blob: 72df45df92314247f82063c386da1010c980301e [file] [log] [blame]
//! Code for projecting associated types out of trait references.
use super::elaborate_predicates;
use super::specialization_graph;
use super::translate_substs;
use super::Obligation;
use super::ObligationCause;
use super::PredicateObligation;
use super::Selection;
use super::SelectionContext;
use super::SelectionError;
use super::{VtableImplData, VtableClosureData, VtableGeneratorData, VtableFnPointerData};
use super::util;
use crate::hir::def_id::DefId;
use crate::infer::{InferCtxt, InferOk, LateBoundRegionConversionTime};
use crate::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
use crate::mir::interpret::{GlobalId, ConstValue};
use rustc_data_structures::snapshot_map::{Snapshot, SnapshotMap};
use rustc_macros::HashStable;
use syntax::ast::Ident;
use syntax::symbol::sym;
use crate::ty::subst::{Subst, InternalSubsts};
use crate::ty::{self, ToPredicate, ToPolyTraitRef, Ty, TyCtxt};
use crate::ty::fold::{TypeFoldable, TypeFolder};
use crate::util::common::FN_OUTPUT_NAME;
/// Depending on the stage of compilation, we want projection to be
/// more or less conservative.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash, HashStable)]
pub enum Reveal {
/// At type-checking time, we refuse to project any associated
/// type that is marked `default`. Non-`default` ("final") types
/// are always projected. This is necessary in general for
/// soundness of specialization. However, we *could* allow
/// projections in fully-monomorphic cases. We choose not to,
/// because we prefer for `default type` to force the type
/// definition to be treated abstractly by any consumers of the
/// impl. Concretely, that means that the following example will
/// fail to compile:
///
/// ```
/// trait Assoc {
/// type Output;
/// }
///
/// impl<T> Assoc for T {
/// default type Output = bool;
/// }
///
/// fn main() {
/// let <() as Assoc>::Output = true;
/// }
UserFacing,
/// At codegen time, all monomorphic projections will succeed.
/// Also, `impl Trait` is normalized to the concrete type,
/// which has to be already collected by type-checking.
///
/// NOTE: as `impl Trait`'s concrete type should *never*
/// be observable directly by the user, `Reveal::All`
/// should not be used by checks which may expose
/// type equality or type contents to the user.
/// There are some exceptions, e.g., around OIBITS and
/// transmute-checking, which expose some details, but
/// not the whole concrete type of the `impl Trait`.
All,
}
pub type PolyProjectionObligation<'tcx> =
Obligation<'tcx, ty::PolyProjectionPredicate<'tcx>>;
pub type ProjectionObligation<'tcx> =
Obligation<'tcx, ty::ProjectionPredicate<'tcx>>;
pub type ProjectionTyObligation<'tcx> =
Obligation<'tcx, ty::ProjectionTy<'tcx>>;
/// When attempting to resolve `<T as TraitRef>::Name` ...
#[derive(Debug)]
pub enum ProjectionTyError<'tcx> {
/// ...we found multiple sources of information and couldn't resolve the ambiguity.
TooManyCandidates,
/// ...an error occurred matching `T : TraitRef`
TraitSelectionError(SelectionError<'tcx>),
}
#[derive(Clone)]
pub struct MismatchedProjectionTypes<'tcx> {
pub err: ty::error::TypeError<'tcx>
}
#[derive(PartialEq, Eq, Debug)]
enum ProjectionTyCandidate<'tcx> {
// from a where-clause in the env or object type
ParamEnv(ty::PolyProjectionPredicate<'tcx>),
// from the definition of `Trait` when you have something like <<A as Trait>::B as Trait2>::C
TraitDef(ty::PolyProjectionPredicate<'tcx>),
// from a "impl" (or a "pseudo-impl" returned by select)
Select(Selection<'tcx>),
}
enum ProjectionTyCandidateSet<'tcx> {
None,
Single(ProjectionTyCandidate<'tcx>),
Ambiguous,
Error(SelectionError<'tcx>),
}
impl<'tcx> ProjectionTyCandidateSet<'tcx> {
fn mark_ambiguous(&mut self) {
*self = ProjectionTyCandidateSet::Ambiguous;
}
fn mark_error(&mut self, err: SelectionError<'tcx>) {
*self = ProjectionTyCandidateSet::Error(err);
}
// Returns true if the push was successful, or false if the candidate
// was discarded -- this could be because of ambiguity, or because
// a higher-priority candidate is already there.
fn push_candidate(&mut self, candidate: ProjectionTyCandidate<'tcx>) -> bool {
use self::ProjectionTyCandidateSet::*;
use self::ProjectionTyCandidate::*;
// This wacky variable is just used to try and
// make code readable and avoid confusing paths.
// It is assigned a "value" of `()` only on those
// paths in which we wish to convert `*self` to
// ambiguous (and return false, because the candidate
// was not used). On other paths, it is not assigned,
// and hence if those paths *could* reach the code that
// comes after the match, this fn would not compile.
let convert_to_ambiguous;
match self {
None => {
*self = Single(candidate);
return true;
}
Single(current) => {
// Duplicates can happen inside ParamEnv. In the case, we
// perform a lazy deduplication.
if current == &candidate {
return false;
}
// Prefer where-clauses. As in select, if there are multiple
// candidates, we prefer where-clause candidates over impls. This
// may seem a bit surprising, since impls are the source of
// "truth" in some sense, but in fact some of the impls that SEEM
// applicable are not, because of nested obligations. Where
// clauses are the safer choice. See the comment on
// `select::SelectionCandidate` and #21974 for more details.
match (current, candidate) {
(ParamEnv(..), ParamEnv(..)) => convert_to_ambiguous = (),
(ParamEnv(..), _) => return false,
(_, ParamEnv(..)) => unreachable!(),
(_, _) => convert_to_ambiguous = (),
}
}
Ambiguous | Error(..) => {
return false;
}
}
// We only ever get here when we moved from a single candidate
// to ambiguous.
let () = convert_to_ambiguous;
*self = Ambiguous;
false
}
}
/// Evaluates constraints of the form:
///
/// for<...> <T as Trait>::U == V
///
/// If successful, this may result in additional obligations. Also returns
/// the projection cache key used to track these additional obligations.
pub fn poly_project_and_unify_type<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
obligation: &PolyProjectionObligation<'tcx>,
) -> Result<Option<Vec<PredicateObligation<'tcx>>>, MismatchedProjectionTypes<'tcx>> {
debug!("poly_project_and_unify_type(obligation={:?})",
obligation);
let infcx = selcx.infcx();
infcx.commit_if_ok(|snapshot| {
let (placeholder_predicate, placeholder_map) =
infcx.replace_bound_vars_with_placeholders(&obligation.predicate);
let placeholder_obligation = obligation.with(placeholder_predicate);
let result = project_and_unify_type(selcx, &placeholder_obligation)?;
infcx.leak_check(false, &placeholder_map, snapshot)
.map_err(|err| MismatchedProjectionTypes { err })?;
Ok(result)
})
}
/// Evaluates constraints of the form:
///
/// <T as Trait>::U == V
///
/// If successful, this may result in additional obligations.
fn project_and_unify_type<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
obligation: &ProjectionObligation<'tcx>,
) -> Result<Option<Vec<PredicateObligation<'tcx>>>, MismatchedProjectionTypes<'tcx>> {
debug!("project_and_unify_type(obligation={:?})",
obligation);
let mut obligations = vec![];
let normalized_ty =
match opt_normalize_projection_type(selcx,
obligation.param_env,
obligation.predicate.projection_ty,
obligation.cause.clone(),
obligation.recursion_depth,
&mut obligations) {
Some(n) => n,
None => return Ok(None),
};
debug!("project_and_unify_type: normalized_ty={:?} obligations={:?}",
normalized_ty,
obligations);
let infcx = selcx.infcx();
match infcx.at(&obligation.cause, obligation.param_env)
.eq(normalized_ty, obligation.predicate.ty) {
Ok(InferOk { obligations: inferred_obligations, value: () }) => {
obligations.extend(inferred_obligations);
Ok(Some(obligations))
},
Err(err) => {
debug!("project_and_unify_type: equating types encountered error {:?}", err);
Err(MismatchedProjectionTypes { err })
}
}
}
/// Normalizes any associated type projections in `value`, replacing
/// them with a fully resolved type where possible. The return value
/// combines the normalized result and any additional obligations that
/// were incurred as result.
pub fn normalize<'a, 'b, 'tcx, T>(
selcx: &'a mut SelectionContext<'b, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
cause: ObligationCause<'tcx>,
value: &T,
) -> Normalized<'tcx, T>
where
T: TypeFoldable<'tcx>,
{
normalize_with_depth(selcx, param_env, cause, 0, value)
}
/// As `normalize`, but with a custom depth.
pub fn normalize_with_depth<'a, 'b, 'tcx, T>(
selcx: &'a mut SelectionContext<'b, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
cause: ObligationCause<'tcx>,
depth: usize,
value: &T,
) -> Normalized<'tcx, T>
where
T: TypeFoldable<'tcx>,
{
debug!("normalize_with_depth(depth={}, value={:?})", depth, value);
let mut normalizer = AssocTypeNormalizer::new(selcx, param_env, cause, depth);
let result = normalizer.fold(value);
debug!("normalize_with_depth: depth={} result={:?} with {} obligations",
depth, result, normalizer.obligations.len());
debug!("normalize_with_depth: depth={} obligations={:?}",
depth, normalizer.obligations);
Normalized {
value: result,
obligations: normalizer.obligations,
}
}
struct AssocTypeNormalizer<'a, 'b, 'tcx> {
selcx: &'a mut SelectionContext<'b, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
cause: ObligationCause<'tcx>,
obligations: Vec<PredicateObligation<'tcx>>,
depth: usize,
}
impl<'a, 'b, 'tcx> AssocTypeNormalizer<'a, 'b, 'tcx> {
fn new(
selcx: &'a mut SelectionContext<'b, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
cause: ObligationCause<'tcx>,
depth: usize,
) -> AssocTypeNormalizer<'a, 'b, 'tcx> {
AssocTypeNormalizer {
selcx,
param_env,
cause,
obligations: vec![],
depth,
}
}
fn fold<T:TypeFoldable<'tcx>>(&mut self, value: &T) -> T {
let value = self.selcx.infcx().resolve_vars_if_possible(value);
if !value.has_projections() {
value
} else {
value.fold_with(self)
}
}
}
impl<'a, 'b, 'tcx> TypeFolder<'tcx> for AssocTypeNormalizer<'a, 'b, 'tcx> {
fn tcx<'c>(&'c self) -> TyCtxt<'tcx> {
self.selcx.tcx()
}
fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
// We don't want to normalize associated types that occur inside of region
// binders, because they may contain bound regions, and we can't cope with that.
//
// Example:
//
// for<'a> fn(<T as Foo<&'a>>::A)
//
// Instead of normalizing `<T as Foo<&'a>>::A` here, we'll
// normalize it when we instantiate those bound regions (which
// should occur eventually).
let ty = ty.super_fold_with(self);
match ty.sty {
ty::Opaque(def_id, substs) if !substs.has_escaping_bound_vars() => { // (*)
// Only normalize `impl Trait` after type-checking, usually in codegen.
match self.param_env.reveal {
Reveal::UserFacing => ty,
Reveal::All => {
let recursion_limit = *self.tcx().sess.recursion_limit.get();
if self.depth >= recursion_limit {
let obligation = Obligation::with_depth(
self.cause.clone(),
recursion_limit,
self.param_env,
ty,
);
self.selcx.infcx().report_overflow_error(&obligation, true);
}
let generic_ty = self.tcx().type_of(def_id);
let concrete_ty = generic_ty.subst(self.tcx(), substs);
self.depth += 1;
let folded_ty = self.fold_ty(concrete_ty);
self.depth -= 1;
folded_ty
}
}
}
ty::Projection(ref data) if !data.has_escaping_bound_vars() => { // (*)
// (*) This is kind of hacky -- we need to be able to
// handle normalization within binders because
// otherwise we wind up a need to normalize when doing
// trait matching (since you can have a trait
// obligation like `for<'a> T::B : Fn(&'a int)`), but
// we can't normalize with bound regions in scope. So
// far now we just ignore binders but only normalize
// if all bound regions are gone (and then we still
// have to renormalize whenever we instantiate a
// binder). It would be better to normalize in a
// binding-aware fashion.
let normalized_ty = normalize_projection_type(self.selcx,
self.param_env,
data.clone(),
self.cause.clone(),
self.depth,
&mut self.obligations);
debug!("AssocTypeNormalizer: depth={} normalized {:?} to {:?}, \
now with {} obligations",
self.depth, ty, normalized_ty, self.obligations.len());
normalized_ty
}
_ => ty
}
}
fn fold_const(&mut self, constant: &'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx> {
if let ConstValue::Unevaluated(def_id, substs) = constant.val {
let tcx = self.selcx.tcx().global_tcx();
let param_env = self.param_env;
if !param_env.has_local_value() {
if substs.needs_infer() || substs.has_placeholders() {
let identity_substs = InternalSubsts::identity_for_item(tcx, def_id);
let instance = ty::Instance::resolve(tcx, param_env, def_id, identity_substs);
if let Some(instance) = instance {
let cid = GlobalId {
instance,
promoted: None
};
if let Ok(evaluated) = tcx.const_eval(param_env.and(cid)) {
let evaluated = evaluated.subst(tcx, substs);
return evaluated;
}
}
} else {
if !substs.has_local_value() {
let instance = ty::Instance::resolve(tcx, param_env, def_id, substs);
if let Some(instance) = instance {
let cid = GlobalId {
instance,
promoted: None
};
if let Ok(evaluated) = tcx.const_eval(param_env.and(cid)) {
return evaluated;
}
}
}
}
}
}
constant
}
}
#[derive(Clone)]
pub struct Normalized<'tcx,T> {
pub value: T,
pub obligations: Vec<PredicateObligation<'tcx>>,
}
pub type NormalizedTy<'tcx> = Normalized<'tcx, Ty<'tcx>>;
impl<'tcx,T> Normalized<'tcx,T> {
pub fn with<U>(self, value: U) -> Normalized<'tcx,U> {
Normalized { value: value, obligations: self.obligations }
}
}
/// The guts of `normalize`: normalize a specific projection like `<T
/// as Trait>::Item`. The result is always a type (and possibly
/// additional obligations). If ambiguity arises, which implies that
/// there are unresolved type variables in the projection, we will
/// substitute a fresh type variable `$X` and generate a new
/// obligation `<T as Trait>::Item == $X` for later.
pub fn normalize_projection_type<'a, 'b, 'tcx>(
selcx: &'a mut SelectionContext<'b, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
projection_ty: ty::ProjectionTy<'tcx>,
cause: ObligationCause<'tcx>,
depth: usize,
obligations: &mut Vec<PredicateObligation<'tcx>>,
) -> Ty<'tcx> {
opt_normalize_projection_type(selcx, param_env, projection_ty.clone(), cause.clone(), depth,
obligations)
.unwrap_or_else(move || {
// if we bottom out in ambiguity, create a type variable
// and a deferred predicate to resolve this when more type
// information is available.
let tcx = selcx.infcx().tcx;
let def_id = projection_ty.item_def_id;
let ty_var = selcx.infcx().next_ty_var(
TypeVariableOrigin {
kind: TypeVariableOriginKind::NormalizeProjectionType,
span: tcx.def_span(def_id),
},
);
let projection = ty::Binder::dummy(ty::ProjectionPredicate {
projection_ty,
ty: ty_var
});
let obligation = Obligation::with_depth(
cause, depth + 1, param_env, projection.to_predicate());
obligations.push(obligation);
ty_var
})
}
/// The guts of `normalize`: normalize a specific projection like `<T
/// as Trait>::Item`. The result is always a type (and possibly
/// additional obligations). Returns `None` in the case of ambiguity,
/// which indicates that there are unbound type variables.
///
/// This function used to return `Option<NormalizedTy<'tcx>>`, which contains a
/// `Ty<'tcx>` and an obligations vector. But that obligation vector was very
/// often immediately appended to another obligations vector. So now this
/// function takes an obligations vector and appends to it directly, which is
/// slightly uglier but avoids the need for an extra short-lived allocation.
fn opt_normalize_projection_type<'a, 'b, 'tcx>(
selcx: &'a mut SelectionContext<'b, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
projection_ty: ty::ProjectionTy<'tcx>,
cause: ObligationCause<'tcx>,
depth: usize,
obligations: &mut Vec<PredicateObligation<'tcx>>,
) -> Option<Ty<'tcx>> {
let infcx = selcx.infcx();
let projection_ty = infcx.resolve_vars_if_possible(&projection_ty);
let cache_key = ProjectionCacheKey { ty: projection_ty };
debug!("opt_normalize_projection_type(\
projection_ty={:?}, \
depth={})",
projection_ty,
depth);
// FIXME(#20304) For now, I am caching here, which is good, but it
// means we don't capture the type variables that are created in
// the case of ambiguity. Which means we may create a large stream
// of such variables. OTOH, if we move the caching up a level, we
// would not benefit from caching when proving `T: Trait<U=Foo>`
// bounds. It might be the case that we want two distinct caches,
// or else another kind of cache entry.
let cache_result = infcx.projection_cache.borrow_mut().try_start(cache_key);
match cache_result {
Ok(()) => { }
Err(ProjectionCacheEntry::Ambiguous) => {
// If we found ambiguity the last time, that generally
// means we will continue to do so until some type in the
// key changes (and we know it hasn't, because we just
// fully resolved it). One exception though is closure
// types, which can transition from having a fixed kind to
// no kind with no visible change in the key.
//
// FIXME(#32286) refactor this so that closure type
// changes
debug!("opt_normalize_projection_type: \
found cache entry: ambiguous");
if !projection_ty.has_closure_types() {
return None;
}
}
Err(ProjectionCacheEntry::InProgress) => {
// If while normalized A::B, we are asked to normalize
// A::B, just return A::B itself. This is a conservative
// answer, in the sense that A::B *is* clearly equivalent
// to A::B, though there may be a better value we can
// find.
// Under lazy normalization, this can arise when
// bootstrapping. That is, imagine an environment with a
// where-clause like `A::B == u32`. Now, if we are asked
// to normalize `A::B`, we will want to check the
// where-clauses in scope. So we will try to unify `A::B`
// with `A::B`, which can trigger a recursive
// normalization. In that case, I think we will want this code:
//
// ```
// let ty = selcx.tcx().mk_projection(projection_ty.item_def_id,
// projection_ty.substs;
// return Some(NormalizedTy { value: v, obligations: vec![] });
// ```
debug!("opt_normalize_projection_type: \
found cache entry: in-progress");
// But for now, let's classify this as an overflow:
let recursion_limit = *selcx.tcx().sess.recursion_limit.get();
let obligation = Obligation::with_depth(cause,
recursion_limit,
param_env,
projection_ty);
selcx.infcx().report_overflow_error(&obligation, false);
}
Err(ProjectionCacheEntry::NormalizedTy(ty)) => {
// This is the hottest path in this function.
//
// If we find the value in the cache, then return it along
// with the obligations that went along with it. Note
// that, when using a fulfillment context, these
// obligations could in principle be ignored: they have
// already been registered when the cache entry was
// created (and hence the new ones will quickly be
// discarded as duplicated). But when doing trait
// evaluation this is not the case, and dropping the trait
// evaluations can causes ICEs (e.g., #43132).
debug!("opt_normalize_projection_type: \
found normalized ty `{:?}`",
ty);
// Once we have inferred everything we need to know, we
// can ignore the `obligations` from that point on.
if infcx.unresolved_type_vars(&ty.value).is_none() {
infcx.projection_cache.borrow_mut().complete_normalized(cache_key, &ty);
// No need to extend `obligations`.
} else {
obligations.extend(ty.obligations);
}
obligations.push(get_paranoid_cache_value_obligation(infcx,
param_env,
projection_ty,
cause,
depth));
return Some(ty.value);
}
Err(ProjectionCacheEntry::Error) => {
debug!("opt_normalize_projection_type: \
found error");
let result = normalize_to_error(selcx, param_env, projection_ty, cause, depth);
obligations.extend(result.obligations);
return Some(result.value)
}
}
let obligation = Obligation::with_depth(cause.clone(), depth, param_env, projection_ty);
match project_type(selcx, &obligation) {
Ok(ProjectedTy::Progress(Progress { ty: projected_ty,
obligations: mut projected_obligations })) => {
// if projection succeeded, then what we get out of this
// is also non-normalized (consider: it was derived from
// an impl, where-clause etc) and hence we must
// re-normalize it
debug!("opt_normalize_projection_type: \
projected_ty={:?} \
depth={} \
projected_obligations={:?}",
projected_ty,
depth,
projected_obligations);
let result = if projected_ty.has_projections() {
let mut normalizer = AssocTypeNormalizer::new(selcx,
param_env,
cause,
depth+1);
let normalized_ty = normalizer.fold(&projected_ty);
debug!("opt_normalize_projection_type: \
normalized_ty={:?} depth={}",
normalized_ty,
depth);
projected_obligations.extend(normalizer.obligations);
Normalized {
value: normalized_ty,
obligations: projected_obligations,
}
} else {
Normalized {
value: projected_ty,
obligations: projected_obligations,
}
};
let cache_value = prune_cache_value_obligations(infcx, &result);
infcx.projection_cache.borrow_mut().insert_ty(cache_key, cache_value);
obligations.extend(result.obligations);
Some(result.value)
}
Ok(ProjectedTy::NoProgress(projected_ty)) => {
debug!("opt_normalize_projection_type: \
projected_ty={:?} no progress",
projected_ty);
let result = Normalized {
value: projected_ty,
obligations: vec![]
};
infcx.projection_cache.borrow_mut().insert_ty(cache_key, result.clone());
// No need to extend `obligations`.
Some(result.value)
}
Err(ProjectionTyError::TooManyCandidates) => {
debug!("opt_normalize_projection_type: \
too many candidates");
infcx.projection_cache.borrow_mut()
.ambiguous(cache_key);
None
}
Err(ProjectionTyError::TraitSelectionError(_)) => {
debug!("opt_normalize_projection_type: ERROR");
// if we got an error processing the `T as Trait` part,
// just return `ty::err` but add the obligation `T :
// Trait`, which when processed will cause the error to be
// reported later
infcx.projection_cache.borrow_mut()
.error(cache_key);
let result = normalize_to_error(selcx, param_env, projection_ty, cause, depth);
obligations.extend(result.obligations);
Some(result.value)
}
}
}
/// If there are unresolved type variables, then we need to include
/// any subobligations that bind them, at least until those type
/// variables are fully resolved.
fn prune_cache_value_obligations<'a, 'tcx>(
infcx: &'a InferCtxt<'a, 'tcx>,
result: &NormalizedTy<'tcx>,
) -> NormalizedTy<'tcx> {
if infcx.unresolved_type_vars(&result.value).is_none() {
return NormalizedTy { value: result.value, obligations: vec![] };
}
let mut obligations: Vec<_> =
result.obligations
.iter()
.filter(|obligation| match obligation.predicate {
// We found a `T: Foo<X = U>` predicate, let's check
// if `U` references any unresolved type
// variables. In principle, we only care if this
// projection can help resolve any of the type
// variables found in `result.value` -- but we just
// check for any type variables here, for fear of
// indirect obligations (e.g., we project to `?0`,
// but we have `T: Foo<X = ?1>` and `?1: Bar<X =
// ?0>`).
ty::Predicate::Projection(ref data) =>
infcx.unresolved_type_vars(&data.ty()).is_some(),
// We are only interested in `T: Foo<X = U>` predicates, whre
// `U` references one of `unresolved_type_vars`. =)
_ => false,
})
.cloned()
.collect();
obligations.shrink_to_fit();
NormalizedTy { value: result.value, obligations }
}
/// Whenever we give back a cache result for a projection like `<T as
/// Trait>::Item ==> X`, we *always* include the obligation to prove
/// that `T: Trait` (we may also include some other obligations). This
/// may or may not be necessary -- in principle, all the obligations
/// that must be proven to show that `T: Trait` were also returned
/// when the cache was first populated. But there are some vague concerns,
/// and so we take the precautionary measure of including `T: Trait` in
/// the result:
///
/// Concern #1. The current setup is fragile. Perhaps someone could
/// have failed to prove the concerns from when the cache was
/// populated, but also not have used a snapshot, in which case the
/// cache could remain populated even though `T: Trait` has not been
/// shown. In this case, the "other code" is at fault -- when you
/// project something, you are supposed to either have a snapshot or
/// else prove all the resulting obligations -- but it's still easy to
/// get wrong.
///
/// Concern #2. Even within the snapshot, if those original
/// obligations are not yet proven, then we are able to do projections
/// that may yet turn out to be wrong. This *may* lead to some sort
/// of trouble, though we don't have a concrete example of how that
/// can occur yet. But it seems risky at best.
fn get_paranoid_cache_value_obligation<'a, 'tcx>(
infcx: &'a InferCtxt<'a, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
projection_ty: ty::ProjectionTy<'tcx>,
cause: ObligationCause<'tcx>,
depth: usize,
) -> PredicateObligation<'tcx> {
let trait_ref = projection_ty.trait_ref(infcx.tcx).to_poly_trait_ref();
Obligation {
cause,
recursion_depth: depth,
param_env,
predicate: trait_ref.to_predicate(),
}
}
/// If we are projecting `<T as Trait>::Item`, but `T: Trait` does not
/// hold. In various error cases, we cannot generate a valid
/// normalized projection. Therefore, we create an inference variable
/// return an associated obligation that, when fulfilled, will lead to
/// an error.
///
/// Note that we used to return `Error` here, but that was quite
/// dubious -- the premise was that an error would *eventually* be
/// reported, when the obligation was processed. But in general once
/// you see a `Error` you are supposed to be able to assume that an
/// error *has been* reported, so that you can take whatever heuristic
/// paths you want to take. To make things worse, it was possible for
/// cycles to arise, where you basically had a setup like `<MyType<$0>
/// as Trait>::Foo == $0`. Here, normalizing `<MyType<$0> as
/// Trait>::Foo> to `[type error]` would lead to an obligation of
/// `<MyType<[type error]> as Trait>::Foo`. We are supposed to report
/// an error for this obligation, but we legitimately should not,
/// because it contains `[type error]`. Yuck! (See issue #29857 for
/// one case where this arose.)
fn normalize_to_error<'a, 'tcx>(
selcx: &mut SelectionContext<'a, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
projection_ty: ty::ProjectionTy<'tcx>,
cause: ObligationCause<'tcx>,
depth: usize,
) -> NormalizedTy<'tcx> {
let trait_ref = projection_ty.trait_ref(selcx.tcx()).to_poly_trait_ref();
let trait_obligation = Obligation { cause,
recursion_depth: depth,
param_env,
predicate: trait_ref.to_predicate() };
let tcx = selcx.infcx().tcx;
let def_id = projection_ty.item_def_id;
let new_value = selcx.infcx().next_ty_var(
TypeVariableOrigin {
kind: TypeVariableOriginKind::NormalizeProjectionType,
span: tcx.def_span(def_id),
},
);
Normalized {
value: new_value,
obligations: vec![trait_obligation]
}
}
enum ProjectedTy<'tcx> {
Progress(Progress<'tcx>),
NoProgress(Ty<'tcx>),
}
struct Progress<'tcx> {
ty: Ty<'tcx>,
obligations: Vec<PredicateObligation<'tcx>>,
}
impl<'tcx> Progress<'tcx> {
fn error(tcx: TyCtxt<'tcx>) -> Self {
Progress {
ty: tcx.types.err,
obligations: vec![],
}
}
fn with_addl_obligations(mut self,
mut obligations: Vec<PredicateObligation<'tcx>>)
-> Self {
debug!("with_addl_obligations: self.obligations.len={} obligations.len={}",
self.obligations.len(), obligations.len());
debug!("with_addl_obligations: self.obligations={:?} obligations={:?}",
self.obligations, obligations);
self.obligations.append(&mut obligations);
self
}
}
/// Computes the result of a projection type (if we can).
///
/// IMPORTANT:
/// - `obligation` must be fully normalized
fn project_type<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
obligation: &ProjectionTyObligation<'tcx>,
) -> Result<ProjectedTy<'tcx>, ProjectionTyError<'tcx>> {
debug!("project(obligation={:?})",
obligation);
let recursion_limit = *selcx.tcx().sess.recursion_limit.get();
if obligation.recursion_depth >= recursion_limit {
debug!("project: overflow!");
return Err(ProjectionTyError::TraitSelectionError(SelectionError::Overflow));
}
let obligation_trait_ref = &obligation.predicate.trait_ref(selcx.tcx());
debug!("project: obligation_trait_ref={:?}", obligation_trait_ref);
if obligation_trait_ref.references_error() {
return Ok(ProjectedTy::Progress(Progress::error(selcx.tcx())));
}
let mut candidates = ProjectionTyCandidateSet::None;
// Make sure that the following procedures are kept in order. ParamEnv
// needs to be first because it has highest priority, and Select checks
// the return value of push_candidate which assumes it's ran at last.
assemble_candidates_from_param_env(selcx,
obligation,
&obligation_trait_ref,
&mut candidates);
assemble_candidates_from_trait_def(selcx,
obligation,
&obligation_trait_ref,
&mut candidates);
assemble_candidates_from_impls(selcx,
obligation,
&obligation_trait_ref,
&mut candidates);
match candidates {
ProjectionTyCandidateSet::Single(candidate) => Ok(ProjectedTy::Progress(
confirm_candidate(selcx,
obligation,
&obligation_trait_ref,
candidate))),
ProjectionTyCandidateSet::None => Ok(ProjectedTy::NoProgress(
selcx.tcx().mk_projection(
obligation.predicate.item_def_id,
obligation.predicate.substs))),
// Error occurred while trying to processing impls.
ProjectionTyCandidateSet::Error(e) => Err(ProjectionTyError::TraitSelectionError(e)),
// Inherent ambiguity that prevents us from even enumerating the
// candidates.
ProjectionTyCandidateSet::Ambiguous => Err(ProjectionTyError::TooManyCandidates),
}
}
/// The first thing we have to do is scan through the parameter
/// environment to see whether there are any projection predicates
/// there that can answer this question.
fn assemble_candidates_from_param_env<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
obligation: &ProjectionTyObligation<'tcx>,
obligation_trait_ref: &ty::TraitRef<'tcx>,
candidate_set: &mut ProjectionTyCandidateSet<'tcx>,
) {
debug!("assemble_candidates_from_param_env(..)");
assemble_candidates_from_predicates(selcx,
obligation,
obligation_trait_ref,
candidate_set,
ProjectionTyCandidate::ParamEnv,
obligation.param_env.caller_bounds.iter().cloned());
}
/// In the case of a nested projection like <<A as Foo>::FooT as Bar>::BarT, we may find
/// that the definition of `Foo` has some clues:
///
/// ```
/// trait Foo {
/// type FooT : Bar<BarT=i32>
/// }
/// ```
///
/// Here, for example, we could conclude that the result is `i32`.
fn assemble_candidates_from_trait_def<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
obligation: &ProjectionTyObligation<'tcx>,
obligation_trait_ref: &ty::TraitRef<'tcx>,
candidate_set: &mut ProjectionTyCandidateSet<'tcx>,
) {
debug!("assemble_candidates_from_trait_def(..)");
let tcx = selcx.tcx();
// Check whether the self-type is itself a projection.
let (def_id, substs) = match obligation_trait_ref.self_ty().sty {
ty::Projection(ref data) => {
(data.trait_ref(tcx).def_id, data.substs)
}
ty::Opaque(def_id, substs) => (def_id, substs),
ty::Infer(ty::TyVar(_)) => {
// If the self-type is an inference variable, then it MAY wind up
// being a projected type, so induce an ambiguity.
candidate_set.mark_ambiguous();
return;
}
_ => return
};
// If so, extract what we know from the trait and try to come up with a good answer.
let trait_predicates = tcx.predicates_of(def_id);
let bounds = trait_predicates.instantiate(tcx, substs);
let bounds = elaborate_predicates(tcx, bounds.predicates);
assemble_candidates_from_predicates(selcx,
obligation,
obligation_trait_ref,
candidate_set,
ProjectionTyCandidate::TraitDef,
bounds)
}
fn assemble_candidates_from_predicates<'cx, 'tcx, I>(
selcx: &mut SelectionContext<'cx, 'tcx>,
obligation: &ProjectionTyObligation<'tcx>,
obligation_trait_ref: &ty::TraitRef<'tcx>,
candidate_set: &mut ProjectionTyCandidateSet<'tcx>,
ctor: fn(ty::PolyProjectionPredicate<'tcx>) -> ProjectionTyCandidate<'tcx>,
env_predicates: I,
) where
I: IntoIterator<Item = ty::Predicate<'tcx>>,
{
debug!("assemble_candidates_from_predicates(obligation={:?})",
obligation);
let infcx = selcx.infcx();
for predicate in env_predicates {
debug!("assemble_candidates_from_predicates: predicate={:?}",
predicate);
if let ty::Predicate::Projection(data) = predicate {
let same_def_id = data.projection_def_id() == obligation.predicate.item_def_id;
let is_match = same_def_id && infcx.probe(|_| {
let data_poly_trait_ref =
data.to_poly_trait_ref(infcx.tcx);
let obligation_poly_trait_ref =
obligation_trait_ref.to_poly_trait_ref();
infcx.at(&obligation.cause, obligation.param_env)
.sup(obligation_poly_trait_ref, data_poly_trait_ref)
.map(|InferOk { obligations: _, value: () }| {
// FIXME(#32730) -- do we need to take obligations
// into account in any way? At the moment, no.
})
.is_ok()
});
debug!("assemble_candidates_from_predicates: candidate={:?} \
is_match={} same_def_id={}",
data, is_match, same_def_id);
if is_match {
candidate_set.push_candidate(ctor(data));
}
}
}
}
fn assemble_candidates_from_impls<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
obligation: &ProjectionTyObligation<'tcx>,
obligation_trait_ref: &ty::TraitRef<'tcx>,
candidate_set: &mut ProjectionTyCandidateSet<'tcx>,
) {
// If we are resolving `<T as TraitRef<...>>::Item == Type`,
// start out by selecting the predicate `T as TraitRef<...>`:
let poly_trait_ref = obligation_trait_ref.to_poly_trait_ref();
let trait_obligation = obligation.with(poly_trait_ref.to_poly_trait_predicate());
let _ = selcx.infcx().commit_if_ok(|_| {
let vtable = match selcx.select(&trait_obligation) {
Ok(Some(vtable)) => vtable,
Ok(None) => {
candidate_set.mark_ambiguous();
return Err(());
}
Err(e) => {
debug!("assemble_candidates_from_impls: selection error {:?}", e);
candidate_set.mark_error(e);
return Err(());
}
};
let eligible = match &vtable {
super::VtableClosure(_) |
super::VtableGenerator(_) |
super::VtableFnPointer(_) |
super::VtableObject(_) |
super::VtableTraitAlias(_) => {
debug!("assemble_candidates_from_impls: vtable={:?}",
vtable);
true
}
super::VtableImpl(impl_data) => {
// We have to be careful when projecting out of an
// impl because of specialization. If we are not in
// codegen (i.e., projection mode is not "any"), and the
// impl's type is declared as default, then we disable
// projection (even if the trait ref is fully
// monomorphic). In the case where trait ref is not
// fully monomorphic (i.e., includes type parameters),
// this is because those type parameters may
// ultimately be bound to types from other crates that
// may have specialized impls we can't see. In the
// case where the trait ref IS fully monomorphic, this
// is a policy decision that we made in the RFC in
// order to preserve flexibility for the crate that
// defined the specializable impl to specialize later
// for existing types.
//
// In either case, we handle this by not adding a
// candidate for an impl if it contains a `default`
// type.
let node_item = assoc_ty_def(selcx,
impl_data.impl_def_id,
obligation.predicate.item_def_id);
let is_default = if node_item.node.is_from_trait() {
// If true, the impl inherited a `type Foo = Bar`
// given in the trait, which is implicitly default.
// Otherwise, the impl did not specify `type` and
// neither did the trait:
//
// ```rust
// trait Foo { type T; }
// impl Foo for Bar { }
// ```
//
// This is an error, but it will be
// reported in `check_impl_items_against_trait`.
// We accept it here but will flag it as
// an error when we confirm the candidate
// (which will ultimately lead to `normalize_to_error`
// being invoked).
node_item.item.defaultness.has_value()
} else {
node_item.item.defaultness.is_default() ||
selcx.tcx().impl_is_default(node_item.node.def_id())
};
// Only reveal a specializable default if we're past type-checking
// and the obligations is monomorphic, otherwise passes such as
// transmute checking and polymorphic MIR optimizations could
// get a result which isn't correct for all monomorphizations.
if !is_default {
true
} else if obligation.param_env.reveal == Reveal::All {
debug_assert!(!poly_trait_ref.needs_infer());
if !poly_trait_ref.needs_subst() {
true
} else {
false
}
} else {
false
}
}
super::VtableParam(..) => {
// This case tell us nothing about the value of an
// associated type. Consider:
//
// ```
// trait SomeTrait { type Foo; }
// fn foo<T:SomeTrait>(...) { }
// ```
//
// If the user writes `<T as SomeTrait>::Foo`, then the `T
// : SomeTrait` binding does not help us decide what the
// type `Foo` is (at least, not more specifically than
// what we already knew).
//
// But wait, you say! What about an example like this:
//
// ```
// fn bar<T:SomeTrait<Foo=usize>>(...) { ... }
// ```
//
// Doesn't the `T : Sometrait<Foo=usize>` predicate help
// resolve `T::Foo`? And of course it does, but in fact
// that single predicate is desugared into two predicates
// in the compiler: a trait predicate (`T : SomeTrait`) and a
// projection. And the projection where clause is handled
// in `assemble_candidates_from_param_env`.
false
}
super::VtableAutoImpl(..) |
super::VtableBuiltin(..) => {
// These traits have no associated types.
span_bug!(
obligation.cause.span,
"Cannot project an associated type from `{:?}`",
vtable);
}
};
if eligible {
if candidate_set.push_candidate(ProjectionTyCandidate::Select(vtable)) {
Ok(())
} else {
Err(())
}
} else {
Err(())
}
});
}
fn confirm_candidate<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
obligation: &ProjectionTyObligation<'tcx>,
obligation_trait_ref: &ty::TraitRef<'tcx>,
candidate: ProjectionTyCandidate<'tcx>,
) -> Progress<'tcx> {
debug!("confirm_candidate(candidate={:?}, obligation={:?})",
candidate,
obligation);
match candidate {
ProjectionTyCandidate::ParamEnv(poly_projection) |
ProjectionTyCandidate::TraitDef(poly_projection) => {
confirm_param_env_candidate(selcx, obligation, poly_projection)
}
ProjectionTyCandidate::Select(vtable) => {
confirm_select_candidate(selcx, obligation, obligation_trait_ref, vtable)
}
}
}
fn confirm_select_candidate<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
obligation: &ProjectionTyObligation<'tcx>,
obligation_trait_ref: &ty::TraitRef<'tcx>,
vtable: Selection<'tcx>,
) -> Progress<'tcx> {
match vtable {
super::VtableImpl(data) =>
confirm_impl_candidate(selcx, obligation, data),
super::VtableGenerator(data) =>
confirm_generator_candidate(selcx, obligation, data),
super::VtableClosure(data) =>
confirm_closure_candidate(selcx, obligation, data),
super::VtableFnPointer(data) =>
confirm_fn_pointer_candidate(selcx, obligation, data),
super::VtableObject(_) =>
confirm_object_candidate(selcx, obligation, obligation_trait_ref),
super::VtableAutoImpl(..) |
super::VtableParam(..) |
super::VtableBuiltin(..) |
super::VtableTraitAlias(..) =>
// we don't create Select candidates with this kind of resolution
span_bug!(
obligation.cause.span,
"Cannot project an associated type from `{:?}`",
vtable),
}
}
fn confirm_object_candidate<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
obligation: &ProjectionTyObligation<'tcx>,
obligation_trait_ref: &ty::TraitRef<'tcx>,
) -> Progress<'tcx> {
let self_ty = obligation_trait_ref.self_ty();
let object_ty = selcx.infcx().shallow_resolve(self_ty);
debug!("confirm_object_candidate(object_ty={:?})",
object_ty);
let data = match object_ty.sty {
ty::Dynamic(ref data, ..) => data,
_ => {
span_bug!(
obligation.cause.span,
"confirm_object_candidate called with non-object: {:?}",
object_ty)
}
};
let env_predicates = data.projection_bounds().map(|p| {
p.with_self_ty(selcx.tcx(), object_ty).to_predicate()
}).collect();
let env_predicate = {
let env_predicates = elaborate_predicates(selcx.tcx(), env_predicates);
// select only those projections that are actually projecting an
// item with the correct name
let env_predicates = env_predicates.filter_map(|p| match p {
ty::Predicate::Projection(data) =>
if data.projection_def_id() == obligation.predicate.item_def_id {
Some(data)
} else {
None
},
_ => None
});
// select those with a relevant trait-ref
let mut env_predicates = env_predicates.filter(|data| {
let data_poly_trait_ref = data.to_poly_trait_ref(selcx.tcx());
let obligation_poly_trait_ref = obligation_trait_ref.to_poly_trait_ref();
selcx.infcx().probe(|_|
selcx.infcx().at(&obligation.cause, obligation.param_env)
.sup(obligation_poly_trait_ref, data_poly_trait_ref)
.is_ok()
)
});
// select the first matching one; there really ought to be one or
// else the object type is not WF, since an object type should
// include all of its projections explicitly
match env_predicates.next() {
Some(env_predicate) => env_predicate,
None => {
debug!("confirm_object_candidate: no env-predicate \
found in object type `{:?}`; ill-formed",
object_ty);
return Progress::error(selcx.tcx());
}
}
};
confirm_param_env_candidate(selcx, obligation, env_predicate)
}
fn confirm_generator_candidate<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
obligation: &ProjectionTyObligation<'tcx>,
vtable: VtableGeneratorData<'tcx, PredicateObligation<'tcx>>,
) -> Progress<'tcx> {
let gen_sig = vtable.substs.poly_sig(vtable.generator_def_id, selcx.tcx());
let Normalized {
value: gen_sig,
obligations
} = normalize_with_depth(selcx,
obligation.param_env,
obligation.cause.clone(),
obligation.recursion_depth+1,
&gen_sig);
debug!("confirm_generator_candidate: obligation={:?},gen_sig={:?},obligations={:?}",
obligation,
gen_sig,
obligations);
let tcx = selcx.tcx();
let gen_def_id = tcx.lang_items().gen_trait().unwrap();
let predicate =
tcx.generator_trait_ref_and_outputs(gen_def_id,
obligation.predicate.self_ty(),
gen_sig)
.map_bound(|(trait_ref, yield_ty, return_ty)| {
let name = tcx.associated_item(obligation.predicate.item_def_id).ident.name;
let ty = if name == sym::Return {
return_ty
} else if name == sym::Yield {
yield_ty
} else {
bug!()
};
ty::ProjectionPredicate {
projection_ty: ty::ProjectionTy {
substs: trait_ref.substs,
item_def_id: obligation.predicate.item_def_id,
},
ty: ty
}
});
confirm_param_env_candidate(selcx, obligation, predicate)
.with_addl_obligations(vtable.nested)
.with_addl_obligations(obligations)
}
fn confirm_fn_pointer_candidate<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
obligation: &ProjectionTyObligation<'tcx>,
fn_pointer_vtable: VtableFnPointerData<'tcx, PredicateObligation<'tcx>>,
) -> Progress<'tcx> {
let fn_type = selcx.infcx().shallow_resolve(fn_pointer_vtable.fn_ty);
let sig = fn_type.fn_sig(selcx.tcx());
let Normalized {
value: sig,
obligations
} = normalize_with_depth(selcx,
obligation.param_env,
obligation.cause.clone(),
obligation.recursion_depth+1,
&sig);
confirm_callable_candidate(selcx, obligation, sig, util::TupleArgumentsFlag::Yes)
.with_addl_obligations(fn_pointer_vtable.nested)
.with_addl_obligations(obligations)
}
fn confirm_closure_candidate<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
obligation: &ProjectionTyObligation<'tcx>,
vtable: VtableClosureData<'tcx, PredicateObligation<'tcx>>,
) -> Progress<'tcx> {
let tcx = selcx.tcx();
let infcx = selcx.infcx();
let closure_sig_ty = vtable.substs.closure_sig_ty(vtable.closure_def_id, tcx);
let closure_sig = infcx.shallow_resolve(closure_sig_ty).fn_sig(tcx);
let Normalized {
value: closure_sig,
obligations
} = normalize_with_depth(selcx,
obligation.param_env,
obligation.cause.clone(),
obligation.recursion_depth+1,
&closure_sig);
debug!("confirm_closure_candidate: obligation={:?},closure_sig={:?},obligations={:?}",
obligation,
closure_sig,
obligations);
confirm_callable_candidate(selcx,
obligation,
closure_sig,
util::TupleArgumentsFlag::No)
.with_addl_obligations(vtable.nested)
.with_addl_obligations(obligations)
}
fn confirm_callable_candidate<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
obligation: &ProjectionTyObligation<'tcx>,
fn_sig: ty::PolyFnSig<'tcx>,
flag: util::TupleArgumentsFlag,
) -> Progress<'tcx> {
let tcx = selcx.tcx();
debug!("confirm_callable_candidate({:?},{:?})",
obligation,
fn_sig);
// the `Output` associated type is declared on `FnOnce`
let fn_once_def_id = tcx.lang_items().fn_once_trait().unwrap();
let predicate =
tcx.closure_trait_ref_and_return_type(fn_once_def_id,
obligation.predicate.self_ty(),
fn_sig,
flag)
.map_bound(|(trait_ref, ret_type)|
ty::ProjectionPredicate {
projection_ty: ty::ProjectionTy::from_ref_and_name(
tcx,
trait_ref,
Ident::with_dummy_span(FN_OUTPUT_NAME),
),
ty: ret_type
}
);
confirm_param_env_candidate(selcx, obligation, predicate)
}
fn confirm_param_env_candidate<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
obligation: &ProjectionTyObligation<'tcx>,
poly_cache_entry: ty::PolyProjectionPredicate<'tcx>,
) -> Progress<'tcx> {
let infcx = selcx.infcx();
let cause = &obligation.cause;
let param_env = obligation.param_env;
let (cache_entry, _) =
infcx.replace_bound_vars_with_fresh_vars(
cause.span,
LateBoundRegionConversionTime::HigherRankedType,
&poly_cache_entry);
let cache_trait_ref = cache_entry.projection_ty.trait_ref(infcx.tcx);
let obligation_trait_ref = obligation.predicate.trait_ref(infcx.tcx);
match infcx.at(cause, param_env).eq(cache_trait_ref, obligation_trait_ref) {
Ok(InferOk { value: _, obligations }) => {
Progress {
ty: cache_entry.ty,
obligations,
}
}
Err(e) => {
let msg = format!(
"Failed to unify obligation `{:?}` with poly_projection `{:?}`: {:?}",
obligation,
poly_cache_entry,
e,
);
debug!("confirm_param_env_candidate: {}", msg);
infcx.tcx.sess.delay_span_bug(obligation.cause.span, &msg);
Progress {
ty: infcx.tcx.types.err,
obligations: vec![],
}
}
}
}
fn confirm_impl_candidate<'cx, 'tcx>(
selcx: &mut SelectionContext<'cx, 'tcx>,
obligation: &ProjectionTyObligation<'tcx>,
impl_vtable: VtableImplData<'tcx, PredicateObligation<'tcx>>,
) -> Progress<'tcx> {
let VtableImplData { impl_def_id, substs, nested } = impl_vtable;
let tcx = selcx.tcx();
let param_env = obligation.param_env;
let assoc_ty = assoc_ty_def(selcx, impl_def_id, obligation.predicate.item_def_id);
if !assoc_ty.item.defaultness.has_value() {
// This means that the impl is missing a definition for the
// associated type. This error will be reported by the type
// checker method `check_impl_items_against_trait`, so here we
// just return Error.
debug!("confirm_impl_candidate: no associated type {:?} for {:?}",
assoc_ty.item.ident,
obligation.predicate);
return Progress {
ty: tcx.types.err,
obligations: nested,
};
}
let substs = translate_substs(selcx.infcx(), param_env, impl_def_id, substs, assoc_ty.node);
let ty = if let ty::AssocKind::OpaqueTy = assoc_ty.item.kind {
let item_substs = InternalSubsts::identity_for_item(tcx, assoc_ty.item.def_id);
tcx.mk_opaque(assoc_ty.item.def_id, item_substs)
} else {
tcx.type_of(assoc_ty.item.def_id)
};
Progress {
ty: ty.subst(tcx, substs),
obligations: nested,
}
}
/// Locate the definition of an associated type in the specialization hierarchy,
/// starting from the given impl.
///
/// Based on the "projection mode", this lookup may in fact only examine the
/// topmost impl. See the comments for `Reveal` for more details.
fn assoc_ty_def(
selcx: &SelectionContext<'_, '_>,
impl_def_id: DefId,
assoc_ty_def_id: DefId,
) -> specialization_graph::NodeItem<ty::AssocItem> {
let tcx = selcx.tcx();
let assoc_ty_name = tcx.associated_item(assoc_ty_def_id).ident;
let trait_def_id = tcx.impl_trait_ref(impl_def_id).unwrap().def_id;
let trait_def = tcx.trait_def(trait_def_id);
// This function may be called while we are still building the
// specialization graph that is queried below (via TraidDef::ancestors()),
// so, in order to avoid unnecessary infinite recursion, we manually look
// for the associated item at the given impl.
// If there is no such item in that impl, this function will fail with a
// cycle error if the specialization graph is currently being built.
let impl_node = specialization_graph::Node::Impl(impl_def_id);
for item in impl_node.items(tcx) {
if item.kind == ty::AssocKind::Type &&
tcx.hygienic_eq(item.ident, assoc_ty_name, trait_def_id) {
return specialization_graph::NodeItem {
node: specialization_graph::Node::Impl(impl_def_id),
item,
};
}
}
if let Some(assoc_item) = trait_def
.ancestors(tcx, impl_def_id)
.defs(tcx, assoc_ty_name, ty::AssocKind::Type, trait_def_id)
.next() {
assoc_item
} else {
// This is saying that neither the trait nor
// the impl contain a definition for this
// associated type. Normally this situation
// could only arise through a compiler bug --
// if the user wrote a bad item name, it
// should have failed in astconv.
bug!("No associated type `{}` for {}",
assoc_ty_name,
tcx.def_path_str(impl_def_id))
}
}
// # Cache
/// The projection cache. Unlike the standard caches, this can include
/// infcx-dependent type variables, therefore we have to roll the
/// cache back each time we roll a snapshot back, to avoid assumptions
/// on yet-unresolved inference variables. Types with placeholder
/// regions also have to be removed when the respective snapshot ends.
///
/// Because of that, projection cache entries can be "stranded" and left
/// inaccessible when type variables inside the key are resolved. We make no
/// attempt to recover or remove "stranded" entries, but rather let them be
/// (for the lifetime of the infcx).
///
/// Entries in the projection cache might contain inference variables
/// that will be resolved by obligations on the projection cache entry (e.g.,
/// when a type parameter in the associated type is constrained through
/// an "RFC 447" projection on the impl).
///
/// When working with a fulfillment context, the derived obligations of each
/// projection cache entry will be registered on the fulfillcx, so any users
/// that can wait for a fulfillcx fixed point need not care about this. However,
/// users that don't wait for a fixed point (e.g., trait evaluation) have to
/// resolve the obligations themselves to make sure the projected result is
/// ok and avoid issues like #43132.
///
/// If that is done, after evaluation the obligations, it is a good idea to
/// call `ProjectionCache::complete` to make sure the obligations won't be
/// re-evaluated and avoid an exponential worst-case.
//
// FIXME: we probably also want some sort of cross-infcx cache here to
// reduce the amount of duplication. Let's see what we get with the Chalk reforms.
#[derive(Default)]
pub struct ProjectionCache<'tcx> {
map: SnapshotMap<ProjectionCacheKey<'tcx>, ProjectionCacheEntry<'tcx>>,
}
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)]
pub struct ProjectionCacheKey<'tcx> {
ty: ty::ProjectionTy<'tcx>
}
impl<'cx, 'tcx> ProjectionCacheKey<'tcx> {
pub fn from_poly_projection_predicate(
selcx: &mut SelectionContext<'cx, 'tcx>,
predicate: &ty::PolyProjectionPredicate<'tcx>,
) -> Option<Self> {
let infcx = selcx.infcx();
// We don't do cross-snapshot caching of obligations with escaping regions,
// so there's no cache key to use
predicate.no_bound_vars()
.map(|predicate| ProjectionCacheKey {
// We don't attempt to match up with a specific type-variable state
// from a specific call to `opt_normalize_projection_type` - if
// there's no precise match, the original cache entry is "stranded"
// anyway.
ty: infcx.resolve_vars_if_possible(&predicate.projection_ty)
})
}
}
#[derive(Clone, Debug)]
enum ProjectionCacheEntry<'tcx> {
InProgress,
Ambiguous,
Error,
NormalizedTy(NormalizedTy<'tcx>),
}
// N.B., intentionally not Clone
pub struct ProjectionCacheSnapshot {
snapshot: Snapshot,
}
impl<'tcx> ProjectionCache<'tcx> {
pub fn clear(&mut self) {
self.map.clear();
}
pub fn snapshot(&mut self) -> ProjectionCacheSnapshot {
ProjectionCacheSnapshot { snapshot: self.map.snapshot() }
}
pub fn rollback_to(&mut self, snapshot: ProjectionCacheSnapshot) {
self.map.rollback_to(snapshot.snapshot);
}
pub fn rollback_placeholder(&mut self, snapshot: &ProjectionCacheSnapshot) {
self.map.partial_rollback(&snapshot.snapshot, &|k| k.ty.has_re_placeholders());
}
pub fn commit(&mut self, snapshot: ProjectionCacheSnapshot) {
self.map.commit(snapshot.snapshot);
}
/// Try to start normalize `key`; returns an error if
/// normalization already occurred (this error corresponds to a
/// cache hit, so it's actually a good thing).
fn try_start(&mut self, key: ProjectionCacheKey<'tcx>)
-> Result<(), ProjectionCacheEntry<'tcx>> {
if let Some(entry) = self.map.get(&key) {
return Err(entry.clone());
}
self.map.insert(key, ProjectionCacheEntry::InProgress);
Ok(())
}
/// Indicates that `key` was normalized to `value`.
fn insert_ty(&mut self, key: ProjectionCacheKey<'tcx>, value: NormalizedTy<'tcx>) {
debug!("ProjectionCacheEntry::insert_ty: adding cache entry: key={:?}, value={:?}",
key, value);
let fresh_key = self.map.insert(key, ProjectionCacheEntry::NormalizedTy(value));
assert!(!fresh_key, "never started projecting `{:?}`", key);
}
/// Mark the relevant projection cache key as having its derived obligations
/// complete, so they won't have to be re-computed (this is OK to do in a
/// snapshot - if the snapshot is rolled back, the obligations will be
/// marked as incomplete again).
pub fn complete(&mut self, key: ProjectionCacheKey<'tcx>) {
let ty = match self.map.get(&key) {
Some(&ProjectionCacheEntry::NormalizedTy(ref ty)) => {
debug!("ProjectionCacheEntry::complete({:?}) - completing {:?}",
key, ty);
ty.value
}
ref value => {
// Type inference could "strand behind" old cache entries. Leave
// them alone for now.
debug!("ProjectionCacheEntry::complete({:?}) - ignoring {:?}",
key, value);
return
}
};
self.map.insert(key, ProjectionCacheEntry::NormalizedTy(Normalized {
value: ty,
obligations: vec![]
}));
}
/// A specialized version of `complete` for when the key's value is known
/// to be a NormalizedTy.
pub fn complete_normalized(&mut self, key: ProjectionCacheKey<'tcx>, ty: &NormalizedTy<'tcx>) {
// We want to insert `ty` with no obligations. If the existing value
// already has no obligations (as is common) we don't insert anything.
if !ty.obligations.is_empty() {
self.map.insert(key, ProjectionCacheEntry::NormalizedTy(Normalized {
value: ty.value,
obligations: vec![]
}));
}
}
/// Indicates that trying to normalize `key` resulted in
/// ambiguity. No point in trying it again then until we gain more
/// type information (in which case, the "fully resolved" key will
/// be different).
fn ambiguous(&mut self, key: ProjectionCacheKey<'tcx>) {
let fresh = self.map.insert(key, ProjectionCacheEntry::Ambiguous);
assert!(!fresh, "never started projecting `{:?}`", key);
}
/// Indicates that trying to normalize `key` resulted in
/// error.
fn error(&mut self, key: ProjectionCacheKey<'tcx>) {
let fresh = self.map.insert(key, ProjectionCacheEntry::Error);
assert!(!fresh, "never started projecting `{:?}`", key);
}
}