blob: c58f1bd87bd8df907065a52c9d6b2e0dc0f2dcf3 [file] [log] [blame]
//! A nice interface for working with the infcx. The basic idea is to
//! do `infcx.at(cause, param_env)`, which sets the "cause" of the
//! operation as well as the surrounding parameter environment. Then
//! you can do something like `.sub(a, b)` or `.eq(a, b)` to create a
//! subtype or equality relationship respectively. The first argument
//! is always the "expected" output from the POV of diagnostics.
//!
//! Examples:
//!
//! infcx.at(cause, param_env).sub(a, b)
//! // requires that `a <: b`, with `a` considered the "expected" type
//!
//! infcx.at(cause, param_env).sup(a, b)
//! // requires that `b <: a`, with `a` considered the "expected" type
//!
//! infcx.at(cause, param_env).eq(a, b)
//! // requires that `a == b`, with `a` considered the "expected" type
//!
//! For finer-grained control, you can also do use `trace`:
//!
//! infcx.at(...).trace(a, b).sub(&c, &d)
//!
//! This will set `a` and `b` as the "root" values for
//! error-reporting, but actually operate on `c` and `d`. This is
//! sometimes useful when the types of `c` and `d` are not traceable
//! things. (That system should probably be refactored.)
use super::*;
use crate::ty::relate::{Relate, TypeRelation};
use crate::ty::Const;
pub struct At<'a, 'tcx> {
pub infcx: &'a InferCtxt<'a, 'tcx>,
pub cause: &'a ObligationCause<'tcx>,
pub param_env: ty::ParamEnv<'tcx>,
}
pub struct Trace<'a, 'tcx> {
at: At<'a, 'tcx>,
a_is_expected: bool,
trace: TypeTrace<'tcx>,
}
impl<'a, 'tcx> InferCtxt<'a, 'tcx> {
#[inline]
pub fn at(
&'a self,
cause: &'a ObligationCause<'tcx>,
param_env: ty::ParamEnv<'tcx>,
) -> At<'a, 'tcx> {
At { infcx: self, cause, param_env }
}
}
pub trait ToTrace<'tcx>: Relate<'tcx> + Copy {
fn to_trace(
cause: &ObligationCause<'tcx>,
a_is_expected: bool,
a: Self,
b: Self,
) -> TypeTrace<'tcx>;
}
impl<'a, 'tcx> At<'a, 'tcx> {
/// Hacky routine for equating two impl headers in coherence.
pub fn eq_impl_headers(
self,
expected: &ty::ImplHeader<'tcx>,
actual: &ty::ImplHeader<'tcx>,
) -> InferResult<'tcx, ()> {
debug!("eq_impl_header({:?} = {:?})", expected, actual);
match (expected.trait_ref, actual.trait_ref) {
(Some(a_ref), Some(b_ref)) => self.eq(a_ref, b_ref),
(None, None) => self.eq(expected.self_ty, actual.self_ty),
_ => bug!("mk_eq_impl_headers given mismatched impl kinds"),
}
}
/// Makes `a <: b`, where `a` may or may not be expected.
pub fn sub_exp<T>(self, a_is_expected: bool, a: T, b: T) -> InferResult<'tcx, ()>
where
T: ToTrace<'tcx>,
{
self.trace_exp(a_is_expected, a, b).sub(&a, &b)
}
/// Makes `actual <: expected`. For example, if type-checking a
/// call like `foo(x)`, where `foo: fn(i32)`, you might have
/// `sup(i32, x)`, since the "expected" type is the type that
/// appears in the signature.
pub fn sup<T>(self, expected: T, actual: T) -> InferResult<'tcx, ()>
where
T: ToTrace<'tcx>,
{
self.sub_exp(false, actual, expected)
}
/// Makes `expected <: actual`.
pub fn sub<T>(self, expected: T, actual: T) -> InferResult<'tcx, ()>
where
T: ToTrace<'tcx>,
{
self.sub_exp(true, expected, actual)
}
/// Makes `expected <: actual`.
pub fn eq_exp<T>(self, a_is_expected: bool, a: T, b: T) -> InferResult<'tcx, ()>
where
T: ToTrace<'tcx>,
{
self.trace_exp(a_is_expected, a, b).eq(&a, &b)
}
/// Makes `expected <: actual`.
pub fn eq<T>(self, expected: T, actual: T) -> InferResult<'tcx, ()>
where
T: ToTrace<'tcx>,
{
self.trace(expected, actual).eq(&expected, &actual)
}
pub fn relate<T>(self, expected: T, variance: ty::Variance, actual: T) -> InferResult<'tcx, ()>
where
T: ToTrace<'tcx>,
{
match variance {
ty::Variance::Covariant => self.sub(expected, actual),
ty::Variance::Invariant => self.eq(expected, actual),
ty::Variance::Contravariant => self.sup(expected, actual),
// We could make this make sense but it's not readily
// exposed and I don't feel like dealing with it. Note
// that bivariance in general does a bit more than just
// *nothing*, it checks that the types are the same
// "modulo variance" basically.
ty::Variance::Bivariant => panic!("Bivariant given to `relate()`"),
}
}
/// Computes the least-upper-bound, or mutual supertype, of two
/// values. The order of the arguments doesn't matter, but since
/// this can result in an error (e.g., if asked to compute LUB of
/// u32 and i32), it is meaningful to call one of them the
/// "expected type".
pub fn lub<T>(self, expected: T, actual: T) -> InferResult<'tcx, T>
where
T: ToTrace<'tcx>,
{
self.trace(expected, actual).lub(&expected, &actual)
}
/// Computes the greatest-lower-bound, or mutual subtype, of two
/// values. As with `lub` order doesn't matter, except for error
/// cases.
pub fn glb<T>(self, expected: T, actual: T) -> InferResult<'tcx, T>
where
T: ToTrace<'tcx>,
{
self.trace(expected, actual).glb(&expected, &actual)
}
/// Sets the "trace" values that will be used for
/// error-reporting, but doesn't actually perform any operation
/// yet (this is useful when you want to set the trace using
/// distinct values from those you wish to operate upon).
pub fn trace<T>(self, expected: T, actual: T) -> Trace<'a, 'tcx>
where
T: ToTrace<'tcx>,
{
self.trace_exp(true, expected, actual)
}
/// Like `trace`, but the expected value is determined by the
/// boolean argument (if true, then the first argument `a` is the
/// "expected" value).
pub fn trace_exp<T>(self, a_is_expected: bool, a: T, b: T) -> Trace<'a, 'tcx>
where
T: ToTrace<'tcx>,
{
let trace = ToTrace::to_trace(self.cause, a_is_expected, a, b);
Trace { at: self, trace: trace, a_is_expected }
}
}
impl<'a, 'tcx> Trace<'a, 'tcx> {
/// Makes `a <: b` where `a` may or may not be expected (if
/// `a_is_expected` is true, then `a` is expected).
/// Makes `expected <: actual`.
pub fn sub<T>(self, a: &T, b: &T) -> InferResult<'tcx, ()>
where
T: Relate<'tcx>,
{
debug!("sub({:?} <: {:?})", a, b);
let Trace { at, trace, a_is_expected } = self;
at.infcx.commit_if_ok(|_| {
let mut fields = at.infcx.combine_fields(trace, at.param_env);
fields
.sub(a_is_expected)
.relate(a, b)
.map(move |_| InferOk { value: (), obligations: fields.obligations })
})
}
/// Makes `a == b`; the expectation is set by the call to
/// `trace()`.
pub fn eq<T>(self, a: &T, b: &T) -> InferResult<'tcx, ()>
where
T: Relate<'tcx>,
{
debug!("eq({:?} == {:?})", a, b);
let Trace { at, trace, a_is_expected } = self;
at.infcx.commit_if_ok(|_| {
let mut fields = at.infcx.combine_fields(trace, at.param_env);
fields
.equate(a_is_expected)
.relate(a, b)
.map(move |_| InferOk { value: (), obligations: fields.obligations })
})
}
pub fn lub<T>(self, a: &T, b: &T) -> InferResult<'tcx, T>
where
T: Relate<'tcx>,
{
debug!("lub({:?} \\/ {:?})", a, b);
let Trace { at, trace, a_is_expected } = self;
at.infcx.commit_if_ok(|_| {
let mut fields = at.infcx.combine_fields(trace, at.param_env);
fields
.lub(a_is_expected)
.relate(a, b)
.map(move |t| InferOk { value: t, obligations: fields.obligations })
})
}
pub fn glb<T>(self, a: &T, b: &T) -> InferResult<'tcx, T>
where
T: Relate<'tcx>,
{
debug!("glb({:?} /\\ {:?})", a, b);
let Trace { at, trace, a_is_expected } = self;
at.infcx.commit_if_ok(|_| {
let mut fields = at.infcx.combine_fields(trace, at.param_env);
fields
.glb(a_is_expected)
.relate(a, b)
.map(move |t| InferOk { value: t, obligations: fields.obligations })
})
}
}
impl<'tcx> ToTrace<'tcx> for Ty<'tcx> {
fn to_trace(
cause: &ObligationCause<'tcx>,
a_is_expected: bool,
a: Self,
b: Self,
) -> TypeTrace<'tcx> {
TypeTrace { cause: cause.clone(), values: Types(ExpectedFound::new(a_is_expected, a, b)) }
}
}
impl<'tcx> ToTrace<'tcx> for ty::Region<'tcx> {
fn to_trace(
cause: &ObligationCause<'tcx>,
a_is_expected: bool,
a: Self,
b: Self,
) -> TypeTrace<'tcx> {
TypeTrace { cause: cause.clone(), values: Regions(ExpectedFound::new(a_is_expected, a, b)) }
}
}
impl<'tcx> ToTrace<'tcx> for &'tcx Const<'tcx> {
fn to_trace(
cause: &ObligationCause<'tcx>,
a_is_expected: bool,
a: Self,
b: Self,
) -> TypeTrace<'tcx> {
TypeTrace { cause: cause.clone(), values: Consts(ExpectedFound::new(a_is_expected, a, b)) }
}
}
impl<'tcx> ToTrace<'tcx> for ty::TraitRef<'tcx> {
fn to_trace(
cause: &ObligationCause<'tcx>,
a_is_expected: bool,
a: Self,
b: Self,
) -> TypeTrace<'tcx> {
TypeTrace {
cause: cause.clone(),
values: TraitRefs(ExpectedFound::new(a_is_expected, a, b)),
}
}
}
impl<'tcx> ToTrace<'tcx> for ty::PolyTraitRef<'tcx> {
fn to_trace(
cause: &ObligationCause<'tcx>,
a_is_expected: bool,
a: Self,
b: Self,
) -> TypeTrace<'tcx> {
TypeTrace {
cause: cause.clone(),
values: PolyTraitRefs(ExpectedFound::new(a_is_expected, a, b)),
}
}
}