_middle::infer::canonical::{CanonicalQueryInput, CanonicalVarValues}; | 
 | use rustc_middle::mir::ConstraintCategory; | 
 | use rustc_middle::traits::select; | 
 | use rustc_middle::traits::solve::Goal; | 
 | use rustc_middle::ty::error::{ExpectedFound, TypeError}; | 
 | use rustc_middle::ty::{ | 
 |     self, BoundVarReplacerDelegate, ConstVid, FloatVid, GenericArg, GenericArgKind, GenericArgs, | 
 |     GenericArgsRef, GenericParamDefKind, InferConst, IntVid, OpaqueHiddenType, OpaqueTypeKey, | 
 |     PseudoCanonicalInput, Term, TermKind, Ty, TyCtxt, TyVid, TypeFoldable, TypeFolder, | 
 |     TypeSuperFoldable, TypeVisitable, TypeVisitableExt, TypingEnv, TypingMode, fold_regions, | 
 | }; | 
 | use rustc_span::{Span, Symbol}; | 
 | use snapshot::undo_log::InferCtxtUndoLogs; | 
 | use tracing::{debug, instrument}; | 
 | use type_variable::TypeVariableOrigin; | 
 |  | 
 | use crate::infer::region_constraints::UndoLog; | 
 | use crate::infer::unify_key::{ConstVariableOrigin, ConstVariableValue, ConstVidKey}; | 
 | use crate::traits::{ | 
 |     self, ObligationCause, ObligationInspector, PredicateObligations, TraitEngine, | 
 | }; | 
 |  | 
 | pub mod at; | 
 | pub mod canonical; | 
 | mod context; | 
 | mod free_regions; | 
 | mod freshen; | 
 | mod lexical_region_resolve; | 
 | mod opaque_types; | 
 | pub mod outlives; | 
 | mod projection; | 
 | pub mod region_constraints; | 
 | pub mod relate; | 
 | pub mod resolve; | 
 | pub(crate) mod snapshot; | 
 | mod type_variable; | 
 | mod unify_key; | 
 |  | 
 | /// `InferOk<'tcx, ()>` is used a lot. It may seem like a useless wrapper | 
 | /// around `PredicateObligations<'tcx>`, but it has one important property: | 
 | /// because `InferOk` is marked with `#[must_use]`, if you have a method | 
 | /// `InferCtxt::f` that returns `InferResult<'tcx, ()>` and you call it with | 
 | /// `infcx.f()?;` you'll get a warning about the obligations being discarded | 
 | /// without use, which is probably unintentional and has been a source of bugs | 
 | /// in the past. | 
 | #[must_use] | 
 | #[derive(Debug)] | 
 | pub struct InferOk<'tcx, T> { | 
 |     pub value: T, | 
 |     pub obligations: PredicateObligations<'tcx>, | 
 | } | 
 | pub type InferResult<'tcx, T> = Result<InferOk<'tcx, T>, TypeError<'tcx>>; | 
 |  | 
 | pub(crate) type FixupResult<T> = Result<T, FixupError>; // "fixup result" | 
 |  | 
 | pub(crate) type UnificationTable<'a, 'tcx, T> = ut::UnificationTable< | 
 |     ut::InPlace<T, &'a mut ut::UnificationStorage<T>, &'a mut InferCtxtUndoLogs<'tcx>>, | 
 | >; | 
 |  | 
 | /// This type contains all the things within `InferCtxt` that sit within a | 
 | /// `RefCell` and are involved with taking/rolling back snapshots. Snapshot | 
 | /// operations are hot enough that we want only one call to `borrow_mut` per | 
 | /// call to `start_snapshot` and `rollback_to`. | 
 | #[derive(Clone)] | 
 | pub struct InferCtxtInner<'tcx> { | 
 |     undo_log: InferCtxtUndoLogs<'tcx>, | 
 |  | 
 |     /// Cache for projections. | 
 |     /// | 
 |     /// This cache is snapshotted along with the infcx. | 
 |     projection_cache: traits::ProjectionCacheStorage<'tcx>, | 
 |  | 
 |     /// We instantiate `UnificationTable` with `bounds<Ty>` because the types | 
 |     /// that might instantiate a general type variable have an order, | 
 |     /// represented by its upper and lower bounds. | 
 |     type_variable_storage: type_variable::TypeVariableStorage<'tcx>, | 
 |  | 
 |     /// Map from const parameter variable to the kind of const it represents. | 
 |     const_unification_storage: ut::UnificationTableStorage<ConstVidKey<'tcx>>, | 
 |  | 
 |     /// Map from integral variable to the kind of integer it represents. | 
 |     int_unification_storage: ut::UnificationTableStorage<ty::IntVid>, | 
 |  | 
 |     /// Map from floating variable to the kind of float it represents. | 
 |     float_unification_storage: ut::UnificationTableStorage<ty::FloatVid>, | 
 |  | 
 |     /// Tracks the set of region variables and the constraints between them. | 
 |     /// | 
 |     /// This is initially `Some(_)` but when | 
 |     /// `resolve_regions_and_report_errors` is invoked, this gets set to `None` | 
 |     /// -- further attempts to perform unification, etc., may fail if new | 
 |     /// region constraints would've been added. | 
 |     region_constraint_storage: Option<RegionConstraintStorage<'tcx>>, | 
 |  | 
 |     /// A set of constraints that regionck must validate. | 
 |     /// | 
 |     /// Each constraint has the form `T:'a`, meaning "some type `T` must | 
 |     /// outlive the lifetime 'a". These constraints derive from | 
 |     /// instantiated type parameters. So if you had a struct defined | 
 |     /// like the following: | 
 |     /// ```ignore (illustrative) | 
 |     /// struct Foo<T: 'static> { ... } | 
 |     /// ``` | 
 |     /// In some expression `let x = Foo { ... }`, it will | 
 |     /// instantiate the type parameter `T` with a fresh type `$0`. At | 
 |     /// the same time, it will record a region obligation of | 
 |     /// `$0: 'static`. This will get checked later by regionck. (We | 
 |     /// can't generally check these things right away because we have | 
 |     /// to wait until types are resolved.) | 
 |     /// | 
 |     /// These are stored in a map keyed to the id of the innermost | 
 |     /// enclosing fn body / static initializer expression. This is | 
 |     /// because the location where the obligation was incurred can be | 
 |     /// relevant with respect to which sublifetime assumptions are in | 
 |     /// place. The reason that we store under the fn-id, and not | 
 |     /// something more fine-grained, is so that it is easier for | 
 |     /// regionck to be sure that it has found *all* the region | 
 |     /// obligations (otherwise, it's easy to fail to walk to a | 
 |     /// particular node-id). | 
 |     /// | 
 |     /// Before running `resolve_regions_and_report_errors`, the creator | 
 |     /// of the inference context is expected to invoke | 
 |     /// [`InferCtxt::process_registered_region_obligations`] | 
 |     /// for each body-id in this map, which will process the | 
 |     /// obligations within. This is expected to be done 'late enough' | 
 |     /// that all type inference variables have been bound and so forth. | 
 |     region_obligations: Vec<TypeOutlivesConstraint<'tcx>>, | 
 |  | 
 |     /// Caches for opaque type inference. | 
 |     opaque_type_storage: OpaqueTypeStorage<'tcx>, | 
 | } | 
 |  | 
 | impl<'tcx> InferCtxtInner<'tcx> { | 
 |     fn new() -> InferCtxtInner<'tcx> { | 
 |         InferCtxtInner { | 
 |             undo_log: InferCtxtUndoLogs::default(), | 
 |  | 
 |             projection_cache: Default::default(), | 
 |             type_variable_storage: Default::default(), | 
 |             const_unification_storage: Default::default(), | 
 |             int_unification_storage: Default::default(), | 
 |             float_unification_storage: Default::default(), | 
 |             region_constraint_storage: Some(Default::default()), | 
 |             region_obligations: vec![], | 
 |             opaque_type_storage: Default::default(), | 
 |         } | 
 |     } | 
 |  | 
 |     #[inline] | 
 |     pub fn region_obligations(&self) -> &[TypeOutlivesConstraint<'tcx>] { | 
 |         &self.region_obligations | 
 |     } | 
 |  | 
 |     #[inline] | 
 |     pub fn projection_cache(&mut self) -> traits::ProjectionCache<'_, 'tcx> { | 
 |         self.projection_cache.with_log(&mut self.undo_log) | 
 |     } | 
 |  | 
 |     #[inline] | 
 |     fn try_type_variables_probe_ref( | 
 |         &self, | 
 |         vid: ty::TyVid, | 
 |     ) -> Option<&type_variable::TypeVariableValue<'tcx>> { | 
 |         // Uses a read-only view of the unification table, this way we don't | 
 |         // need an undo log. | 
 |         self.type_variable_storage.eq_relations_ref().try_probe_value(vid) | 
 |     } | 
 |  | 
 |     #[inline] | 
 |     fn type_variables(&mut self) -> type_variable::TypeVariableTable<'_, 'tcx> { | 
 |         self.type_variable_storage.with_log(&mut self.undo_log) | 
 |     } | 
 |  | 
 |     #[inline] | 
 |     pub fn opaque_types(&mut self) -> opaque_types::OpaqueTypeTable<'_, 'tcx> { | 
 |         self.opaque_type_storage.with_log(&mut self.undo_log) | 
 |     } | 
 |  | 
 |     #[inline] | 
 |     fn int_unification_table(&mut self) -> UnificationTable<'_, 'tcx, ty::IntVid> { | 
 |         self.int_unification_storage.with_log(&mut self.undo_log) | 
 |     } | 
 |  | 
 |     #[inline] | 
 |     fn float_unification_table(&mut self) -> UnificationTable<'_, 'tcx, ty::FloatVid> { | 
 |         self.float_unification_storage.with_log(&mut self.undo_log) | 
 |     } | 
 |  | 
 |     #[inline] | 
 |     fn const_unification_table(&mut self) -> UnificationTable<'_, 'tcx, ConstVidKey<'tcx>> { | 
 |         self.const_unification_storage.with_log(&mut self.undo_log) | 
 |     } | 
 |  | 
 |     #[inline] | 
 |     pub fn unwrap_region_constraints(&mut self) -> RegionConstraintCollector<'_, 'tcx> { | 
 |         self.region_constraint_storage | 
 |             .as_mut() | 
 |             .expect("region constraints already solved") | 
 |             .with_log(&mut self.undo_log) | 
 |     } | 
 | } | 
 |  | 
 | pub struct InferCtxt<'tcx> { | 
 |     pub tcx: TyCtxt<'tcx>, | 
 |  | 
 |     /// The mode of this inference context, see the struct documentation | 
 |     /// for more details. | 
 |     typing_mode: TypingMode<'tcx>, | 
 |  | 
 |     /// Whether this inference context should care about region obligations in | 
 |     /// the root universe. Most notably, this is used during hir typeck as region | 
 |     /// solving is left to borrowck instead. | 
 |     pub considering_regions: bool, | 
 |  | 
 |     /// If set, this flag causes us to skip the 'leak check' during | 
 |     /// higher-ranked subtyping operations. This flag is a temporary one used | 
 |     /// to manage the removal of the leak-check: for the time being, we still run the | 
 |     /// leak-check, but we issue warnings. | 
 |     skip_leak_check: bool, | 
 |  | 
 |     pub inner: RefCell<InferCtxtInner<'tcx>>, | 
 |  | 
 |     /// Once region inference is done, the values for each variable. | 
 |     lexical_region_resolutions: RefCell<Option<LexicalRegionResolutions<'tcx>>>, | 
 |  | 
 |     /// Caches the results of trait selection. This cache is used | 
 |     /// for things that depends on inference variables or placeholders. | 
 |     pub selection_cache: select::SelectionCache<'tcx, ty::ParamEnv<'tcx>>, | 
 |  | 
 |     /// Caches the results of trait evaluation. This cache is used | 
 |     /// for things that depends on inference variables or placeholders. | 
 |     pub evaluation_cache: select::EvaluationCache<'tcx, ty::ParamEnv<'tcx>>, | 
 |  | 
 |     /// The set of predicates on which errors have been reported, to | 
 |     /// avoid reporting the same error twice. | 
 |     pub reported_trait_errors: | 
 |         RefCell<FxIndexMap<Span, (Vec<Goal<'tcx, ty::Predicate<'tcx>>>, ErrorGuaranteed)>>, | 
 |  | 
 |     pub reported_signature_mismatch: RefCell<FxHashSet<(Span, Option<Span>)>>, | 
 |  | 
 |     /// When an error occurs, we want to avoid reporting "derived" | 
 |     /// errors that are due to this original failure. We have this | 
 |     /// flag that one can set whenever one creates a type-error that | 
 |     /// is due to an error in a prior pass. | 
 |     /// | 
 |     /// Don't read this flag directly, call `is_tainted_by_errors()` | 
 |     /// and `set_tainted_by_errors()`. | 
 |     tainted_by_errors: Cell<Option<ErrorGuaranteed>>, | 
 |  | 
 |     /// What is the innermost universe we have created? Starts out as | 
 |     /// `UniverseIndex::root()` but grows from there as we enter | 
 |     /// universal quantifiers. | 
 |     /// | 
 |     /// N.B., at present, we exclude the universal quantifiers on the | 
 |     /// item we are type-checking, and just consider those names as | 
 |     /// part of the root universe. So this would only get incremented | 
 |     /// when we enter into a higher-ranked (`for<..>`) type or trait | 
 |     /// bound. | 
 |     universe: Cell<ty::UniverseIndex>, | 
 |  | 
 |     next_trait_solver: bool, | 
 |  | 
 |     pub obligation_inspector: Cell<Option<ObligationInspector<'tcx>>>, | 
 | } | 
 |  | 
 | /// See the `error_reporting` module for more details. | 
 | #[derive(Clone, Copy, Debug, PartialEq, Eq, TypeFoldable, TypeVisitable)] | 
 | pub enum ValuePairs<'tcx> { | 
 |     Regions(ExpectedFound<ty::Region<'tcx>>), | 
 |     Terms(ExpectedFound<ty::Term<'tcx>>), | 
 |     Aliases(ExpectedFound<ty::AliasTerm<'tcx>>), | 
 |     TraitRefs(ExpectedFound<ty::TraitRef<'tcx>>), | 
 |     PolySigs(ExpectedFound<ty::PolyFnSig<'tcx>>), | 
 |     ExistentialTraitRef(ExpectedFound<ty::PolyExistentialTraitRef<'tcx>>), | 
 |     ExistentialProjection(ExpectedFound<ty::PolyExistentialProjection<'tcx>>), | 
 | } | 
 |  | 
 | impl<'tcx> ValuePairs<'tcx> { | 
 |     pub fn ty(&self) -> Option<(Ty<'tcx>, Ty<'tcx>)> { | 
 |         if let ValuePairs::Terms(ExpectedFound { expected, found }) = self | 
 |             && let Some(expected) = expected.as_type() | 
 |             && let Some(found) = found.as_type() | 
 |         { | 
 |             Some((expected, found)) | 
 |         } else { | 
 |             None | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | /// The trace designates the path through inference that we took to | 
 | /// encounter an error or subtyping constraint. | 
 | /// | 
 | /// See the `error_reporting` module for more details. | 
 | #[derive(Clone, Debug)] | 
 | pub struct TypeTrace<'tcx> { | 
 |     pub cause: ObligationCause<'tcx>, | 
 |     pub values: ValuePairs<'tcx>, | 
 | } | 
 |  | 
 | /// The origin of a `r1 <= r2` constraint. | 
 | /// | 
 | /// See `error_reporting` module for more details | 
 | #[derive(Clone, Debug)] | 
 | pub enum SubregionOrigin<'tcx> { | 
 |     /// Arose from a subtyping relation | 
 |     Subtype(Box<TypeTrace<'tcx>>), | 
 |  | 
 |     /// When casting `&'a T` to an `&'b Trait` object, | 
 |     /// relating `'a` to `'b`. | 
 |     RelateObjectBound(Span), | 
 |  | 
 |     /// Some type parameter was instantiated with the given type, | 
 |     /// and that type must outlive some region. | 
 |     RelateParamBound(Span, Ty<'tcx>, Option<Span>), | 
 |  | 
 |     /// The given region parameter was instantiated with a region | 
 |     /// that must outlive some other region. | 
 |     RelateRegionParamBound(Span, Option<Ty<'tcx>>), | 
 |  | 
 |     /// Creating a pointer `b` to contents of another reference. | 
 |     Reborrow(Span), | 
 |  | 
 |     /// (&'a &'b T) where a >= b | 
 |     ReferenceOutlivesReferent(Ty<'tcx>, Span), | 
 |  | 
 |     /// Comparing the signature and requirements of an impl method against | 
 |     /// the containing trait. | 
 |     CompareImplItemObligation { | 
 |         span: Span, | 
 |         impl_item_def_id: LocalDefId, | 
 |         trait_item_def_id: DefId, | 
 |     }, | 
 |  | 
 |     /// Checking that the bounds of a trait's associated type hold for a given impl. | 
 |     CheckAssociatedTypeBounds { | 
 |         parent: Box<SubregionOrigin<'tcx>>, | 
 |         impl_item_def_id: LocalDefId, | 
 |         trait_item_def_id: DefId, | 
 |     }, | 
 |  | 
 |     AscribeUserTypeProvePredicate(Span), | 
 | } | 
 |  | 
 | // `SubregionOrigin` is used a lot. Make sure it doesn't unintentionally get bigger. | 
 | #[cfg(target_pointer_width = "64")] | 
 | rustc_data_structures::static_assert_size!(SubregionOrigin<'_>, 32); | 
 |  | 
 | impl<'tcx> SubregionOrigin<'tcx> { | 
 |     pub fn to_constraint_category(&self) -> ConstraintCategory<'tcx> { | 
 |         match self { | 
 |             Self::Subtype(type_trace) => type_trace.cause.to_constraint_category(), | 
 |             Self::AscribeUserTypeProvePredicate(span) => ConstraintCategory::Predicate(*span), | 
 |             _ => ConstraintCategory::BoringNoLocation, | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | /// Times when we replace bound regions with existentials: | 
 | #[derive(Clone, Copy, Debug)] | 
 | pub enum BoundRegionConversionTime { | 
 |     /// when a fn is called | 
 |     FnCall, | 
 |  | 
 |     /// when two higher-ranked types are compared | 
 |     HigherRankedType, | 
 |  | 
 |     /// when projecting an associated type | 
 |     AssocTypeProjection(DefId), | 
 | } | 
 |  | 
 | /// Reasons to create a region inference variable. | 
 | /// | 
 | /// See `error_reporting` module for more details. | 
 | #[derive(Copy, Clone, Debug)] | 
 | pub enum RegionVariableOrigin { | 
 |     /// Region variables created for ill-categorized reasons. | 
 |     /// | 
 |     /// They mostly indicate places in need of refactoring. | 
 |     MiscVariable(Span), | 
 |  | 
 |     /// Regions created by a `&P` or `[...]` pattern. | 
 |     PatternRegion(Span), | 
 |  | 
 |     /// Regions created by `&` operator. | 
 |     BorrowRegion(Span), | 
 |  | 
 |     /// Regions created as part of an autoref of a method receiver. | 
 |     Autoref(Span), | 
 |  | 
 |     /// Regions created as part of an automatic coercion. | 
 |     Coercion(Span), | 
 |  | 
 |     /// Region variables created as the values for early-bound regions. | 
 |     /// | 
 |     /// FIXME(@lcnr): This should also store a `DefId`, similar to | 
 |     /// `TypeVariableOrigin`. | 
 |     RegionParameterDefinition(Span, Symbol), | 
 |  | 
 |     /// Region variables created when instantiating a binder with | 
 |     /// existential variables, e.g. when calling a function or method. | 
 |     BoundRegion(Span, ty::BoundRegionKind, BoundRegionConversionTime), | 
 |  | 
 |     UpvarRegion(ty::UpvarId, Span), | 
 |  | 
 |     /// This origin is used for the inference variables that we create | 
 |     /// during NLL region processing. | 
 |     Nll(NllRegionVariableOrigin), | 
 | } | 
 |  | 
 | #[derive(Copy, Clone, Debug)] | 
 | pub enum NllRegionVariableOrigin { | 
 |     /// During NLL region processing, we create variables for free | 
 |     /// regions that we encounter in the function signature and | 
 |     /// elsewhere. This origin indices we've got one of those. | 
 |     FreeRegion, | 
 |  | 
 |     /// "Universal" instantiation of a higher-ranked region (e.g., | 
 |     /// from a `for<'a> T` binder). Meant to represent "any region". | 
 |     Placeholder(ty::PlaceholderRegion), | 
 |  | 
 |     Existential { | 
 |         /// If this is true, then this variable was created to represent a lifetime | 
 |         /// bound in a `for` binder. For example, it might have been created to | 
 |         /// represent the lifetime `'a` in a type like `for<'a> fn(&'a u32)`. | 
 |         /// Such variables are created when we are trying to figure out if there | 
 |         /// is any valid instantiation of `'a` that could fit into some scenario. | 
 |         /// | 
 |         /// This is used to inform error reporting: in the case that we are trying to | 
 |         /// determine whether there is any valid instantiation of a `'a` variable that meets | 
 |         /// some constraint C, we want to blame the "source" of that `for` type, | 
 |         /// rather than blaming the source of the constraint C. | 
 |         from_forall: bool, | 
 |     }, | 
 | } | 
 |  | 
 | #[derive(Copy, Clone, Debug)] | 
 | pub struct FixupError { | 
 |     unresolved: TyOrConstInferVar, | 
 | } | 
 |  | 
 | impl fmt::Display for FixupError { | 
 |     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { | 
 |         use TyOrConstInferVar::*; | 
 |  | 
 |         match self.unresolved { | 
 |             TyInt(_) => write!( | 
 |                 f, | 
 |                 "cannot determine the type of this integer; \ | 
 |                  add a suffix to specify the type explicitly" | 
 |             ), | 
 |             TyFloat(_) => write!( | 
 |                 f, | 
 |                 "cannot determine the type of this number; \ | 
 |                  add a suffix to specify the type explicitly" | 
 |             ), | 
 |             Ty(_) => write!(f, "unconstrained type"), | 
 |             Const(_) => write!(f, "unconstrained const value"), | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | /// See the `region_obligations` field for more information. | 
 | #[derive(Clone, Debug)] | 
 | pub struct TypeOutlivesConstraint<'tcx> { | 
 |     pub sub_region: ty::Region<'tcx>, | 
 |     pub sup_type: Ty<'tcx>, | 
 |     pub origin: SubregionOrigin<'tcx>, | 
 | } | 
 |  | 
 | /// Used to configure inference contexts before their creation. | 
 | pub struct InferCtxtBuilder<'tcx> { | 
 |     tcx: TyCtxt<'tcx>, | 
 |     considering_regions: bool, | 
 |     skip_leak_check: bool, | 
 |     /// Whether we should use the new trait solver in the local inference context, | 
 |     /// which affects things like which solver is used in `predicate_may_hold`. | 
 |     next_trait_solver: bool, | 
 | } | 
 |  | 
 | #[extension(pub trait TyCtxtInferExt<'tcx>)] | 
 | impl<'tcx> TyCtxt<'tcx> { | 
 |     fn infer_ctxt(self) -> InferCtxtBuilder<'tcx> { | 
 |         InferCtxtBuilder { | 
 |             tcx: self, | 
 |             considering_regions: true, | 
 |             skip_leak_check: false, | 
 |             next_trait_solver: self.next_trait_solver_globally(), | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | impl<'tcx> InferCtxtBuilder<'tcx> { | 
 |     pub fn with_next_trait_solver(mut self, next_trait_solver: bool) -> Self { | 
 |         self.next_trait_solver = next_trait_solver; | 
 |         self | 
 |     } | 
 |  | 
 |     pub fn ignoring_regions(mut self) -> Self { | 
 |         self.considering_regions = false; | 
 |         self | 
 |     } | 
 |  | 
 |     pub fn skip_leak_check(mut self, skip_leak_check: bool) -> Self { | 
 |         self.skip_leak_check = skip_leak_check; | 
 |         self | 
 |     } | 
 |  | 
 |     /// Given a canonical value `C` as a starting point, create an | 
 |     /// inference context that contains each of the bound values | 
 |     /// within instantiated as a fresh variable. The `f` closure is | 
 |     /// invoked with the new infcx, along with the instantiated value | 
 |     /// `V` and a instantiation `S`. This instantiation `S` maps from | 
 |     /// the bound values in `C` to their instantiated values in `V` | 
 |     /// (in other words, `S(C) = V`). | 
 |     pub fn build_with_canonical<T>( | 
 |         mut self, | 
 |         span: Span, | 
 |         input: &CanonicalQueryInput<'tcx, T>, | 
 |     ) -> (InferCtxt<'tcx>, T, CanonicalVarValues<'tcx>) | 
 |     where | 
 |         T: TypeFoldable<TyCtxt<'tcx>>, | 
 |     { | 
 |         let infcx = self.build(input.typing_mode); | 
 |         let (value, args) = infcx.instantiate_canonical(span, &input.canonical); | 
 |         (infcx, value, args) | 
 |     } | 
 |  | 
 |     pub fn build_with_typing_env( | 
 |         mut self, | 
 |         TypingEnv { typing_mode, param_env }: TypingEnv<'tcx>, | 
 |     ) -> (InferCtxt<'tcx>, ty::ParamEnv<'tcx>) { | 
 |         (self.build(typing_mode), param_env) | 
 |     } | 
 |  | 
 |     pub fn build(&mut self, typing_mode: TypingMode<'tcx>) -> InferCtxt<'tcx> { | 
 |         let InferCtxtBuilder { tcx, considering_regions, skip_leak_check, next_trait_solver } = | 
 |             *self; | 
 |         InferCtxt { | 
 |             tcx, | 
 |             typing_mode, | 
 |             considering_regions, | 
 |             skip_leak_check, | 
 |             inner: RefCell::new(InferCtxtInner::new()), | 
 |             lexical_region_resolutions: RefCell::new(None), | 
 |             selection_cache: Default::default(), | 
 |             evaluation_cache: Default::default(), | 
 |             reported_trait_errors: Default::default(), | 
 |             reported_signature_mismatch: Default::default(), | 
 |             tainted_by_errors: Cell::new(None), | 
 |             universe: Cell::new(ty::UniverseIndex::ROOT), | 
 |             next_trait_solver, | 
 |             obligation_inspector: Cell::new(None), | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | impl<'tcx, T> InferOk<'tcx, T> { | 
 |     /// Extracts `value`, registering any obligations into `fulfill_cx`. | 
 |     pub fn into_value_registering_obligations<E: 'tcx>( | 
 |         self, | 
 |         infcx: &InferCtxt<'tcx>, | 
 |         fulfill_cx: &mut dyn TraitEngine<'tcx, E>, | 
 |     ) -> T { | 
 |         let InferOk { value, obligations } = self; | 
 |         fulfill_cx.register_predicate_obligations(infcx, obligations); | 
 |         value | 
 |     } | 
 | } | 
 |  | 
 | impl<'tcx> InferOk<'tcx, ()> { | 
 |     pub fn into_obligations(self) -> PredicateObligations<'tcx> { | 
 |         self.obligations | 
 |     } | 
 | } | 
 |  | 
 | impl<'tcx> InferCtxt<'tcx> { | 
 |     pub fn dcx(&self) -> DiagCtxtHandle<'_> { | 
 |         self.tcx.dcx().taintable_handle(&self.tainted_by_errors) | 
 |     } | 
 |  | 
 |     pub fn next_trait_solver(&self) -> bool { | 
 |         self.next_trait_solver | 
 |     } | 
 |  | 
 |     #[inline(always)] | 
 |     pub fn typing_mode(&self) -> TypingMode<'tcx> { | 
 |         self.typing_mode | 
 |     } | 
 |  | 
 |     pub fn freshen<T: TypeFoldable<TyCtxt<'tcx>>>(&self, t: T) -> T { | 
 |         t.fold_with(&mut self.freshener()) | 
 |     } | 
 |  | 
 |     /// Returns the origin of the type variable identified by `vid`. | 
 |     /// | 
 |     /// No attempt is made to resolve `vid` to its root variable. | 
 |     pub fn type_var_origin(&self, vid: TyVid) -> TypeVariableOrigin { | 
 |         self.inner.borrow_mut().type_variables().var_origin(vid) | 
 |     } | 
 |  | 
 |     /// Returns the origin of the const variable identified by `vid` | 
 |     // FIXME: We should store origins separately from the unification table | 
 |     // so this doesn't need to be optional. | 
 |     pub fn const_var_origin(&self, vid: ConstVid) -> Option<ConstVariableOrigin> { | 
 |         match self.inner.borrow_mut().const_unification_table().probe_value(vid) { | 
 |             ConstVariableValue::Known { .. } => None, | 
 |             ConstVariableValue::Unknown { origin, .. } => Some(origin), | 
 |         } | 
 |     } | 
 |  | 
 |     pub fn freshener<'b>(&'b self) -> TypeFreshener<'b, 'tcx> { | 
 |         freshen::TypeFreshener::new(self) | 
 |     } | 
 |  | 
 |     pub fn unresolved_variables(&self) -> Vec<Ty<'tcx>> { | 
 |         let mut inner = self.inner.borrow_mut(); | 
 |         let mut vars: Vec<Ty<'_>> = inner | 
 |             .type_variables() | 
 |             .unresolved_variables() | 
 |             .into_iter() | 
 |             .map(|t| Ty::new_var(self.tcx, t)) | 
 |             .collect(); | 
 |         vars.extend( | 
 |             (0..inner.int_unification_table().len()) | 
 |                 .map(|i| ty::IntVid::from_usize(i)) | 
 |                 .filter(|&vid| inner.int_unification_table().probe_value(vid).is_unknown()) | 
 |                 .map(|v| Ty::new_int_var(self.tcx, v)), | 
 |         ); | 
 |         vars.extend( | 
 |             (0..inner.float_unification_table().len()) | 
 |                 .map(|i| ty::FloatVid::from_usize(i)) | 
 |                 .filter(|&vid| inner.float_unification_table().probe_value(vid).is_unknown()) | 
 |                 .map(|v| Ty::new_float_var(self.tcx, v)), | 
 |         ); | 
 |         vars | 
 |     } | 
 |  | 
 |     #[instrument(skip(self), level = "debug")] | 
 |     pub fn sub_regions( | 
 |         &self, | 
 |         origin: SubregionOrigin<'tcx>, | 
 |         a: ty::Region<'tcx>, | 
 |         b: ty::Region<'tcx>, | 
 |     ) { | 
 |         self.inner.borrow_mut().unwrap_region_constraints().make_subregion(origin, a, b); | 
 |     } | 
 |  | 
 |     /// Processes a `Coerce` predicate from the fulfillment context. | 
 |     /// This is NOT the preferred way to handle coercion, which is to | 
 |     /// invoke `FnCtxt::coerce` or a similar method (see `coercion.rs`). | 
 |     /// | 
 |     /// This method here is actually a fallback that winds up being | 
 |     /// invoked when `FnCtxt::coerce` encounters unresolved type variables | 
 |     /// and records a coercion predicate. Presently, this method is equivalent | 
 |     /// to `subtype_predicate` -- that is, "coercing" `a` to `b` winds up | 
 |     /// actually requiring `a <: b`. This is of course a valid coercion, | 
 |     /// but it's not as flexible as `FnCtxt::coerce` would be. | 
 |     /// | 
 |     /// (We may refactor this in the future, but there are a number of | 
 |     /// practical obstacles. Among other things, `FnCtxt::coerce` presently | 
 |     /// records adjustments that are required on the HIR in order to perform | 
 |     /// the coercion, and we don't currently have a way to manage that.) | 
 |     pub fn coerce_predicate( | 
 |         &self, | 
 |         cause: &ObligationCause<'tcx>, | 
 |         param_env: ty::ParamEnv<'tcx>, | 
 |         predicate: ty::PolyCoercePredicate<'tcx>, | 
 |     ) -> Result<InferResult<'tcx, ()>, (TyVid, TyVid)> { | 
 |         let subtype_predicate = predicate.map_bound(|p| ty::SubtypePredicate { | 
 |             a_is_expected: false, // when coercing from `a` to `b`, `b` is expected | 
 |             a: p.a, | 
 |             b: p.b, | 
 |         }); | 
 |         self.subtype_predicate(cause, param_env, subtype_predicate) | 
 |     } | 
 |  | 
 |     pub fn subtype_predicate( | 
 |         &self, | 
 |         cause: &ObligationCause<'tcx>, | 
 |         param_env: ty::ParamEnv<'tcx>, | 
 |         predicate: ty::PolySubtypePredicate<'tcx>, | 
 |     ) -> Result<InferResult<'tcx, ()>, (TyVid, TyVid)> { | 
 |         // Check for two unresolved inference variables, in which case we can | 
 |         // make no progress. This is partly a micro-optimization, but it's | 
 |         // also an opportunity to "sub-unify" the variables. This isn't | 
 |         // *necessary* to prevent cycles, because they would eventually be sub-unified | 
 |         // anyhow during generalization, but it helps with diagnostics (we can detect | 
 |         // earlier that they are sub-unified). | 
 |         // | 
 |         // Note that we can just skip the binders here because | 
 |         // type variables can't (at present, at | 
 |         // least) capture any of the things bound by this binder. | 
 |         // | 
 |         // Note that this sub here is not just for diagnostics - it has semantic | 
 |         // effects as well. | 
 |         let r_a = self.shallow_resolve(predicate.skip_binder().a); | 
 |         let r_b = self.shallow_resolve(predicate.skip_binder().b); | 
 |         match (r_a.kind(), r_b.kind()) { | 
 |             (&ty::Infer(ty::TyVar(a_vid)), &ty::Infer(ty::TyVar(b_vid))) => { | 
 |                 return Err((a_vid, b_vid)); | 
 |             } | 
 |             _ => {} | 
 |         } | 
 |  | 
 |         self.enter_forall(predicate, |ty::SubtypePredicate { a_is_expected, a, b }| { | 
 |             if a_is_expected { | 
 |                 Ok(self.at(cause, param_env).sub(DefineOpaqueTypes::Yes, a, b)) | 
 |             } else { | 
 |                 Ok(self.at(cause, param_env).sup(DefineOpaqueTypes::Yes, b, a)) | 
 |             } | 
 |         }) | 
 |     } | 
 |  | 
 |     /// Number of type variables created so far. | 
 |     pub fn num_ty_vars(&self) -> usize { | 
 |         self.inner.borrow_mut().type_variables().num_vars() | 
 |     } | 
 |  | 
 |     pub fn next_ty_var(&self, span: Span) -> Ty<'tcx> { | 
 |         self.next_ty_var_with_origin(TypeVariableOrigin { span, param_def_id: None }) | 
 |     } | 
 |  | 
 |     pub fn next_ty_var_with_origin(&self, origin: TypeVariableOrigin) -> Ty<'tcx> { | 
 |         let vid = self.inner.borrow_mut().type_variables().new_var(self.universe(), origin); | 
 |         Ty::new_var(self.tcx, vid) | 
 |     } | 
 |  | 
 |     pub fn next_ty_var_id_in_universe(&self, span: Span, universe: ty::UniverseIndex) -> TyVid { | 
 |         let origin = TypeVariableOrigin { span, param_def_id: None }; | 
 |         self.inner.borrow_mut().type_variables().new_var(universe, origin) | 
 |     } | 
 |  | 
 |     pub fn next_ty_var_in_universe(&self, span: Span, universe: ty::UniverseIndex) -> Ty<'tcx> { | 
 |         let vid = self.next_ty_var_id_in_universe(span, universe); | 
 |         Ty::new_var(self.tcx, vid) | 
 |     } | 
 |  | 
 |     pub fn next_const_var(&self, span: Span) -> ty::Const<'tcx> { | 
 |         self.next_const_var_with_origin(ConstVariableOrigin { span, param_def_id: None }) | 
 |     } | 
 |  | 
 |     pub fn next_const_var_with_origin(&self, origin: ConstVariableOrigin) -> ty::Const<'tcx> { | 
 |         let vid = self | 
 |             .inner | 
 |             .borrow_mut() | 
 |             .const_unification_table() | 
 |             .new_key(ConstVariableValue::Unknown { origin, universe: self.universe() }) | 
 |             .vid; | 
 |         ty::Const::new_var(self.tcx, vid) | 
 |     } | 
 |  | 
 |     pub fn next_const_var_in_universe( | 
 |         &self, | 
 |         span: Span, | 
 |         universe: ty::UniverseIndex, | 
 |     ) -> ty::Const<'tcx> { | 
 |         let origin = ConstVariableOrigin { span, param_def_id: None }; | 
 |         let vid = self | 
 |             .inner | 
 |             .borrow_mut() | 
 |             .const_unification_table() | 
 |             .new_key(ConstVariableValue::Unknown { origin, universe }) | 
 |             .vid; | 
 |         ty::Const::new_var(self.tcx, vid) | 
 |     } | 
 |  | 
 |     pub fn next_int_var(&self) -> Ty<'tcx> { | 
 |         let next_int_var_id = | 
 |             self.inner.borrow_mut().int_unification_table().new_key(ty::IntVarValue::Unknown); | 
 |         Ty::new_int_var(self.tcx, next_int_var_id) | 
 |     } | 
 |  | 
 |     pub fn next_float_var(&self) -> Ty<'tcx> { | 
 |         let next_float_var_id = | 
 |             self.inner.borrow_mut().float_unification_table().new_key(ty::FloatVarValue::Unknown); | 
 |         Ty::new_float_var(self.tcx, next_float_var_id) | 
 |     } | 
 |  | 
 |     /// Creates a fresh region variable with the next available index. | 
 |     /// The variable will be created in the maximum universe created | 
 |     /// thus far, allowing it to name any region created thus far. | 
 |     pub fn next_region_var(&self, origin: RegionVariableOrigin) -> ty::Region<'tcx> { | 
 |         self.next_region_var_in_universe(origin, self.universe()) | 
 |     } | 
 |  | 
 |     /// Creates a fresh region variable with the next available index | 
 |     /// in the given universe; typically, you can use | 
 |     /// `next_region_var` and just use the maximal universe. | 
 |     pub fn next_region_var_in_universe( | 
 |         &self, | 
 |         origin: RegionVariableOrigin, | 
 |         universe: ty::UniverseIndex, | 
 |     ) -> ty::Region<'tcx> { | 
 |         let region_var = | 
 |             self.inner.borrow_mut().unwrap_region_constraints().new_region_var(universe, origin); | 
 |         ty::Region::new_var(self.tcx, region_var) | 
 |     } | 
 |  | 
 |     pub fn next_term_var_of_kind(&self, term: ty::Term<'tcx>, span: Span) -> ty::Term<'tcx> { | 
 |         match term.kind() { | 
 |             ty::TermKind::Ty(_) => self.next_ty_var(span).into(), | 
 |             ty::TermKind::Const(_) => self.next_const_var(span).into(), | 
 |         } | 
 |     } | 
 |  | 
 |     /// Return the universe that the region `r` was created in. For | 
 |     /// most regions (e.g., `'static`, named regions from the user, | 
 |     /// etc) this is the root universe U0. For inference variables or | 
 |     /// placeholders, however, it will return the universe which they | 
 |     /// are associated. | 
 |     pub fn universe_of_region(&self, r: ty::Region<'tcx>) -> ty::UniverseIndex { | 
 |         self.inner.borrow_mut().unwrap_region_constraints().universe(r) | 
 |     } | 
 |  | 
 |     /// Number of region variables created so far. | 
 |     pub fn num_region_vars(&self) -> usize { | 
 |         self.inner.borrow_mut().unwrap_region_constraints().num_region_vars() | 
 |     } | 
 |  | 
 |     /// Just a convenient wrapper of `next_region_var` for using during NLL. | 
 |     #[instrument(skip(self), level = "debug")] | 
 |     pub fn next_nll_region_var(&self, origin: NllRegionVariableOrigin) -> ty::Region<'tcx> { | 
 |         self.next_region_var(RegionVariableOrigin::Nll(origin)) | 
 |     } | 
 |  | 
 |     /// Just a convenient wrapper of `next_region_var` for using during NLL. | 
 |     #[instrument(skip(self), level = "debug")] | 
 |     pub fn next_nll_region_var_in_universe( | 
 |         &self, | 
 |         origin: NllRegionVariableOrigin, | 
 |         universe: ty::UniverseIndex, | 
 |     ) -> ty::Region<'tcx> { | 
 |         self.next_region_var_in_universe(RegionVariableOrigin::Nll(origin), universe) | 
 |     } | 
 |  | 
 |     pub fn var_for_def(&self, span: Span, param: &ty::GenericParamDef) -> GenericArg<'tcx> { | 
 |         match param.kind { | 
 |             GenericParamDefKind::Lifetime => { | 
 |                 // Create a region inference variable for the given | 
 |                 // region parameter definition. | 
 |                 self.next_region_var(RegionParameterDefinition(span, param.name)).into() | 
 |             } | 
 |             GenericParamDefKind::Type { .. } => { | 
 |                 // Create a type inference variable for the given | 
 |                 // type parameter definition. The generic parameters are | 
 |                 // for actual parameters that may be referred to by | 
 |                 // the default of this type parameter, if it exists. | 
 |                 // e.g., `struct Foo<A, B, C = (A, B)>(...);` when | 
 |                 // used in a path such as `Foo::<T, U>::new()` will | 
 |                 // use an inference variable for `C` with `[T, U]` | 
 |                 // as the generic parameters for the default, `(T, U)`. | 
 |                 let ty_var_id = self.inner.borrow_mut().type_variables().new_var( | 
 |                     self.universe(), | 
 |                     TypeVariableOrigin { param_def_id: Some(param.def_id), span }, | 
 |                 ); | 
 |  | 
 |                 Ty::new_var(self.tcx, ty_var_id).into() | 
 |             } | 
 |             GenericParamDefKind::Const { .. } => { | 
 |                 let origin = ConstVariableOrigin { param_def_id: Some(param.def_id), span }; | 
 |                 let const_var_id = self | 
 |                     .inner | 
 |                     .borrow_mut() | 
 |                     .const_unification_table() | 
 |                     .new_key(ConstVariableValue::Unknown { origin, universe: self.universe() }) | 
 |                     .vid; | 
 |                 ty::Const::new_var(self.tcx, const_var_id).into() | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     /// Given a set of generics defined on a type or impl, returns the generic parameters mapping | 
 |     /// each type/region parameter to a fresh inference variable. | 
 |     pub fn fresh_args_for_item(&self, span: Span, def_id: DefId) -> GenericArgsRef<'tcx> { | 
 |         GenericArgs::for_item(self.tcx, def_id, |param, _| self.var_for_def(span, param)) | 
 |     } | 
 |  | 
 |     /// Returns `true` if errors have been reported since this infcx was | 
 |     /// created. This is sometimes used as a heuristic to skip | 
 |     /// reporting errors that often occur as a result of earlier | 
 |     /// errors, but where it's hard to be 100% sure (e.g., unresolved | 
 |     /// inference variables, regionck errors). | 
 |     #[must_use = "this method does not have any side effects"] | 
 |     pub fn tainted_by_errors(&self) -> Option<ErrorGuaranteed> { | 
 |         self.tainted_by_errors.get() | 
 |     } | 
 |  | 
 |     /// Set the "tainted by errors" flag to true. We call this when we | 
 |     /// observe an error from a prior pass. | 
 |     pub fn set_tainted_by_errors(&self, e: ErrorGuaranteed) { | 
 |         debug!("set_tainted_by_errors(ErrorGuaranteed)"); | 
 |         self.tainted_by_errors.set(Some(e)); | 
 |     } | 
 |  | 
 |     pub fn region_var_origin(&self, vid: ty::RegionVid) -> RegionVariableOrigin { | 
 |         let mut inner = self.inner.borrow_mut(); | 
 |         let inner = &mut *inner; | 
 |         inner.unwrap_region_constraints().var_origin(vid) | 
 |     } | 
 |  | 
 |     /// Clone the list of variable regions. This is used only during NLL processing | 
 |     /// to put the set of region variables into the NLL region context. | 
 |     pub fn get_region_var_infos(&self) -> VarInfos { | 
 |         let inner = self.inner.borrow(); | 
 |         assert!(!UndoLogs::<UndoLog<'_>>::in_snapshot(&inner.undo_log)); | 
 |         let storage = inner.region_constraint_storage.as_ref().expect("regions already resolved"); | 
 |         assert!(storage.data.is_empty(), "{:#?}", storage.data); | 
 |         // We clone instead of taking because borrowck still wants to use the | 
 |         // inference context after calling this for diagnostics and the new | 
 |         // trait solver. | 
 |         storage.var_infos.clone() | 
 |     } | 
 |  | 
 |     #[instrument(level = "debug", skip(self), ret)] | 
 |     pub fn take_opaque_types(&self) -> Vec<(OpaqueTypeKey<'tcx>, OpaqueHiddenType<'tcx>)> { | 
 |         self.inner.borrow_mut().opaque_type_storage.take_opaque_types().collect() | 
 |     } | 
 |  | 
 |     #[instrument(level = "debug", skip(self), ret)] | 
 |     pub fn clone_opaque_types(&self) -> Vec<(OpaqueTypeKey<'tcx>, OpaqueHiddenType<'tcx>)> { | 
 |         self.inner.borrow_mut().opaque_type_storage.iter_opaque_types().collect() | 
 |     } | 
 |  | 
 |     #[inline(always)] | 
 |     pub fn can_define_opaque_ty(&self, id: impl Into<DefId>) -> bool { | 
 |         debug_assert!(!self.next_trait_solver()); | 
 |         match self.typing_mode() { | 
 |             TypingMode::Analysis { | 
 |                 defining_opaque_types_and_generators: defining_opaque_types, | 
 |             } | 
 |             | TypingMode::Borrowck { defining_opaque_types } => { | 
 |                 id.into().as_local().is_some_and(|def_id| defining_opaque_types.contains(&def_id)) | 
 |             } | 
 |             // FIXME(#132279): This function is quite weird in post-analysis | 
 |             // and post-borrowck analysis mode. We may need to modify its uses | 
 |             // to support PostBorrowckAnalysis in the old solver as well. | 
 |             TypingMode::Coherence | 
 |             | TypingMode::PostBorrowckAnalysis { .. } | 
 |             | TypingMode::PostAnalysis => false, | 
 |         } | 
 |     } | 
 |  | 
 |     pub fn ty_to_string(&self, t: Ty<'tcx>) -> String { | 
 |         self.resolve_vars_if_possible(t).to_string() | 
 |     } | 
 |  | 
 |     /// If `TyVar(vid)` resolves to a type, return that type. Else, return the | 
 |     /// universe index of `TyVar(vid)`. | 
 |     pub fn probe_ty_var(&self, vid: TyVid) -> Result<Ty<'tcx>, ty::UniverseIndex> { | 
 |         use self::type_variable::TypeVariableValue; | 
 |  | 
 |         match self.inner.borrow_mut().type_variables().probe(vid) { | 
 |             TypeVariableValue::Known { value } => Ok(value), | 
 |             TypeVariableValue::Unknown { universe } => Err(universe), | 
 |         } | 
 |     } | 
 |  | 
 |     pub fn shallow_resolve(&self, ty: Ty<'tcx>) -> Ty<'tcx> { | 
 |         if let ty::Infer(v) = *ty.kind() { | 
 |             match v { | 
 |                 ty::TyVar(v) => { | 
 |                     // Not entirely obvious: if `typ` is a type variable, | 
 |                     // it can be resolved to an int/float variable, which | 
 |                     // can then be recursively resolved, hence the | 
 |                     // recursion. Note though that we prevent type | 
 |                     // variables from unifying to other type variables | 
 |                     // directly (though they may be embedded | 
 |                     // structurally), and we prevent cycles in any case, | 
 |                     // so this recursion should always be of very limited | 
 |                     // depth. | 
 |                     // | 
 |                     // Note: if these two lines are combined into one we get | 
 |                     // dynamic borrow errors on `self.inner`. | 
 |                     let known = self.inner.borrow_mut().type_variables().probe(v).known(); | 
 |                     known.map_or(ty, |t| self.shallow_resolve(t)) | 
 |                 } | 
 |  | 
 |                 ty::IntVar(v) => { | 
 |                     match self.inner.borrow_mut().int_unification_table().probe_value(v) { | 
 |                         ty::IntVarValue::IntType(ty) => Ty::new_int(self.tcx, ty), | 
 |                         ty::IntVarValue::UintType(ty) => Ty::new_uint(self.tcx, ty), | 
 |                         ty::IntVarValue::Unknown => ty, | 
 |                     } | 
 |                 } | 
 |  | 
 |                 ty::FloatVar(v) => { | 
 |                     match self.inner.borrow_mut().float_unification_table().probe_value(v) { | 
 |                         ty::FloatVarValue::Known(ty) => Ty::new_float(self.tcx, ty), | 
 |                         ty::FloatVarValue::Unknown => ty, | 
 |                     } | 
 |                 } | 
 |  | 
 |                 ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_) => ty, | 
 |             } | 
 |         } else { | 
 |             ty | 
 |         } | 
 |     } | 
 |  | 
 |     pub fn shallow_resolve_const(&self, ct: ty::Const<'tcx>) -> ty::Const<'tcx> { | 
 |         match ct.kind() { | 
 |             ty::ConstKind::Infer(infer_ct) => match infer_ct { | 
 |                 InferConst::Var(vid) => self | 
 |                     .inner | 
 |                     .borrow_mut() | 
 |                     .const_unification_table() | 
 |                     .probe_value(vid) | 
 |                     .known() | 
 |                     .unwrap_or(ct), | 
 |                 InferConst::Fresh(_) => ct, | 
 |             }, | 
 |             ty::ConstKind::Param(_) | 
 |             | ty::ConstKind::Bound(_, _) | 
 |             | ty::ConstKind::Placeholder(_) | 
 |             | ty::ConstKind::Unevaluated(_) | 
 |             | ty::ConstKind::Value(_) | 
 |             | ty::ConstKind::Error(_) | 
 |             | ty::ConstKind::Expr(_) => ct, | 
 |         } | 
 |     } | 
 |  | 
 |     pub fn root_var(&self, var: ty::TyVid) -> ty::TyVid { | 
 |         self.inner.borrow_mut().type_variables().root_var(var) | 
 |     } | 
 |  | 
 |     pub fn root_const_var(&self, var: ty::ConstVid) -> ty::ConstVid { | 
 |         self.inner.borrow_mut().const_unification_table().find(var).vid | 
 |     } | 
 |  | 
 |     /// Resolves an int var to a rigid int type, if it was constrained to one, | 
 |     /// or else the root int var in the unification table. | 
 |     pub fn opportunistic_resolve_int_var(&self, vid: ty::IntVid) -> Ty<'tcx> { | 
 |         let mut inner = self.inner.borrow_mut(); | 
 |         let value = inner.int_unification_table().probe_value(vid); | 
 |         match value { | 
 |             ty::IntVarValue::IntType(ty) => Ty::new_int(self.tcx, ty), | 
 |             ty::IntVarValue::UintType(ty) => Ty::new_uint(self.tcx, ty), | 
 |             ty::IntVarValue::Unknown => { | 
 |                 Ty::new_int_var(self.tcx, inner.int_unification_table().find(vid)) | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     /// Resolves a float var to a rigid int type, if it was constrained to one, | 
 |     /// or else the root float var in the unification table. | 
 |     pub fn opportunistic_resolve_float_var(&self, vid: ty::FloatVid) -> Ty<'tcx> { | 
 |         let mut inner = self.inner.borrow_mut(); | 
 |         let value = inner.float_unification_table().probe_value(vid); | 
 |         match value { | 
 |             ty::FloatVarValue::Known(ty) => Ty::new_float(self.tcx, ty), | 
 |             ty::FloatVarValue::Unknown => { | 
 |                 Ty::new_float_var(self.tcx, inner.float_unification_table().find(vid)) | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     /// Where possible, replaces type/const variables in | 
 |     /// `value` with their final value. Note that region variables | 
 |     /// are unaffected. If a type/const variable has not been unified, it | 
 |     /// is left as is. This is an idempotent operation that does | 
 |     /// not affect inference state in any way and so you can do it | 
 |     /// at will. | 
 |     pub fn resolve_vars_if_possible<T>(&self, value: T) -> T | 
 |     where | 
 |         T: TypeFoldable<TyCtxt<'tcx>>, | 
 |     { | 
 |         if let Err(guar) = value.error_reported() { | 
 |             self.set_tainted_by_errors(guar); | 
 |         } | 
 |         if !value.has_non_region_infer() { | 
 |             return value; | 
 |         } | 
 |         let mut r = resolve::OpportunisticVarResolver::new(self); | 
 |         value.fold_with(&mut r) | 
 |     } | 
 |  | 
 |     pub fn resolve_numeric_literals_with_default<T>(&self, value: T) -> T | 
 |     where | 
 |         T: TypeFoldable<TyCtxt<'tcx>>, | 
 |     { | 
 |         if !value.has_infer() { | 
 |             return value; // Avoid duplicated type-folding. | 
 |         } | 
 |         let mut r = InferenceLiteralEraser { tcx: self.tcx }; | 
 |         value.fold_with(&mut r) | 
 |     } | 
 |  | 
 |     pub fn probe_const_var(&self, vid: ty::ConstVid) -> Result<ty::Const<'tcx>, ty::UniverseIndex> { | 
 |         match self.inner.borrow_mut().const_unification_table().probe_value(vid) { | 
 |             ConstVariableValue::Known { value } => Ok(value), | 
 |             ConstVariableValue::Unknown { origin: _, universe } => Err(universe), | 
 |         } | 
 |     } | 
 |  | 
 |     /// Attempts to resolve all type/region/const variables in | 
 |     /// `value`. Region inference must have been run already (e.g., | 
 |     /// by calling `resolve_regions_and_report_errors`). If some | 
 |     /// variable was never unified, an `Err` results. | 
 |     /// | 
 |     /// This method is idempotent, but it not typically not invoked | 
 |     /// except during the writeback phase. | 
 |     pub fn fully_resolve<T: TypeFoldable<TyCtxt<'tcx>>>(&self, value: T) -> FixupResult<T> { | 
 |         match resolve::fully_resolve(self, value) { | 
 |             Ok(value) => { | 
 |                 if value.has_non_region_infer() { | 
 |                     bug!("`{value:?}` is not fully resolved"); | 
 |                 } | 
 |                 if value.has_infer_regions() { | 
 |                     let guar = self.dcx().delayed_bug(format!("`{value:?}` is not fully resolved")); | 
 |                     Ok(fold_regions(self.tcx, value, |re, _| { | 
 |                         if re.is_var() { ty::Region::new_error(self.tcx, guar) } else { re } | 
 |                     })) | 
 |                 } else { | 
 |                     Ok(value) | 
 |                 } | 
 |             } | 
 |             Err(e) => Err(e), | 
 |         } | 
 |     } | 
 |  | 
 |     // Instantiates the bound variables in a given binder with fresh inference | 
 |     // variables in the current universe. | 
 |     // | 
 |     // Use this method if you'd like to find some generic parameters of the binder's | 
 |     // variables (e.g. during a method call). If there isn't a [`BoundRegionConversionTime`] | 
 |     // that corresponds to your use case, consider whether or not you should | 
 |     // use [`InferCtxt::enter_forall`] instead. | 
 |     pub fn instantiate_binder_with_fresh_vars<T>( | 
 |         &self, | 
 |         span: Span, | 
 |         lbrct: BoundRegionConversionTime, | 
 |         value: ty::Binder<'tcx, T>, | 
 |     ) -> T | 
 |     where | 
 |         T: TypeFoldable<TyCtxt<'tcx>> + Copy, | 
 |     { | 
 |         if let Some(inner) = value.no_bound_vars() { | 
 |             return inner; | 
 |         } | 
 |  | 
 |         let bound_vars = value.bound_vars(); | 
 |         let mut args = Vec::with_capacity(bound_vars.len()); | 
 |  | 
 |         for bound_var_kind in bound_vars { | 
 |             let arg: ty::GenericArg<'_> = match bound_var_kind { | 
 |                 ty::BoundVariableKind::Ty(_) => self.next_ty_var(span).into(), | 
 |                 ty::BoundVariableKind::Region(br) => { | 
 |                     self.next_region_var(BoundRegion(span, br, lbrct)).into() | 
 |                 } | 
 |                 ty::BoundVariableKind::Const => self.next_const_var(span).into(), | 
 |             }; | 
 |             args.push(arg); | 
 |         } | 
 |  | 
 |         struct ToFreshVars<'tcx> { | 
 |             args: Vec<ty::GenericArg<'tcx>>, | 
 |         } | 
 |  | 
 |         impl<'tcx> BoundVarReplacerDelegate<'tcx> for ToFreshVars<'tcx> { | 
 |             fn replace_region(&mut self, br: ty::BoundRegion) -> ty::Region<'tcx> { | 
 |                 self.args[br.var.index()].expect_region() | 
 |             } | 
 |             fn replace_ty(&mut self, bt: ty::BoundTy) -> Ty<'tcx> { | 
 |                 self.args[bt.var.index()].expect_ty() | 
 |             } | 
 |             fn replace_const(&mut self, bv: ty::BoundVar) -> ty::Const<'tcx> { | 
 |                 self.args[bv.index()].expect_const() | 
 |             } | 
 |         } | 
 |         let delegate = ToFreshVars { args }; | 
 |         self.tcx.replace_bound_vars_uncached(value, delegate) | 
 |     } | 
 |  | 
 |     /// See the [`region_constraints::RegionConstraintCollector::verify_generic_bound`] method. | 
 |     pub(crate) fn verify_generic_bound( | 
 |         &self, | 
 |         origin: SubregionOrigin<'tcx>, | 
 |         kind: GenericKind<'tcx>, | 
 |         a: ty::Region<'tcx>, | 
 |         bound: VerifyBound<'tcx>, | 
 |     ) { | 
 |         debug!("verify_generic_bound({:?}, {:?} <: {:?})", kind, a, bound); | 
 |  | 
 |         self.inner | 
 |             .borrow_mut() | 
 |             .unwrap_region_constraints() | 
 |             .verify_generic_bound(origin, kind, a, bound); | 
 |     } | 
 |  | 
 |     /// Obtains the latest type of the given closure; this may be a | 
 |     /// closure in the current function, in which case its | 
 |     /// `ClosureKind` may not yet be known. | 
 |     pub fn closure_kind(&self, closure_ty: Ty<'tcx>) -> Option<ty::ClosureKind> { | 
 |         let unresolved_kind_ty = match *closure_ty.kind() { | 
 |             ty::Closure(_, args) => args.as_closure().kind_ty(), | 
 |             ty::CoroutineClosure(_, args) => args.as_coroutine_closure().kind_ty(), | 
 |             _ => bug!("unexpected type {closure_ty}"), | 
 |         }; | 
 |         let closure_kind_ty = self.shallow_resolve(unresolved_kind_ty); | 
 |         closure_kind_ty.to_opt_closure_kind() | 
 |     } | 
 |  | 
 |     pub fn universe(&self) -> ty::UniverseIndex { | 
 |         self.universe.get() | 
 |     } | 
 |  | 
 |     /// Creates and return a fresh universe that extends all previous | 
 |     /// universes. Updates `self.universe` to that new universe. | 
 |     pub fn create_next_universe(&self) -> ty::UniverseIndex { | 
 |         let u = self.universe.get().next_universe(); | 
 |         debug!("create_next_universe {u:?}"); | 
 |         self.universe.set(u); | 
 |         u | 
 |     } | 
 |  | 
 |     /// Extract [`ty::TypingMode`] of this inference context to get a `TypingEnv` | 
 |     /// which contains the necessary information to use the trait system without | 
 |     /// using canonicalization or carrying this inference context around. | 
 |     pub fn typing_env(&self, param_env: ty::ParamEnv<'tcx>) -> ty::TypingEnv<'tcx> { | 
 |         let typing_mode = match self.typing_mode() { | 
 |             // FIXME(#132279): This erases the `defining_opaque_types` as it isn't possible | 
 |             // to handle them without proper canonicalization. This means we may cause cycle | 
 |             // errors and fail to reveal opaques while inside of bodies. We should rename this | 
 |             // function and require explicit comments on all use-sites in the future. | 
 |             ty::TypingMode::Analysis { defining_opaque_types_and_generators: _ } | 
 |             | ty::TypingMode::Borrowck { defining_opaque_types: _ } => { | 
 |                 TypingMode::non_body_analysis() | 
 |             } | 
 |             mode @ (ty::TypingMode::Coherence | 
 |             | ty::TypingMode::PostBorrowckAnalysis { .. } | 
 |             | ty::TypingMode::PostAnalysis) => mode, | 
 |         }; | 
 |         ty::TypingEnv { typing_mode, param_env } | 
 |     } | 
 |  | 
 |     /// Similar to [`Self::canonicalize_query`], except that it returns | 
 |     /// a [`PseudoCanonicalInput`] and requires both the `value` and the | 
 |     /// `param_env` to not contain any inference variables or placeholders. | 
 |     pub fn pseudo_canonicalize_query<V>( | 
 |         &self, | 
 |         param_env: ty::ParamEnv<'tcx>, | 
 |         value: V, | 
 |     ) -> PseudoCanonicalInput<'tcx, V> | 
 |     where | 
 |         V: TypeVisitable<TyCtxt<'tcx>>, | 
 |     { | 
 |         debug_assert!(!value.has_infer()); | 
 |         debug_assert!(!value.has_placeholders()); | 
 |         debug_assert!(!param_env.has_infer()); | 
 |         debug_assert!(!param_env.has_placeholders()); | 
 |         self.typing_env(param_env).as_query_input(value) | 
 |     } | 
 |  | 
 |     /// The returned function is used in a fast path. If it returns `true` the variable is | 
 |     /// unchanged, `false` indicates that the status is unknown. | 
 |     #[inline] | 
 |     pub fn is_ty_infer_var_definitely_unchanged(&self) -> impl Fn(TyOrConstInferVar) -> bool { | 
 |         // This hoists the borrow/release out of the loop body. | 
 |         let inner = self.inner.try_borrow(); | 
 |  | 
 |         move |infer_var: TyOrConstInferVar| match (infer_var, &inner) { | 
 |             (TyOrConstInferVar::Ty(ty_var), Ok(inner)) => { | 
 |                 use self::type_variable::TypeVariableValue; | 
 |  | 
 |                 matches!( | 
 |                     inner.try_type_variables_probe_ref(ty_var), | 
 |                     Some(TypeVariableValue::Unknown { .. }) | 
 |                 ) | 
 |             } | 
 |             _ => false, | 
 |         } | 
 |     } | 
 |  | 
 |     /// `ty_or_const_infer_var_changed` is equivalent to one of these two: | 
 |     ///   * `shallow_resolve(ty) != ty` (where `ty.kind = ty::Infer(_)`) | 
 |     ///   * `shallow_resolve(ct) != ct` (where `ct.kind = ty::ConstKind::Infer(_)`) | 
 |     /// | 
 |     /// However, `ty_or_const_infer_var_changed` is more efficient. It's always | 
 |     /// inlined, despite being large, because it has only two call sites that | 
 |     /// are extremely hot (both in `traits::fulfill`'s checking of `stalled_on` | 
 |     /// inference variables), and it handles both `Ty` and `ty::Const` without | 
 |     /// having to resort to storing full `GenericArg`s in `stalled_on`. | 
 |     #[inline(always)] | 
 |     pub fn ty_or_const_infer_var_changed(&self, infer_var: TyOrConstInferVar) -> bool { | 
 |         match infer_var { | 
 |             TyOrConstInferVar::Ty(v) => { | 
 |                 use self::type_variable::TypeVariableValue; | 
 |  | 
 |                 // If `inlined_probe` returns a `Known` value, it never equals | 
 |                 // `ty::Infer(ty::TyVar(v))`. | 
 |                 match self.inner.borrow_mut().type_variables().inlined_probe(v) { | 
 |                     TypeVariableValue::Unknown { .. } => false, | 
 |                     TypeVariableValue::Known { .. } => true, | 
 |                 } | 
 |             } | 
 |  | 
 |             TyOrConstInferVar::TyInt(v) => { | 
 |                 // If `inlined_probe_value` returns a value it's always a | 
 |                 // `ty::Int(_)` or `ty::UInt(_)`, which never matches a | 
 |                 // `ty::Infer(_)`. | 
 |                 self.inner.borrow_mut().int_unification_table().inlined_probe_value(v).is_known() | 
 |             } | 
 |  | 
 |             TyOrConstInferVar::TyFloat(v) => { | 
 |                 // If `probe_value` returns a value it's always a | 
 |                 // `ty::Float(_)`, which never matches a `ty::Infer(_)`. | 
 |                 // | 
 |                 // Not `inlined_probe_value(v)` because this call site is colder. | 
 |                 self.inner.borrow_mut().float_unification_table().probe_value(v).is_known() | 
 |             } | 
 |  | 
 |             TyOrConstInferVar::Const(v) => { | 
 |                 // If `probe_value` returns a `Known` value, it never equals | 
 |                 // `ty::ConstKind::Infer(ty::InferConst::Var(v))`. | 
 |                 // | 
 |                 // Not `inlined_probe_value(v)` because this call site is colder. | 
 |                 match self.inner.borrow_mut().const_unification_table().probe_value(v) { | 
 |                     ConstVariableValue::Unknown { .. } => false, | 
 |                     ConstVariableValue::Known { .. } => true, | 
 |                 } | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     /// Attach a callback to be invoked on each root obligation evaluated in the new trait solver. | 
 |     pub fn attach_obligation_inspector(&self, inspector: ObligationInspector<'tcx>) { | 
 |         debug_assert!( | 
 |             self.obligation_inspector.get().is_none(), | 
 |             "shouldn't override a set obligation inspector" | 
 |         ); | 
 |         self.obligation_inspector.set(Some(inspector)); | 
 |     } | 
 | } | 
 |  | 
 | /// Helper for [InferCtxt::ty_or_const_infer_var_changed] (see comment on that), currently | 
 | /// used only for `traits::fulfill`'s list of `stalled_on` inference variables. | 
 | #[derive(Copy, Clone, Debug)] | 
 | pub enum TyOrConstInferVar { | 
 |     /// Equivalent to `ty::Infer(ty::TyVar(_))`. | 
 |     Ty(TyVid), | 
 |     /// Equivalent to `ty::Infer(ty::IntVar(_))`. | 
 |     TyInt(IntVid), | 
 |     /// Equivalent to `ty::Infer(ty::FloatVar(_))`. | 
 |     TyFloat(FloatVid), | 
 |  | 
 |     /// Equivalent to `ty::ConstKind::Infer(ty::InferConst::Var(_))`. | 
 |     Const(ConstVid), | 
 | } | 
 |  | 
 | impl<'tcx> TyOrConstInferVar { | 
 |     /// Tries to extract an inference variable from a type or a constant, returns `None` | 
 |     /// for types other than `ty::Infer(_)` (or `InferTy::Fresh*`) and | 
 |     /// for constants other than `ty::ConstKind::Infer(_)` (or `InferConst::Fresh`). | 
 |     pub fn maybe_from_generic_arg(arg: GenericArg<'tcx>) -> Option<Self> { | 
 |         match arg.kind() { | 
 |             GenericArgKind::Type(ty) => Self::maybe_from_ty(ty), | 
 |             GenericArgKind::Const(ct) => Self::maybe_from_const(ct), | 
 |             GenericArgKind::Lifetime(_) => None, | 
 |         } | 
 |     } | 
 |  | 
 |     /// Tries to extract an inference variable from a type or a constant, returns `None` | 
 |     /// for types other than `ty::Infer(_)` (or `InferTy::Fresh*`) and | 
 |     /// for constants other than `ty::ConstKind::Infer(_)` (or `InferConst::Fresh`). | 
 |     pub fn maybe_from_term(term: Term<'tcx>) -> Option<Self> { | 
 |         match term.kind() { | 
 |             TermKind::Ty(ty) => Self::maybe_from_ty(ty), | 
 |             TermKind::Const(ct) => Self::maybe_from_const(ct), | 
 |         } | 
 |     } | 
 |  | 
 |     /// Tries to extract an inference variable from a type, returns `None` | 
 |     /// for types other than `ty::Infer(_)` (or `InferTy::Fresh*`). | 
 |     fn maybe_from_ty(ty: Ty<'tcx>) -> Option<Self> { | 
 |         match *ty.kind() { | 
 |             ty::Infer(ty::TyVar(v)) => Some(TyOrConstInferVar::Ty(v)), | 
 |             ty::Infer(ty::IntVar(v)) => Some(TyOrConstInferVar::TyInt(v)), | 
 |             ty::Infer(ty::FloatVar(v)) => Some(TyOrConstInferVar::TyFloat(v)), | 
 |             _ => None, | 
 |         } | 
 |     } | 
 |  | 
 |     /// Tries to extract an inference variable from a constant, returns `None` | 
 |     /// for constants other than `ty::ConstKind::Infer(_)` (or `InferConst::Fresh`). | 
 |     fn maybe_from_const(ct: ty::Const<'tcx>) -> Option<Self> { | 
 |         match ct.kind() { | 
 |             ty::ConstKind::Infer(InferConst::Var(v)) => Some(TyOrConstInferVar::Const(v)), | 
 |             _ => None, | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | /// Replace `{integer}` with `i32` and `{float}` with `f64`. | 
 | /// Used only for diagnostics. | 
 | struct InferenceLiteralEraser<'tcx> { | 
 |     tcx: TyCtxt<'tcx>, | 
 | } | 
 |  | 
 | impl<'tcx> TypeFolder<TyCtxt<'tcx>> for InferenceLiteralEraser<'tcx> { | 
 |     fn cx(&self) -> TyCtxt<'tcx> { | 
 |         self.tcx | 
 |     } | 
 |  | 
 |     fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> { | 
 |         match ty.kind() { | 
 |             ty::Infer(ty::IntVar(_) | ty::FreshIntTy(_)) => self.tcx.types.i32, | 
 |             ty::Infer(ty::FloatVar(_) | ty::FreshFloatTy(_)) => self.tcx.types.f64, | 
 |             _ => ty.super_fold_with(self), | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | impl<'tcx> TypeTrace<'tcx> { | 
 |     pub fn span(&self) -> Span { | 
 |         self.cause.span | 
 |     } | 
 |  | 
 |     pub fn types(cause: &ObligationCause<'tcx>, a: Ty<'tcx>, b: Ty<'tcx>) -> TypeTrace<'tcx> { | 
 |         TypeTrace { | 
 |             cause: cause.clone(), | 
 |             values: ValuePairs::Terms(ExpectedFound::new(a.into(), b.into())), | 
 |         } | 
 |     } | 
 |  | 
 |     pub fn trait_refs( | 
 |         cause: &ObligationCause<'tcx>, | 
 |         a: ty::TraitRef<'tcx>, | 
 |         b: ty::TraitRef<'tcx>, | 
 |     ) -> TypeTrace<'tcx> { | 
 |         TypeTrace { cause: cause.clone(), values: ValuePairs::TraitRefs(ExpectedFound::new(a, b)) } | 
 |     } | 
 |  | 
 |     pub fn consts( | 
 |         cause: &ObligationCause<'tcx>, | 
 |         a: ty::Const<'tcx>, | 
 |         b: ty::Const<'tcx>, | 
 |     ) -> TypeTrace<'tcx> { | 
 |         TypeTrace { | 
 |             cause: cause.clone(), | 
 |             values: ValuePairs::Terms(ExpectedFound::new(a.into(), b.into())), | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | impl<'tcx> SubregionOrigin<'tcx> { | 
 |     pub fn span(&self) -> Span { | 
 |         match *self { | 
 |             Subtype(ref a) => a.span(), | 
 |             RelateObjectBound(a) => a, | 
 |             RelateParamBound(a, ..) => a, | 
 |             RelateRegionParamBound(a, _) => a, | 
 |             Reborrow(a) => a, | 
 |             ReferenceOutlivesReferent(_, a) => a, | 
 |             CompareImplItemObligation { span, .. } => span, | 
 |             AscribeUserTypeProvePredicate(span) => span, | 
 |             CheckAssociatedTypeBounds { ref parent, .. } => parent.span(), | 
 |         } | 
 |     } | 
 |  | 
 |     pub fn from_obligation_cause<F>(cause: &traits::ObligationCause<'tcx>, default: F) -> Self | 
 |     where | 
 |         F: FnOnce() -> Self, | 
 |     { | 
 |         match *cause.code() { | 
 |             traits::ObligationCauseCode::ReferenceOutlivesReferent(ref_type) => { | 
 |                 SubregionOrigin::ReferenceOutlivesReferent(ref_type, cause.span) | 
 |             } | 
 |  | 
 |             traits::ObligationCauseCode::CompareImplItem { | 
 |                 impl_item_def_id, | 
 |                 trait_item_def_id, | 
 |                 kind: _, | 
 |             } => SubregionOrigin::CompareImplItemObligation { | 
 |                 span: cause.span, | 
 |                 impl_item_def_id, | 
 |                 trait_item_def_id, | 
 |             }, | 
 |  | 
 |             traits::ObligationCauseCode::CheckAssociatedTypeBounds { | 
 |                 impl_item_def_id, | 
 |                 trait_item_def_id, | 
 |             } => SubregionOrigin::CheckAssociatedTypeBounds { | 
 |                 impl_item_def_id, | 
 |                 trait_item_def_id, | 
 |                 parent: Box::new(default()), | 
 |             }, | 
 |  | 
 |             traits::ObligationCauseCode::AscribeUserTypeProvePredicate(span) => { | 
 |                 SubregionOrigin::AscribeUserTypeProvePredicate(span) | 
 |             } | 
 |  | 
 |             traits::ObligationCauseCode::ObjectTypeBound(ty, _reg) => { | 
 |                 SubregionOrigin::RelateRegionParamBound(cause.span, Some(ty)) | 
 |             } | 
 |  | 
 |             _ => default(), | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | impl RegionVariableOrigin { | 
 |     pub fn span(&self) -> Span { | 
 |         match *self { | 
 |             MiscVariable(a) | 
 |             | PatternRegion(a) | 
 |             | BorrowRegion(a) | 
 |             | Autoref(a) | 
 |             | Coercion(a) | 
 |             | RegionParameterDefinition(a, ..) | 
 |             | BoundRegion(a, ..) | 
 |             | UpvarRegion(_, a) => a, | 
 |             Nll(..) => bug!("NLL variable used with `span`"), | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | impl<'tcx> InferCtxt<'tcx> { | 
 |     /// Given a [`hir::Block`], get the span of its last expression or | 
 |     /// statement, peeling off any inner blocks. | 
 |     pub fn find_block_span(&self, block: &'tcx hir::Block<'tcx>) -> Span { | 
 |         let block = block.innermost_block(); | 
 |         if let Some(expr) = &block.expr { | 
 |             expr.span | 
 |         } else if let Some(stmt) = block.stmts.last() { | 
 |             // possibly incorrect trailing `;` in the else arm | 
 |             stmt.span | 
 |         } else { | 
 |             // empty block; point at its entirety | 
 |             block.span | 
 |         } | 
 |     } | 
 |  | 
 |     /// Given a [`hir::HirId`] for a block, get the span of its last expression | 
 |     /// or statement, peeling off any inner blocks. | 
 |     pub fn find_block_span_from_hir_id(&self, hir_id: hir::HirId) -> Span { | 
 |         match self.tcx.hir_node(hir_id) { | 
 |             hir::Node::Block(blk) => self.find_block_span(blk), | 
 |             // The parser was in a weird state if either of these happen, but | 
 |             // it's better not to panic. | 
 |             hir::Node::Expr(e) => e.span, | 
 |             _ => rustc_span::DUMMY_SP, | 
 |         } | 
 |     } | 
 | } |