blob: f2ffd9470ed7601908ae67a145307a6e31329e40 [file] [log] [blame]
//! Process the potential `cfg` attributes on a module.
//! Also determine if the module should be included in this configuration.
//!
//! This module properly belongs in rustc_expand, but for now it's tied into
//! parsing, so we leave it here to avoid complicated out-of-line dependencies.
//!
//! A principled solution to this wrong location would be to implement [#64197].
//!
//! [#64197]: https://github.com/rust-lang/rust/issues/64197
use crate::{parse_in, validate_attr};
use rustc_errors::Applicability;
use rustc_feature::Features;
use rustc_span::edition::Edition;
use rustc_span::symbol::sym;
use rustc_span::Span;
use syntax::ast::{self, AttrItem, Attribute, MetaItem};
use syntax::attr;
use syntax::attr::HasAttrs;
use syntax::feature_gate::{feature_err, get_features};
use syntax::mut_visit::*;
use syntax::ptr::P;
use syntax::sess::ParseSess;
use syntax::util::map_in_place::MapInPlace;
use smallvec::SmallVec;
/// A folder that strips out items that do not belong in the current configuration.
pub struct StripUnconfigured<'a> {
pub sess: &'a ParseSess,
pub features: Option<&'a Features>,
}
// `cfg_attr`-process the crate's attributes and compute the crate's features.
pub fn features(
mut krate: ast::Crate,
sess: &ParseSess,
edition: Edition,
allow_features: &Option<Vec<String>>,
) -> (ast::Crate, Features) {
let features;
{
let mut strip_unconfigured = StripUnconfigured { sess, features: None };
let unconfigured_attrs = krate.attrs.clone();
let err_count = sess.span_diagnostic.err_count();
if let Some(attrs) = strip_unconfigured.configure(krate.attrs) {
krate.attrs = attrs;
} else {
// the entire crate is unconfigured
krate.attrs = Vec::new();
krate.module.items = Vec::new();
return (krate, Features::default());
}
features = get_features(&sess.span_diagnostic, &krate.attrs, edition, allow_features);
// Avoid reconfiguring malformed `cfg_attr`s
if err_count == sess.span_diagnostic.err_count() {
strip_unconfigured.features = Some(&features);
strip_unconfigured.configure(unconfigured_attrs);
}
}
(krate, features)
}
#[macro_export]
macro_rules! configure {
($this:ident, $node:ident) => {
match $this.configure($node) {
Some(node) => node,
None => return Default::default(),
}
};
}
const CFG_ATTR_GRAMMAR_HELP: &str = "#[cfg_attr(condition, attribute, other_attribute, ...)]";
const CFG_ATTR_NOTE_REF: &str = "for more information, visit \
<https://doc.rust-lang.org/reference/conditional-compilation.html\
#the-cfg_attr-attribute>";
impl<'a> StripUnconfigured<'a> {
pub fn configure<T: HasAttrs>(&mut self, mut node: T) -> Option<T> {
self.process_cfg_attrs(&mut node);
self.in_cfg(node.attrs()).then_some(node)
}
/// Parse and expand all `cfg_attr` attributes into a list of attributes
/// that are within each `cfg_attr` that has a true configuration predicate.
///
/// Gives compiler warnigns if any `cfg_attr` does not contain any
/// attributes and is in the original source code. Gives compiler errors if
/// the syntax of any `cfg_attr` is incorrect.
pub fn process_cfg_attrs<T: HasAttrs>(&mut self, node: &mut T) {
node.visit_attrs(|attrs| {
attrs.flat_map_in_place(|attr| self.process_cfg_attr(attr));
});
}
/// Parse and expand a single `cfg_attr` attribute into a list of attributes
/// when the configuration predicate is true, or otherwise expand into an
/// empty list of attributes.
///
/// Gives a compiler warning when the `cfg_attr` contains no attributes and
/// is in the original source file. Gives a compiler error if the syntax of
/// the attribute is incorrect.
fn process_cfg_attr(&mut self, attr: Attribute) -> Vec<Attribute> {
if !attr.has_name(sym::cfg_attr) {
return vec![attr];
}
let (cfg_predicate, expanded_attrs) = match self.parse_cfg_attr(&attr) {
None => return vec![],
Some(r) => r,
};
// Lint on zero attributes in source.
if expanded_attrs.is_empty() {
return vec![attr];
}
// At this point we know the attribute is considered used.
attr::mark_used(&attr);
if !attr::cfg_matches(&cfg_predicate, self.sess, self.features) {
return vec![];
}
// We call `process_cfg_attr` recursively in case there's a
// `cfg_attr` inside of another `cfg_attr`. E.g.
// `#[cfg_attr(false, cfg_attr(true, some_attr))]`.
expanded_attrs
.into_iter()
.flat_map(|(item, span)| {
let attr = attr::mk_attr_from_item(attr.style, item, span);
self.process_cfg_attr(attr)
})
.collect()
}
fn parse_cfg_attr(&self, attr: &Attribute) -> Option<(MetaItem, Vec<(AttrItem, Span)>)> {
match attr.get_normal_item().args {
ast::MacArgs::Delimited(dspan, delim, ref tts) if !tts.is_empty() => {
let msg = "wrong `cfg_attr` delimiters";
validate_attr::check_meta_bad_delim(self.sess, dspan, delim, msg);
match parse_in(self.sess, tts.clone(), "`cfg_attr` input", |p| p.parse_cfg_attr()) {
Ok(r) => return Some(r),
Err(mut e) => e
.help(&format!("the valid syntax is `{}`", CFG_ATTR_GRAMMAR_HELP))
.note(CFG_ATTR_NOTE_REF)
.emit(),
}
}
_ => self.error_malformed_cfg_attr_missing(attr.span),
}
None
}
fn error_malformed_cfg_attr_missing(&self, span: Span) {
self.sess
.span_diagnostic
.struct_span_err(span, "malformed `cfg_attr` attribute input")
.span_suggestion(
span,
"missing condition and attribute",
CFG_ATTR_GRAMMAR_HELP.to_string(),
Applicability::HasPlaceholders,
)
.note(CFG_ATTR_NOTE_REF)
.emit();
}
/// Determines if a node with the given attributes should be included in this configuration.
pub fn in_cfg(&self, attrs: &[Attribute]) -> bool {
attrs.iter().all(|attr| {
if !is_cfg(attr) {
return true;
}
let error = |span, msg, suggestion: &str| {
let mut err = self.sess.span_diagnostic.struct_span_err(span, msg);
if !suggestion.is_empty() {
err.span_suggestion(
span,
"expected syntax is",
suggestion.into(),
Applicability::MaybeIncorrect,
);
}
err.emit();
true
};
let meta_item = match validate_attr::parse_meta(self.sess, attr) {
Ok(meta_item) => meta_item,
Err(mut err) => {
err.emit();
return true;
}
};
let nested_meta_items = if let Some(nested_meta_items) = meta_item.meta_item_list() {
nested_meta_items
} else {
return error(
meta_item.span,
"`cfg` is not followed by parentheses",
"cfg(/* predicate */)",
);
};
if nested_meta_items.is_empty() {
return error(meta_item.span, "`cfg` predicate is not specified", "");
} else if nested_meta_items.len() > 1 {
return error(
nested_meta_items.last().unwrap().span(),
"multiple `cfg` predicates are specified",
"",
);
}
match nested_meta_items[0].meta_item() {
Some(meta_item) => attr::cfg_matches(meta_item, self.sess, self.features),
None => error(
nested_meta_items[0].span(),
"`cfg` predicate key cannot be a literal",
"",
),
}
})
}
/// Visit attributes on expression and statements (but not attributes on items in blocks).
fn visit_expr_attrs(&mut self, attrs: &[Attribute]) {
// flag the offending attributes
for attr in attrs.iter() {
self.maybe_emit_expr_attr_err(attr);
}
}
/// If attributes are not allowed on expressions, emit an error for `attr`
pub fn maybe_emit_expr_attr_err(&self, attr: &Attribute) {
if !self.features.map(|features| features.stmt_expr_attributes).unwrap_or(true) {
let mut err = feature_err(
self.sess,
sym::stmt_expr_attributes,
attr.span,
"attributes on expressions are experimental",
);
if attr.is_doc_comment() {
err.help("`///` is for documentation comments. For a plain comment, use `//`.");
}
err.emit();
}
}
pub fn configure_foreign_mod(&mut self, foreign_mod: &mut ast::ForeignMod) {
let ast::ForeignMod { abi: _, items } = foreign_mod;
items.flat_map_in_place(|item| self.configure(item));
}
pub fn configure_generic_params(&mut self, params: &mut Vec<ast::GenericParam>) {
params.flat_map_in_place(|param| self.configure(param));
}
fn configure_variant_data(&mut self, vdata: &mut ast::VariantData) {
match vdata {
ast::VariantData::Struct(fields, ..) | ast::VariantData::Tuple(fields, _) => {
fields.flat_map_in_place(|field| self.configure(field))
}
ast::VariantData::Unit(_) => {}
}
}
pub fn configure_item_kind(&mut self, item: &mut ast::ItemKind) {
match item {
ast::ItemKind::Struct(def, _generics) | ast::ItemKind::Union(def, _generics) => {
self.configure_variant_data(def)
}
ast::ItemKind::Enum(ast::EnumDef { variants }, _generics) => {
variants.flat_map_in_place(|variant| self.configure(variant));
for variant in variants {
self.configure_variant_data(&mut variant.data);
}
}
_ => {}
}
}
pub fn configure_expr_kind(&mut self, expr_kind: &mut ast::ExprKind) {
match expr_kind {
ast::ExprKind::Match(_m, arms) => {
arms.flat_map_in_place(|arm| self.configure(arm));
}
ast::ExprKind::Struct(_path, fields, _base) => {
fields.flat_map_in_place(|field| self.configure(field));
}
_ => {}
}
}
pub fn configure_expr(&mut self, expr: &mut P<ast::Expr>) {
self.visit_expr_attrs(expr.attrs());
// If an expr is valid to cfg away it will have been removed by the
// outer stmt or expression folder before descending in here.
// Anything else is always required, and thus has to error out
// in case of a cfg attr.
//
// N.B., this is intentionally not part of the visit_expr() function
// in order for filter_map_expr() to be able to avoid this check
if let Some(attr) = expr.attrs().iter().find(|a| is_cfg(a)) {
let msg = "removing an expression is not supported in this position";
self.sess.span_diagnostic.span_err(attr.span, msg);
}
self.process_cfg_attrs(expr)
}
pub fn configure_pat(&mut self, pat: &mut P<ast::Pat>) {
if let ast::PatKind::Struct(_path, fields, _etc) = &mut pat.kind {
fields.flat_map_in_place(|field| self.configure(field));
}
}
pub fn configure_fn_decl(&mut self, fn_decl: &mut ast::FnDecl) {
fn_decl.inputs.flat_map_in_place(|arg| self.configure(arg));
}
}
impl<'a> MutVisitor for StripUnconfigured<'a> {
fn visit_foreign_mod(&mut self, foreign_mod: &mut ast::ForeignMod) {
self.configure_foreign_mod(foreign_mod);
noop_visit_foreign_mod(foreign_mod, self);
}
fn visit_item_kind(&mut self, item: &mut ast::ItemKind) {
self.configure_item_kind(item);
noop_visit_item_kind(item, self);
}
fn visit_expr(&mut self, expr: &mut P<ast::Expr>) {
self.configure_expr(expr);
self.configure_expr_kind(&mut expr.kind);
noop_visit_expr(expr, self);
}
fn filter_map_expr(&mut self, expr: P<ast::Expr>) -> Option<P<ast::Expr>> {
let mut expr = configure!(self, expr);
self.configure_expr_kind(&mut expr.kind);
noop_visit_expr(&mut expr, self);
Some(expr)
}
fn flat_map_stmt(&mut self, stmt: ast::Stmt) -> SmallVec<[ast::Stmt; 1]> {
noop_flat_map_stmt(configure!(self, stmt), self)
}
fn flat_map_item(&mut self, item: P<ast::Item>) -> SmallVec<[P<ast::Item>; 1]> {
noop_flat_map_item(configure!(self, item), self)
}
fn flat_map_impl_item(&mut self, item: ast::AssocItem) -> SmallVec<[ast::AssocItem; 1]> {
noop_flat_map_assoc_item(configure!(self, item), self)
}
fn flat_map_trait_item(&mut self, item: ast::AssocItem) -> SmallVec<[ast::AssocItem; 1]> {
noop_flat_map_assoc_item(configure!(self, item), self)
}
fn visit_mac(&mut self, _mac: &mut ast::Mac) {
// Don't configure interpolated AST (cf. issue #34171).
// Interpolated AST will get configured once the surrounding tokens are parsed.
}
fn visit_pat(&mut self, pat: &mut P<ast::Pat>) {
self.configure_pat(pat);
noop_visit_pat(pat, self)
}
fn visit_fn_decl(&mut self, mut fn_decl: &mut P<ast::FnDecl>) {
self.configure_fn_decl(&mut fn_decl);
noop_visit_fn_decl(fn_decl, self);
}
}
fn is_cfg(attr: &Attribute) -> bool {
attr.check_name(sym::cfg)
}
/// Process the potential `cfg` attributes on a module.
/// Also determine if the module should be included in this configuration.
pub fn process_configure_mod(
sess: &ParseSess,
cfg_mods: bool,
attrs: &[Attribute],
) -> (bool, Vec<Attribute>) {
// Don't perform gated feature checking.
let mut strip_unconfigured = StripUnconfigured { sess, features: None };
let mut attrs = attrs.to_owned();
strip_unconfigured.process_cfg_attrs(&mut attrs);
(!cfg_mods || strip_unconfigured.in_cfg(&attrs), attrs)
}