blob: 714e8914e48c53961adc6a2f2e356057a6416bbd [file] [log] [blame]
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Set and unset common attributes on LLVM values.
use std::ffi::{CStr, CString};
use rustc::hir::CodegenFnAttrFlags;
use rustc::hir::def_id::{DefId, LOCAL_CRATE};
use rustc::session::Session;
use rustc::session::config::Sanitizer;
use rustc::ty::TyCtxt;
use rustc::ty::query::Providers;
use rustc_data_structures::sync::Lrc;
use rustc_data_structures::fx::FxHashMap;
use rustc_target::spec::PanicStrategy;
use attributes;
use llvm::{self, Attribute};
use llvm::AttributePlace::Function;
use llvm_util;
pub use syntax::attr::{self, InlineAttr};
use context::CodegenCx;
use value::Value;
/// Mark LLVM function to use provided inline heuristic.
#[inline]
pub fn inline(val: &'ll Value, inline: InlineAttr) {
use self::InlineAttr::*;
match inline {
Hint => Attribute::InlineHint.apply_llfn(Function, val),
Always => Attribute::AlwaysInline.apply_llfn(Function, val),
Never => Attribute::NoInline.apply_llfn(Function, val),
None => {
Attribute::InlineHint.unapply_llfn(Function, val);
Attribute::AlwaysInline.unapply_llfn(Function, val);
Attribute::NoInline.unapply_llfn(Function, val);
},
};
}
/// Tell LLVM to emit or not emit the information necessary to unwind the stack for the function.
#[inline]
pub fn emit_uwtable(val: &'ll Value, emit: bool) {
Attribute::UWTable.toggle_llfn(Function, val, emit);
}
/// Tell LLVM whether the function can or cannot unwind.
#[inline]
pub fn unwind(val: &'ll Value, can_unwind: bool) {
Attribute::NoUnwind.toggle_llfn(Function, val, !can_unwind);
}
/// Tell LLVM whether it should optimize function for size.
#[inline]
#[allow(dead_code)] // possibly useful function
pub fn set_optimize_for_size(val: &'ll Value, optimize: bool) {
Attribute::OptimizeForSize.toggle_llfn(Function, val, optimize);
}
/// Tell LLVM if this function should be 'naked', i.e. skip the epilogue and prologue.
#[inline]
pub fn naked(val: &'ll Value, is_naked: bool) {
Attribute::Naked.toggle_llfn(Function, val, is_naked);
}
pub fn set_frame_pointer_elimination(cx: &CodegenCx<'ll, '_>, llfn: &'ll Value) {
if cx.sess().must_not_eliminate_frame_pointers() {
llvm::AddFunctionAttrStringValue(
llfn, llvm::AttributePlace::Function,
cstr("no-frame-pointer-elim\0"), cstr("true\0"));
}
}
pub fn set_probestack(cx: &CodegenCx<'ll, '_>, llfn: &'ll Value) {
// Only use stack probes if the target specification indicates that we
// should be using stack probes
if !cx.sess().target.target.options.stack_probes {
return
}
// Currently stack probes seem somewhat incompatible with the address
// sanitizer. With asan we're already protected from stack overflow anyway
// so we don't really need stack probes regardless.
match cx.sess().opts.debugging_opts.sanitizer {
Some(Sanitizer::Address) => return,
_ => {}
}
// probestack doesn't play nice either with pgo-gen.
if cx.sess().opts.debugging_opts.pgo_gen.is_some() {
return;
}
// probestack doesn't play nice either with gcov profiling.
if cx.sess().opts.debugging_opts.profile {
return;
}
// Flag our internal `__rust_probestack` function as the stack probe symbol.
// This is defined in the `compiler-builtins` crate for each architecture.
llvm::AddFunctionAttrStringValue(
llfn, llvm::AttributePlace::Function,
cstr("probe-stack\0"), cstr("__rust_probestack\0"));
}
pub fn llvm_target_features(sess: &Session) -> impl Iterator<Item = &str> {
const RUSTC_SPECIFIC_FEATURES: &[&str] = &[
"crt-static",
];
let cmdline = sess.opts.cg.target_feature.split(',')
.filter(|f| !RUSTC_SPECIFIC_FEATURES.iter().any(|s| f.contains(s)));
sess.target.target.options.features.split(',')
.chain(cmdline)
.filter(|l| !l.is_empty())
}
pub fn apply_target_cpu_attr(cx: &CodegenCx<'ll, '_>, llfn: &'ll Value) {
let target_cpu = CString::new(cx.tcx.sess.target_cpu().to_string()).unwrap();
llvm::AddFunctionAttrStringValue(
llfn,
llvm::AttributePlace::Function,
cstr("target-cpu\0"),
target_cpu.as_c_str());
}
/// Composite function which sets LLVM attributes for function depending on its AST (#[attribute])
/// attributes.
pub fn from_fn_attrs(cx: &CodegenCx<'ll, '_>, llfn: &'ll Value, id: DefId) {
let codegen_fn_attrs = cx.tcx.codegen_fn_attrs(id);
inline(llfn, codegen_fn_attrs.inline);
set_frame_pointer_elimination(cx, llfn);
set_probestack(cx, llfn);
if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::COLD) {
Attribute::Cold.apply_llfn(Function, llfn);
}
if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::NAKED) {
naked(llfn, true);
}
if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::ALLOCATOR) {
Attribute::NoAlias.apply_llfn(
llvm::AttributePlace::ReturnValue, llfn);
}
let can_unwind = if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::UNWIND) {
Some(true)
} else if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::RUSTC_ALLOCATOR_NOUNWIND) {
Some(false)
// Perhaps questionable, but we assume that anything defined
// *in Rust code* may unwind. Foreign items like `extern "C" {
// fn foo(); }` are assumed not to unwind **unless** they have
// a `#[unwind]` attribute.
} else if !cx.tcx.is_foreign_item(id) {
Some(true)
} else {
None
};
match can_unwind {
Some(false) => attributes::unwind(llfn, false),
Some(true) if cx.tcx.sess.panic_strategy() == PanicStrategy::Unwind => {
attributes::unwind(llfn, true);
}
Some(true) | None => {}
}
// Always annotate functions with the target-cpu they are compiled for.
// Without this, ThinLTO won't inline Rust functions into Clang generated
// functions (because Clang annotates functions this way too).
// NOTE: For now we just apply this if -Zcross-lang-lto is specified, since
// it introduce a little overhead and isn't really necessary otherwise.
if cx.tcx.sess.opts.debugging_opts.cross_lang_lto.enabled() {
apply_target_cpu_attr(cx, llfn);
}
let features = llvm_target_features(cx.tcx.sess)
.map(|s| s.to_string())
.chain(
codegen_fn_attrs.target_features
.iter()
.map(|f| {
let feature = &*f.as_str();
format!("+{}", llvm_util::to_llvm_feature(cx.tcx.sess, feature))
})
)
.collect::<Vec<String>>()
.join(",");
if !features.is_empty() {
let val = CString::new(features).unwrap();
llvm::AddFunctionAttrStringValue(
llfn, llvm::AttributePlace::Function,
cstr("target-features\0"), &val);
}
// Note that currently the `wasm-import-module` doesn't do anything, but
// eventually LLVM 7 should read this and ferry the appropriate import
// module to the output file.
if cx.tcx.sess.target.target.arch == "wasm32" {
if let Some(module) = wasm_import_module(cx.tcx, id) {
llvm::AddFunctionAttrStringValue(
llfn,
llvm::AttributePlace::Function,
cstr("wasm-import-module\0"),
&module,
);
}
}
}
fn cstr(s: &'static str) -> &CStr {
CStr::from_bytes_with_nul(s.as_bytes()).expect("null-terminated string")
}
pub fn provide(providers: &mut Providers) {
providers.target_features_whitelist = |tcx, cnum| {
assert_eq!(cnum, LOCAL_CRATE);
if tcx.sess.opts.actually_rustdoc {
// rustdoc needs to be able to document functions that use all the features, so
// whitelist them all
Lrc::new(llvm_util::all_known_features()
.map(|(a, b)| (a.to_string(), b.map(|s| s.to_string())))
.collect())
} else {
Lrc::new(llvm_util::target_feature_whitelist(tcx.sess)
.iter()
.map(|&(a, b)| (a.to_string(), b.map(|s| s.to_string())))
.collect())
}
};
provide_extern(providers);
}
pub fn provide_extern(providers: &mut Providers) {
providers.wasm_import_module_map = |tcx, cnum| {
// Build up a map from DefId to a `NativeLibrary` structure, where
// `NativeLibrary` internally contains information about
// `#[link(wasm_import_module = "...")]` for example.
let native_libs = tcx.native_libraries(cnum);
let mut def_id_to_native_lib = FxHashMap();
for lib in native_libs.iter() {
if let Some(id) = lib.foreign_module {
def_id_to_native_lib.insert(id, lib);
}
}
let mut ret = FxHashMap();
for lib in tcx.foreign_modules(cnum).iter() {
let module = def_id_to_native_lib
.get(&lib.def_id)
.and_then(|s| s.wasm_import_module);
let module = match module {
Some(s) => s,
None => continue,
};
for id in lib.foreign_items.iter() {
assert_eq!(id.krate, cnum);
ret.insert(*id, module.to_string());
}
}
Lrc::new(ret)
};
}
fn wasm_import_module(tcx: TyCtxt, id: DefId) -> Option<CString> {
tcx.wasm_import_module_map(id.krate)
.get(&id)
.map(|s| CString::new(&s[..]).unwrap())
}