blob: 6e36184aff051776552c22f1bfb8b4272261c271 [file] [log] [blame]
use crate::leb128::{self, max_leb128_len};
use crate::serialize::{self, Encoder as _};
use std::borrow::Cow;
use std::convert::TryInto;
use std::fs::File;
use std::io::{self, Write};
use std::mem::MaybeUninit;
use std::path::Path;
use std::ptr;
// -----------------------------------------------------------------------------
// Encoder
// -----------------------------------------------------------------------------
pub type EncodeResult = Result<(), !>;
pub struct Encoder {
pub data: Vec<u8>,
}
impl Encoder {
pub fn new(data: Vec<u8>) -> Encoder {
Encoder { data }
}
pub fn into_inner(self) -> Vec<u8> {
self.data
}
#[inline]
pub fn position(&self) -> usize {
self.data.len()
}
}
macro_rules! write_leb128 {
($enc:expr, $value:expr, $int_ty:ty, $fun:ident) => {{
const MAX_ENCODED_LEN: usize = max_leb128_len!($int_ty);
let old_len = $enc.data.len();
if MAX_ENCODED_LEN > $enc.data.capacity() - old_len {
$enc.data.reserve(MAX_ENCODED_LEN);
}
// SAFETY: The above check and `reserve` ensures that there is enough
// room to write the encoded value to the vector's internal buffer.
unsafe {
let buf = &mut *($enc.data.as_mut_ptr().add(old_len)
as *mut [MaybeUninit<u8>; MAX_ENCODED_LEN]);
let encoded = leb128::$fun(buf, $value);
$enc.data.set_len(old_len + encoded.len());
}
Ok(())
}};
}
impl serialize::Encoder for Encoder {
type Error = !;
#[inline]
fn emit_unit(&mut self) -> EncodeResult {
Ok(())
}
#[inline]
fn emit_usize(&mut self, v: usize) -> EncodeResult {
write_leb128!(self, v, usize, write_usize_leb128)
}
#[inline]
fn emit_u128(&mut self, v: u128) -> EncodeResult {
write_leb128!(self, v, u128, write_u128_leb128)
}
#[inline]
fn emit_u64(&mut self, v: u64) -> EncodeResult {
write_leb128!(self, v, u64, write_u64_leb128)
}
#[inline]
fn emit_u32(&mut self, v: u32) -> EncodeResult {
write_leb128!(self, v, u32, write_u32_leb128)
}
#[inline]
fn emit_u16(&mut self, v: u16) -> EncodeResult {
write_leb128!(self, v, u16, write_u16_leb128)
}
#[inline]
fn emit_u8(&mut self, v: u8) -> EncodeResult {
self.data.push(v);
Ok(())
}
#[inline]
fn emit_isize(&mut self, v: isize) -> EncodeResult {
write_leb128!(self, v, isize, write_isize_leb128)
}
#[inline]
fn emit_i128(&mut self, v: i128) -> EncodeResult {
write_leb128!(self, v, i128, write_i128_leb128)
}
#[inline]
fn emit_i64(&mut self, v: i64) -> EncodeResult {
write_leb128!(self, v, i64, write_i64_leb128)
}
#[inline]
fn emit_i32(&mut self, v: i32) -> EncodeResult {
write_leb128!(self, v, i32, write_i32_leb128)
}
#[inline]
fn emit_i16(&mut self, v: i16) -> EncodeResult {
write_leb128!(self, v, i16, write_i16_leb128)
}
#[inline]
fn emit_i8(&mut self, v: i8) -> EncodeResult {
let as_u8: u8 = unsafe { std::mem::transmute(v) };
self.emit_u8(as_u8)
}
#[inline]
fn emit_bool(&mut self, v: bool) -> EncodeResult {
self.emit_u8(if v { 1 } else { 0 })
}
#[inline]
fn emit_f64(&mut self, v: f64) -> EncodeResult {
let as_u64: u64 = v.to_bits();
self.emit_u64(as_u64)
}
#[inline]
fn emit_f32(&mut self, v: f32) -> EncodeResult {
let as_u32: u32 = v.to_bits();
self.emit_u32(as_u32)
}
#[inline]
fn emit_char(&mut self, v: char) -> EncodeResult {
self.emit_u32(v as u32)
}
#[inline]
fn emit_str(&mut self, v: &str) -> EncodeResult {
self.emit_usize(v.len())?;
self.emit_raw_bytes(v.as_bytes())
}
#[inline]
fn emit_raw_bytes(&mut self, s: &[u8]) -> EncodeResult {
self.data.extend_from_slice(s);
Ok(())
}
}
pub type FileEncodeResult = Result<(), io::Error>;
// `FileEncoder` encodes data to file via fixed-size buffer.
//
// When encoding large amounts of data to a file, using `FileEncoder` may be
// preferred over using `Encoder` to encode to a `Vec`, and then writing the
// `Vec` to file, as the latter uses as much memory as there is encoded data,
// while the former uses the fixed amount of memory allocated to the buffer.
// `FileEncoder` also has the advantage of not needing to reallocate as data
// is appended to it, but the disadvantage of requiring more error handling,
// which has some runtime overhead.
pub struct FileEncoder {
// The input buffer. For adequate performance, we need more control over
// buffering than `BufWriter` offers. If `BufWriter` ever offers a raw
// buffer access API, we can use it, and remove `buf` and `buffered`.
buf: Box<[MaybeUninit<u8>]>,
buffered: usize,
flushed: usize,
file: File,
}
impl FileEncoder {
pub fn new<P: AsRef<Path>>(path: P) -> io::Result<Self> {
const DEFAULT_BUF_SIZE: usize = 8192;
FileEncoder::with_capacity(path, DEFAULT_BUF_SIZE)
}
pub fn with_capacity<P: AsRef<Path>>(path: P, capacity: usize) -> io::Result<Self> {
// Require capacity at least as large as the largest LEB128 encoding
// here, so that we don't have to check or handle this on every write.
assert!(capacity >= max_leb128_len());
// Require capacity small enough such that some capacity checks can be
// done using guaranteed non-overflowing add rather than sub, which
// shaves an instruction off those code paths (on x86 at least).
assert!(capacity <= usize::MAX - max_leb128_len());
let file = File::create(path)?;
Ok(FileEncoder { buf: Box::new_uninit_slice(capacity), buffered: 0, flushed: 0, file })
}
#[inline]
pub fn position(&self) -> usize {
// Tracking position this way instead of having a `self.position` field
// means that we don't have to update the position on every write call.
self.flushed + self.buffered
}
pub fn flush(&mut self) -> FileEncodeResult {
// This is basically a copy of `BufWriter::flush`. If `BufWriter` ever
// offers a raw buffer access API, we can use it, and remove this.
/// Helper struct to ensure the buffer is updated after all the writes
/// are complete. It tracks the number of written bytes and drains them
/// all from the front of the buffer when dropped.
struct BufGuard<'a> {
buffer: &'a mut [u8],
encoder_buffered: &'a mut usize,
encoder_flushed: &'a mut usize,
flushed: usize,
}
impl<'a> BufGuard<'a> {
fn new(
buffer: &'a mut [u8],
encoder_buffered: &'a mut usize,
encoder_flushed: &'a mut usize,
) -> Self {
assert_eq!(buffer.len(), *encoder_buffered);
Self { buffer, encoder_buffered, encoder_flushed, flushed: 0 }
}
/// The unwritten part of the buffer
fn remaining(&self) -> &[u8] {
&self.buffer[self.flushed..]
}
/// Flag some bytes as removed from the front of the buffer
fn consume(&mut self, amt: usize) {
self.flushed += amt;
}
/// true if all of the bytes have been written
fn done(&self) -> bool {
self.flushed >= *self.encoder_buffered
}
}
impl Drop for BufGuard<'_> {
fn drop(&mut self) {
if self.flushed > 0 {
if self.done() {
*self.encoder_flushed += *self.encoder_buffered;
*self.encoder_buffered = 0;
} else {
self.buffer.copy_within(self.flushed.., 0);
*self.encoder_flushed += self.flushed;
*self.encoder_buffered -= self.flushed;
}
}
}
}
let mut guard = BufGuard::new(
unsafe { MaybeUninit::slice_assume_init_mut(&mut self.buf[..self.buffered]) },
&mut self.buffered,
&mut self.flushed,
);
while !guard.done() {
match self.file.write(guard.remaining()) {
Ok(0) => {
return Err(io::Error::new(
io::ErrorKind::WriteZero,
"failed to write the buffered data",
));
}
Ok(n) => guard.consume(n),
Err(ref e) if e.kind() == io::ErrorKind::Interrupted => {}
Err(e) => return Err(e),
}
}
Ok(())
}
#[inline]
fn capacity(&self) -> usize {
self.buf.len()
}
#[inline]
fn write_one(&mut self, value: u8) -> FileEncodeResult {
// We ensure this during `FileEncoder` construction.
debug_assert!(self.capacity() >= 1);
let mut buffered = self.buffered;
if std::intrinsics::unlikely(buffered >= self.capacity()) {
self.flush()?;
buffered = 0;
}
// SAFETY: The above check and `flush` ensures that there is enough
// room to write the input to the buffer.
unsafe {
*MaybeUninit::slice_as_mut_ptr(&mut self.buf).add(buffered) = value;
}
self.buffered = buffered + 1;
Ok(())
}
#[inline]
fn write_all(&mut self, buf: &[u8]) -> FileEncodeResult {
let capacity = self.capacity();
let buf_len = buf.len();
if std::intrinsics::likely(buf_len <= capacity) {
let mut buffered = self.buffered;
if std::intrinsics::unlikely(buf_len > capacity - buffered) {
self.flush()?;
buffered = 0;
}
// SAFETY: The above check and `flush` ensures that there is enough
// room to write the input to the buffer.
unsafe {
let src = buf.as_ptr();
let dst = MaybeUninit::slice_as_mut_ptr(&mut self.buf).add(buffered);
ptr::copy_nonoverlapping(src, dst, buf_len);
}
self.buffered = buffered + buf_len;
Ok(())
} else {
self.write_all_unbuffered(buf)
}
}
fn write_all_unbuffered(&mut self, mut buf: &[u8]) -> FileEncodeResult {
if self.buffered > 0 {
self.flush()?;
}
// This is basically a copy of `Write::write_all` but also updates our
// `self.flushed`. It's necessary because `Write::write_all` does not
// return the number of bytes written when an error is encountered, and
// without that, we cannot accurately update `self.flushed` on error.
while !buf.is_empty() {
match self.file.write(buf) {
Ok(0) => {
return Err(io::Error::new(
io::ErrorKind::WriteZero,
"failed to write whole buffer",
));
}
Ok(n) => {
buf = &buf[n..];
self.flushed += n;
}
Err(ref e) if e.kind() == io::ErrorKind::Interrupted => {}
Err(e) => return Err(e),
}
}
Ok(())
}
}
impl Drop for FileEncoder {
fn drop(&mut self) {
let _result = self.flush();
}
}
macro_rules! file_encoder_write_leb128 {
($enc:expr, $value:expr, $int_ty:ty, $fun:ident) => {{
const MAX_ENCODED_LEN: usize = max_leb128_len!($int_ty);
// We ensure this during `FileEncoder` construction.
debug_assert!($enc.capacity() >= MAX_ENCODED_LEN);
let mut buffered = $enc.buffered;
// This can't overflow. See assertion in `FileEncoder::with_capacity`.
if std::intrinsics::unlikely(buffered + MAX_ENCODED_LEN > $enc.capacity()) {
$enc.flush()?;
buffered = 0;
}
// SAFETY: The above check and flush ensures that there is enough
// room to write the encoded value to the buffer.
let buf = unsafe {
&mut *($enc.buf.as_mut_ptr().add(buffered) as *mut [MaybeUninit<u8>; MAX_ENCODED_LEN])
};
let encoded = leb128::$fun(buf, $value);
$enc.buffered = buffered + encoded.len();
Ok(())
}};
}
impl serialize::Encoder for FileEncoder {
type Error = io::Error;
#[inline]
fn emit_unit(&mut self) -> FileEncodeResult {
Ok(())
}
#[inline]
fn emit_usize(&mut self, v: usize) -> FileEncodeResult {
file_encoder_write_leb128!(self, v, usize, write_usize_leb128)
}
#[inline]
fn emit_u128(&mut self, v: u128) -> FileEncodeResult {
file_encoder_write_leb128!(self, v, u128, write_u128_leb128)
}
#[inline]
fn emit_u64(&mut self, v: u64) -> FileEncodeResult {
file_encoder_write_leb128!(self, v, u64, write_u64_leb128)
}
#[inline]
fn emit_u32(&mut self, v: u32) -> FileEncodeResult {
file_encoder_write_leb128!(self, v, u32, write_u32_leb128)
}
#[inline]
fn emit_u16(&mut self, v: u16) -> FileEncodeResult {
file_encoder_write_leb128!(self, v, u16, write_u16_leb128)
}
#[inline]
fn emit_u8(&mut self, v: u8) -> FileEncodeResult {
self.write_one(v)
}
#[inline]
fn emit_isize(&mut self, v: isize) -> FileEncodeResult {
file_encoder_write_leb128!(self, v, isize, write_isize_leb128)
}
#[inline]
fn emit_i128(&mut self, v: i128) -> FileEncodeResult {
file_encoder_write_leb128!(self, v, i128, write_i128_leb128)
}
#[inline]
fn emit_i64(&mut self, v: i64) -> FileEncodeResult {
file_encoder_write_leb128!(self, v, i64, write_i64_leb128)
}
#[inline]
fn emit_i32(&mut self, v: i32) -> FileEncodeResult {
file_encoder_write_leb128!(self, v, i32, write_i32_leb128)
}
#[inline]
fn emit_i16(&mut self, v: i16) -> FileEncodeResult {
file_encoder_write_leb128!(self, v, i16, write_i16_leb128)
}
#[inline]
fn emit_i8(&mut self, v: i8) -> FileEncodeResult {
let as_u8: u8 = unsafe { std::mem::transmute(v) };
self.emit_u8(as_u8)
}
#[inline]
fn emit_bool(&mut self, v: bool) -> FileEncodeResult {
self.emit_u8(if v { 1 } else { 0 })
}
#[inline]
fn emit_f64(&mut self, v: f64) -> FileEncodeResult {
let as_u64: u64 = v.to_bits();
self.emit_u64(as_u64)
}
#[inline]
fn emit_f32(&mut self, v: f32) -> FileEncodeResult {
let as_u32: u32 = v.to_bits();
self.emit_u32(as_u32)
}
#[inline]
fn emit_char(&mut self, v: char) -> FileEncodeResult {
self.emit_u32(v as u32)
}
#[inline]
fn emit_str(&mut self, v: &str) -> FileEncodeResult {
self.emit_usize(v.len())?;
self.emit_raw_bytes(v.as_bytes())
}
#[inline]
fn emit_raw_bytes(&mut self, s: &[u8]) -> FileEncodeResult {
self.write_all(s)
}
}
// -----------------------------------------------------------------------------
// Decoder
// -----------------------------------------------------------------------------
pub struct Decoder<'a> {
pub data: &'a [u8],
position: usize,
}
impl<'a> Decoder<'a> {
#[inline]
pub fn new(data: &'a [u8], position: usize) -> Decoder<'a> {
Decoder { data, position }
}
#[inline]
pub fn position(&self) -> usize {
self.position
}
#[inline]
pub fn set_position(&mut self, pos: usize) {
self.position = pos
}
#[inline]
pub fn advance(&mut self, bytes: usize) {
self.position += bytes;
}
#[inline]
pub fn read_raw_bytes(&mut self, bytes: usize) -> &'a [u8] {
let start = self.position;
self.position += bytes;
&self.data[start..self.position]
}
}
macro_rules! read_leb128 {
($dec:expr, $fun:ident) => {{
let (value, bytes_read) = leb128::$fun(&$dec.data[$dec.position..]);
$dec.position += bytes_read;
Ok(value)
}};
}
impl<'a> serialize::Decoder for Decoder<'a> {
type Error = String;
#[inline]
fn read_nil(&mut self) -> Result<(), Self::Error> {
Ok(())
}
#[inline]
fn read_u128(&mut self) -> Result<u128, Self::Error> {
read_leb128!(self, read_u128_leb128)
}
#[inline]
fn read_u64(&mut self) -> Result<u64, Self::Error> {
read_leb128!(self, read_u64_leb128)
}
#[inline]
fn read_u32(&mut self) -> Result<u32, Self::Error> {
read_leb128!(self, read_u32_leb128)
}
#[inline]
fn read_u16(&mut self) -> Result<u16, Self::Error> {
read_leb128!(self, read_u16_leb128)
}
#[inline]
fn read_u8(&mut self) -> Result<u8, Self::Error> {
let value = self.data[self.position];
self.position += 1;
Ok(value)
}
#[inline]
fn read_usize(&mut self) -> Result<usize, Self::Error> {
read_leb128!(self, read_usize_leb128)
}
#[inline]
fn read_i128(&mut self) -> Result<i128, Self::Error> {
read_leb128!(self, read_i128_leb128)
}
#[inline]
fn read_i64(&mut self) -> Result<i64, Self::Error> {
read_leb128!(self, read_i64_leb128)
}
#[inline]
fn read_i32(&mut self) -> Result<i32, Self::Error> {
read_leb128!(self, read_i32_leb128)
}
#[inline]
fn read_i16(&mut self) -> Result<i16, Self::Error> {
read_leb128!(self, read_i16_leb128)
}
#[inline]
fn read_i8(&mut self) -> Result<i8, Self::Error> {
let as_u8 = self.data[self.position];
self.position += 1;
unsafe { Ok(::std::mem::transmute(as_u8)) }
}
#[inline]
fn read_isize(&mut self) -> Result<isize, Self::Error> {
read_leb128!(self, read_isize_leb128)
}
#[inline]
fn read_bool(&mut self) -> Result<bool, Self::Error> {
let value = self.read_u8()?;
Ok(value != 0)
}
#[inline]
fn read_f64(&mut self) -> Result<f64, Self::Error> {
let bits = self.read_u64()?;
Ok(f64::from_bits(bits))
}
#[inline]
fn read_f32(&mut self) -> Result<f32, Self::Error> {
let bits = self.read_u32()?;
Ok(f32::from_bits(bits))
}
#[inline]
fn read_char(&mut self) -> Result<char, Self::Error> {
let bits = self.read_u32()?;
Ok(std::char::from_u32(bits).unwrap())
}
#[inline]
fn read_str(&mut self) -> Result<Cow<'_, str>, Self::Error> {
let len = self.read_usize()?;
let s = std::str::from_utf8(&self.data[self.position..self.position + len]).unwrap();
self.position += len;
Ok(Cow::Borrowed(s))
}
#[inline]
fn error(&mut self, err: &str) -> Self::Error {
err.to_string()
}
#[inline]
fn read_raw_bytes_into(&mut self, s: &mut [u8]) -> Result<(), String> {
let start = self.position;
self.position += s.len();
s.copy_from_slice(&self.data[start..self.position]);
Ok(())
}
}
// Specializations for contiguous byte sequences follow. The default implementations for slices
// encode and decode each element individually. This isn't necessary for `u8` slices when using
// opaque encoders and decoders, because each `u8` is unchanged by encoding and decoding.
// Therefore, we can use more efficient implementations that process the entire sequence at once.
// Specialize encoding byte slices. This specialization also applies to encoding `Vec<u8>`s, etc.,
// since the default implementations call `encode` on their slices internally.
impl serialize::Encodable<Encoder> for [u8] {
fn encode(&self, e: &mut Encoder) -> EncodeResult {
serialize::Encoder::emit_usize(e, self.len())?;
e.emit_raw_bytes(self)
}
}
impl serialize::Encodable<FileEncoder> for [u8] {
fn encode(&self, e: &mut FileEncoder) -> FileEncodeResult {
serialize::Encoder::emit_usize(e, self.len())?;
e.emit_raw_bytes(self)
}
}
// Specialize decoding `Vec<u8>`. This specialization also applies to decoding `Box<[u8]>`s, etc.,
// since the default implementations call `decode` to produce a `Vec<u8>` internally.
impl<'a> serialize::Decodable<Decoder<'a>> for Vec<u8> {
fn decode(d: &mut Decoder<'a>) -> Result<Self, String> {
let len = serialize::Decoder::read_usize(d)?;
Ok(d.read_raw_bytes(len).to_owned())
}
}
// An integer that will always encode to 8 bytes.
pub struct IntEncodedWithFixedSize(pub u64);
impl IntEncodedWithFixedSize {
pub const ENCODED_SIZE: usize = 8;
}
impl serialize::Encodable<Encoder> for IntEncodedWithFixedSize {
#[inline]
fn encode(&self, e: &mut Encoder) -> EncodeResult {
let _start_pos = e.position();
e.emit_raw_bytes(&self.0.to_le_bytes())?;
let _end_pos = e.position();
debug_assert_eq!((_end_pos - _start_pos), IntEncodedWithFixedSize::ENCODED_SIZE);
Ok(())
}
}
impl serialize::Encodable<FileEncoder> for IntEncodedWithFixedSize {
#[inline]
fn encode(&self, e: &mut FileEncoder) -> FileEncodeResult {
let _start_pos = e.position();
e.emit_raw_bytes(&self.0.to_le_bytes())?;
let _end_pos = e.position();
debug_assert_eq!((_end_pos - _start_pos), IntEncodedWithFixedSize::ENCODED_SIZE);
Ok(())
}
}
impl<'a> serialize::Decodable<Decoder<'a>> for IntEncodedWithFixedSize {
#[inline]
fn decode(decoder: &mut Decoder<'a>) -> Result<IntEncodedWithFixedSize, String> {
let _start_pos = decoder.position();
let bytes = decoder.read_raw_bytes(IntEncodedWithFixedSize::ENCODED_SIZE);
let _end_pos = decoder.position();
debug_assert_eq!((_end_pos - _start_pos), IntEncodedWithFixedSize::ENCODED_SIZE);
let value = u64::from_le_bytes(bytes.try_into().unwrap());
Ok(IntEncodedWithFixedSize(value))
}
}