blob: c3975098351af9f83fed30a3f7d5587aa88905c5 [file] [log] [blame]
use rustc::hir::def::{Res, DefKind};
use rustc::hir::def_id::DefId;
use rustc::lint;
use rustc::ty::{self, Ty};
use rustc::ty::adjustment;
use rustc_data_structures::fx::FxHashMap;
use lint::{LateContext, EarlyContext, LintContext, LintArray};
use lint::{LintPass, EarlyLintPass, LateLintPass};
use syntax::ast;
use syntax::attr;
use syntax::errors::Applicability;
use syntax::feature_gate::{AttributeType, BuiltinAttribute, BUILTIN_ATTRIBUTE_MAP};
use syntax::print::pprust;
use syntax::symbol::{kw, sym};
use syntax::symbol::Symbol;
use syntax::util::parser;
use syntax_pos::{Span, BytePos};
use rustc::hir;
use log::debug;
declare_lint! {
pub UNUSED_MUST_USE,
Warn,
"unused result of a type flagged as `#[must_use]`",
report_in_external_macro: true
}
declare_lint! {
pub UNUSED_RESULTS,
Allow,
"unused result of an expression in a statement"
}
declare_lint_pass!(UnusedResults => [UNUSED_MUST_USE, UNUSED_RESULTS]);
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for UnusedResults {
fn check_stmt(&mut self, cx: &LateContext<'_, '_>, s: &hir::Stmt) {
let expr = match s.node {
hir::StmtKind::Semi(ref expr) => &**expr,
_ => return,
};
if let hir::ExprKind::Ret(..) = expr.node {
return;
}
let ty = cx.tables.expr_ty(&expr);
let type_permits_lack_of_use = check_must_use_ty(cx, ty, &expr, s.span, "", "", false);
let mut fn_warned = false;
let mut op_warned = false;
let maybe_def_id = match expr.node {
hir::ExprKind::Call(ref callee, _) => {
match callee.node {
hir::ExprKind::Path(ref qpath) => {
match cx.tables.qpath_res(qpath, callee.hir_id) {
Res::Def(DefKind::Fn, def_id)
| Res::Def(DefKind::Method, def_id) => Some(def_id),
// `Res::Local` if it was a closure, for which we
// do not currently support must-use linting
_ => None
}
},
_ => None
}
},
hir::ExprKind::MethodCall(..) => {
cx.tables.type_dependent_def_id(expr.hir_id)
},
_ => None
};
if let Some(def_id) = maybe_def_id {
fn_warned = check_must_use_def(cx, def_id, s.span, "return value of ", "");
} else if type_permits_lack_of_use {
// We don't warn about unused unit or uninhabited types.
// (See https://github.com/rust-lang/rust/issues/43806 for details.)
return;
}
let must_use_op = match expr.node {
// Hardcoding operators here seemed more expedient than the
// refactoring that would be needed to look up the `#[must_use]`
// attribute which does exist on the comparison trait methods
hir::ExprKind::Binary(bin_op, ..) => {
match bin_op.node {
hir::BinOpKind::Eq |
hir::BinOpKind::Lt |
hir::BinOpKind::Le |
hir::BinOpKind::Ne |
hir::BinOpKind::Ge |
hir::BinOpKind::Gt => {
Some("comparison")
},
hir::BinOpKind::Add |
hir::BinOpKind::Sub |
hir::BinOpKind::Div |
hir::BinOpKind::Mul |
hir::BinOpKind::Rem => {
Some("arithmetic operation")
},
hir::BinOpKind::And | hir::BinOpKind::Or => {
Some("logical operation")
},
hir::BinOpKind::BitXor |
hir::BinOpKind::BitAnd |
hir::BinOpKind::BitOr |
hir::BinOpKind::Shl |
hir::BinOpKind::Shr => {
Some("bitwise operation")
},
}
},
hir::ExprKind::Unary(..) => Some("unary operation"),
_ => None
};
if let Some(must_use_op) = must_use_op {
cx.span_lint(UNUSED_MUST_USE, expr.span,
&format!("unused {} that must be used", must_use_op));
op_warned = true;
}
if !(type_permits_lack_of_use || fn_warned || op_warned) {
cx.span_lint(UNUSED_RESULTS, s.span, "unused result");
}
// Returns whether an error has been emitted (and thus another does not need to be later).
fn check_must_use_ty<'tcx>(
cx: &LateContext<'_, 'tcx>,
ty: Ty<'tcx>,
expr: &hir::Expr,
span: Span,
descr_pre: &str,
descr_post: &str,
plural: bool,
) -> bool {
if ty.is_unit() || cx.tcx.is_ty_uninhabited_from(
cx.tcx.hir().get_module_parent(expr.hir_id), ty)
{
return true;
}
let plural_suffix = if plural { "s" } else { "" };
match ty.sty {
ty::Adt(..) if ty.is_box() => {
let boxed_ty = ty.boxed_ty();
let descr_pre = &format!("{}boxed ", descr_pre);
check_must_use_ty(cx, boxed_ty, expr, span, descr_pre, descr_post, plural)
}
ty::Adt(def, _) => {
check_must_use_def(cx, def.did, span, descr_pre, descr_post)
}
ty::Opaque(def, _) => {
let mut has_emitted = false;
for (predicate, _) in &cx.tcx.predicates_of(def).predicates {
if let ty::Predicate::Trait(ref poly_trait_predicate) = predicate {
let trait_ref = poly_trait_predicate.skip_binder().trait_ref;
let def_id = trait_ref.def_id;
let descr_pre = &format!(
"{}implementer{} of ",
descr_pre,
plural_suffix,
);
if check_must_use_def(cx, def_id, span, descr_pre, descr_post) {
has_emitted = true;
break;
}
}
}
has_emitted
}
ty::Dynamic(binder, _) => {
let mut has_emitted = false;
for predicate in binder.skip_binder().iter() {
if let ty::ExistentialPredicate::Trait(ref trait_ref) = predicate {
let def_id = trait_ref.def_id;
let descr_post = &format!(
" trait object{}{}",
plural_suffix,
descr_post,
);
if check_must_use_def(cx, def_id, span, descr_pre, descr_post) {
has_emitted = true;
break;
}
}
}
has_emitted
}
ty::Tuple(ref tys) => {
let mut has_emitted = false;
let spans = if let hir::ExprKind::Tup(comps) = &expr.node {
debug_assert_eq!(comps.len(), tys.len());
comps.iter().map(|e| e.span).collect()
} else {
vec![]
};
for (i, ty) in tys.iter().map(|k| k.expect_ty()).enumerate() {
let descr_post = &format!(" in tuple element {}", i);
let span = *spans.get(i).unwrap_or(&span);
if check_must_use_ty(cx, ty, expr, span, descr_pre, descr_post, plural) {
has_emitted = true;
}
}
has_emitted
}
ty::Array(ty, len) => match len.try_eval_usize(cx.tcx, cx.param_env) {
// If the array is definitely non-empty, we can do `#[must_use]` checking.
Some(n) if n != 0 => {
let descr_pre = &format!(
"{}array{} of ",
descr_pre,
plural_suffix,
);
check_must_use_ty(cx, ty, expr, span, descr_pre, descr_post, true)
}
// Otherwise, we don't lint, to avoid false positives.
_ => false,
}
_ => false,
}
}
// Returns whether an error has been emitted (and thus another does not need to be later).
fn check_must_use_def(
cx: &LateContext<'_, '_>,
def_id: DefId,
span: Span,
descr_pre_path: &str,
descr_post_path: &str,
) -> bool {
for attr in cx.tcx.get_attrs(def_id).iter() {
if attr.check_name(sym::must_use) {
let msg = format!("unused {}`{}`{} that must be used",
descr_pre_path, cx.tcx.def_path_str(def_id), descr_post_path);
let mut err = cx.struct_span_lint(UNUSED_MUST_USE, span, &msg);
// check for #[must_use = "..."]
if let Some(note) = attr.value_str() {
err.note(&note.as_str());
}
err.emit();
return true;
}
}
false
}
}
}
declare_lint! {
pub PATH_STATEMENTS,
Warn,
"path statements with no effect"
}
declare_lint_pass!(PathStatements => [PATH_STATEMENTS]);
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for PathStatements {
fn check_stmt(&mut self, cx: &LateContext<'_, '_>, s: &hir::Stmt) {
if let hir::StmtKind::Semi(ref expr) = s.node {
if let hir::ExprKind::Path(_) = expr.node {
cx.span_lint(PATH_STATEMENTS, s.span, "path statement with no effect");
}
}
}
}
declare_lint! {
pub UNUSED_ATTRIBUTES,
Warn,
"detects attributes that were not used by the compiler"
}
#[derive(Copy, Clone)]
pub struct UnusedAttributes {
builtin_attributes: &'static FxHashMap<Symbol, &'static BuiltinAttribute>,
}
impl UnusedAttributes {
pub fn new() -> Self {
UnusedAttributes {
builtin_attributes: &*BUILTIN_ATTRIBUTE_MAP,
}
}
}
impl_lint_pass!(UnusedAttributes => [UNUSED_ATTRIBUTES]);
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for UnusedAttributes {
fn check_attribute(&mut self, cx: &LateContext<'_, '_>, attr: &ast::Attribute) {
debug!("checking attribute: {:?}", attr);
let attr_info = attr.ident().and_then(|ident| self.builtin_attributes.get(&ident.name));
if let Some(&&(name, ty, ..)) = attr_info {
match ty {
AttributeType::Whitelisted => {
debug!("{:?} is Whitelisted", name);
return;
}
_ => (),
}
}
let plugin_attributes = cx.sess().plugin_attributes.borrow_mut();
for &(name, ty) in plugin_attributes.iter() {
if ty == AttributeType::Whitelisted && attr.check_name(name) {
debug!("{:?} (plugin attr) is whitelisted with ty {:?}", name, ty);
break;
}
}
let name = attr.name_or_empty();
if !attr::is_used(attr) {
debug!("emitting warning for: {:?}", attr);
cx.span_lint(UNUSED_ATTRIBUTES, attr.span, "unused attribute");
// Is it a builtin attribute that must be used at the crate level?
let known_crate = attr_info.map(|&&(_, ty, ..)| {
ty == AttributeType::CrateLevel
}).unwrap_or(false);
// Has a plugin registered this attribute as one that must be used at
// the crate level?
let plugin_crate = plugin_attributes.iter()
.find(|&&(x, t)| name == x && AttributeType::CrateLevel == t)
.is_some();
if known_crate || plugin_crate {
let msg = match attr.style {
ast::AttrStyle::Outer => {
"crate-level attribute should be an inner attribute: add an exclamation \
mark: `#![foo]`"
}
ast::AttrStyle::Inner => "crate-level attribute should be in the root module",
};
cx.span_lint(UNUSED_ATTRIBUTES, attr.span, msg);
}
} else {
debug!("Attr was used: {:?}", attr);
}
}
}
declare_lint! {
pub(super) UNUSED_PARENS,
Warn,
"`if`, `match`, `while` and `return` do not need parentheses"
}
declare_lint_pass!(UnusedParens => [UNUSED_PARENS]);
impl UnusedParens {
fn is_expr_parens_necessary(inner: &ast::Expr, followed_by_block: bool) -> bool {
followed_by_block && match inner.node {
ast::ExprKind::Ret(_) | ast::ExprKind::Break(..) => true,
_ => parser::contains_exterior_struct_lit(&inner),
}
}
fn check_unused_parens_expr(&self,
cx: &EarlyContext<'_>,
value: &ast::Expr,
msg: &str,
followed_by_block: bool,
left_pos: Option<BytePos>,
right_pos: Option<BytePos>) {
match value.node {
ast::ExprKind::Paren(ref inner) => {
if !Self::is_expr_parens_necessary(inner, followed_by_block) &&
value.attrs.is_empty() {
let expr_text = if let Ok(snippet) = cx.sess().source_map()
.span_to_snippet(value.span) {
snippet
} else {
pprust::expr_to_string(value)
};
let keep_space = (
left_pos.map(|s| s >= value.span.lo()).unwrap_or(false),
right_pos.map(|s| s <= value.span.hi()).unwrap_or(false),
);
Self::remove_outer_parens(cx, value.span, &expr_text, msg, keep_space);
}
}
ast::ExprKind::Let(_, ref expr) => {
// FIXME(#60336): Properly handle `let true = (false && true)`
// actually needing the parenthesis.
self.check_unused_parens_expr(
cx, expr,
"`let` head expression",
followed_by_block,
None, None
);
}
_ => {}
}
}
fn check_unused_parens_pat(
&self,
cx: &EarlyContext<'_>,
value: &ast::Pat,
avoid_or: bool,
avoid_mut: bool,
) {
use ast::{PatKind, BindingMode::ByValue, Mutability::Mutable};
if let PatKind::Paren(inner) = &value.node {
match inner.node {
// The lint visitor will visit each subpattern of `p`. We do not want to lint
// any range pattern no matter where it occurs in the pattern. For something like
// `&(a..=b)`, there is a recursive `check_pat` on `a` and `b`, but we will assume
// that if there are unnecessary parens they serve a purpose of readability.
PatKind::Range(..) => return,
// Avoid `p0 | .. | pn` if we should.
PatKind::Or(..) if avoid_or => return,
// Avoid `mut x` and `mut x @ p` if we should:
PatKind::Ident(ByValue(Mutable), ..) if avoid_mut => return,
// Otherwise proceed with linting.
_ => {}
}
let pattern_text = if let Ok(snippet) = cx.sess().source_map()
.span_to_snippet(value.span) {
snippet
} else {
pprust::pat_to_string(value)
};
Self::remove_outer_parens(cx, value.span, &pattern_text, "pattern", (false, false));
}
}
fn remove_outer_parens(cx: &EarlyContext<'_>,
span: Span,
pattern: &str,
msg: &str,
keep_space: (bool, bool)) {
let span_msg = format!("unnecessary parentheses around {}", msg);
let mut err = cx.struct_span_lint(UNUSED_PARENS, span, &span_msg);
let mut ate_left_paren = false;
let mut ate_right_paren = false;
let parens_removed = pattern
.trim_matches(|c| {
match c {
'(' => {
if ate_left_paren {
false
} else {
ate_left_paren = true;
true
}
},
')' => {
if ate_right_paren {
false
} else {
ate_right_paren = true;
true
}
},
_ => false,
}
});
let replace = {
let mut replace = if keep_space.0 {
let mut s = String::from(" ");
s.push_str(parens_removed);
s
} else {
String::from(parens_removed)
};
if keep_space.1 {
replace.push(' ');
}
replace
};
err.span_suggestion_short(
span,
"remove these parentheses",
replace,
Applicability::MachineApplicable,
);
err.emit();
}
}
impl EarlyLintPass for UnusedParens {
fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
use syntax::ast::ExprKind::*;
let (value, msg, followed_by_block, left_pos, right_pos) = match e.node {
Let(ref pat, ..) => {
self.check_unused_parens_pat(cx, pat, false, false);
return;
}
If(ref cond, ref block, ..) => {
let left = e.span.lo() + syntax_pos::BytePos(2);
let right = block.span.lo();
(cond, "`if` condition", true, Some(left), Some(right))
}
While(ref cond, ref block, ..) => {
let left = e.span.lo() + syntax_pos::BytePos(5);
let right = block.span.lo();
(cond, "`while` condition", true, Some(left), Some(right))
},
ForLoop(ref pat, ref cond, ref block, ..) => {
self.check_unused_parens_pat(cx, pat, false, false);
(cond, "`for` head expression", true, None, Some(block.span.lo()))
}
Match(ref head, _) => {
let left = e.span.lo() + syntax_pos::BytePos(5);
(head, "`match` head expression", true, Some(left), None)
}
Ret(Some(ref value)) => {
let left = e.span.lo() + syntax_pos::BytePos(3);
(value, "`return` value", false, Some(left), None)
}
Assign(_, ref value) => (value, "assigned value", false, None, None),
AssignOp(.., ref value) => (value, "assigned value", false, None, None),
// either function/method call, or something this lint doesn't care about
ref call_or_other => {
let (args_to_check, call_kind) = match *call_or_other {
Call(_, ref args) => (&args[..], "function"),
// first "argument" is self (which sometimes needs parens)
MethodCall(_, ref args) => (&args[1..], "method"),
// actual catch-all arm
_ => {
return;
}
};
// Don't lint if this is a nested macro expansion: otherwise, the lint could
// trigger in situations that macro authors shouldn't have to care about, e.g.,
// when a parenthesized token tree matched in one macro expansion is matched as
// an expression in another and used as a fn/method argument (Issue #47775)
if e.span.ctxt().outer_expn_data().call_site.from_expansion() {
return;
}
let msg = format!("{} argument", call_kind);
for arg in args_to_check {
self.check_unused_parens_expr(cx, arg, &msg, false, None, None);
}
return;
}
};
self.check_unused_parens_expr(cx, &value, msg, followed_by_block, left_pos, right_pos);
}
fn check_pat(&mut self, cx: &EarlyContext<'_>, p: &ast::Pat) {
use ast::{PatKind::*, Mutability};
match &p.node {
// Do not lint on `(..)` as that will result in the other arms being useless.
Paren(_)
// The other cases do not contain sub-patterns.
| Wild | Rest | Lit(..) | Mac(..) | Range(..) | Ident(.., None) | Path(..) => return,
// These are list-like patterns; parens can always be removed.
TupleStruct(_, ps) | Tuple(ps) | Slice(ps) | Or(ps) => for p in ps {
self.check_unused_parens_pat(cx, p, false, false);
},
Struct(_, fps, _) => for f in fps {
self.check_unused_parens_pat(cx, &f.pat, false, false);
},
// Avoid linting on `i @ (p0 | .. | pn)` and `box (p0 | .. | pn)`, #64106.
Ident(.., Some(p)) | Box(p) => self.check_unused_parens_pat(cx, p, true, false),
// Avoid linting on `&(mut x)` as `&mut x` has a different meaning, #55342.
// Also avoid linting on `& mut? (p0 | .. | pn)`, #64106.
Ref(p, m) => self.check_unused_parens_pat(cx, p, true, *m == Mutability::Immutable),
}
}
fn check_stmt(&mut self, cx: &EarlyContext<'_>, s: &ast::Stmt) {
if let ast::StmtKind::Local(ref local) = s.node {
self.check_unused_parens_pat(cx, &local.pat, false, false);
if let Some(ref value) = local.init {
self.check_unused_parens_expr(cx, &value, "assigned value", false, None, None);
}
}
}
fn check_param(&mut self, cx: &EarlyContext<'_>, param: &ast::Param) {
self.check_unused_parens_pat(cx, &param.pat, true, false);
}
fn check_arm(&mut self, cx: &EarlyContext<'_>, arm: &ast::Arm) {
self.check_unused_parens_pat(cx, &arm.pat, false, false);
}
}
declare_lint! {
UNUSED_IMPORT_BRACES,
Allow,
"unnecessary braces around an imported item"
}
declare_lint_pass!(UnusedImportBraces => [UNUSED_IMPORT_BRACES]);
impl UnusedImportBraces {
fn check_use_tree(&self, cx: &EarlyContext<'_>, use_tree: &ast::UseTree, item: &ast::Item) {
if let ast::UseTreeKind::Nested(ref items) = use_tree.kind {
// Recursively check nested UseTrees
for &(ref tree, _) in items {
self.check_use_tree(cx, tree, item);
}
// Trigger the lint only if there is one nested item
if items.len() != 1 {
return;
}
// Trigger the lint if the nested item is a non-self single item
let node_name = match items[0].0.kind {
ast::UseTreeKind::Simple(rename, ..) => {
let orig_ident = items[0].0.prefix.segments.last().unwrap().ident;
if orig_ident.name == kw::SelfLower {
return;
}
rename.unwrap_or(orig_ident).name
}
ast::UseTreeKind::Glob => Symbol::intern("*"),
ast::UseTreeKind::Nested(_) => return,
};
let msg = format!("braces around {} is unnecessary", node_name);
cx.span_lint(UNUSED_IMPORT_BRACES, item.span, &msg);
}
}
}
impl EarlyLintPass for UnusedImportBraces {
fn check_item(&mut self, cx: &EarlyContext<'_>, item: &ast::Item) {
if let ast::ItemKind::Use(ref use_tree) = item.node {
self.check_use_tree(cx, use_tree, item);
}
}
}
declare_lint! {
pub(super) UNUSED_ALLOCATION,
Warn,
"detects unnecessary allocations that can be eliminated"
}
declare_lint_pass!(UnusedAllocation => [UNUSED_ALLOCATION]);
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for UnusedAllocation {
fn check_expr(&mut self, cx: &LateContext<'_, '_>, e: &hir::Expr) {
match e.node {
hir::ExprKind::Box(_) => {}
_ => return,
}
for adj in cx.tables.expr_adjustments(e) {
if let adjustment::Adjust::Borrow(adjustment::AutoBorrow::Ref(_, m)) = adj.kind {
let msg = match m {
adjustment::AutoBorrowMutability::Immutable =>
"unnecessary allocation, use `&` instead",
adjustment::AutoBorrowMutability::Mutable { .. }=>
"unnecessary allocation, use `&mut` instead"
};
cx.span_lint(UNUSED_ALLOCATION, e.span, msg);
}
}
}
}