blob: b6be4bb00199656f8948306b21d37a200f56271b [file] [log] [blame]
use crate::dep_graph::{DepGraph, DepKind, DepNode, DepNodeIndex};
use crate::hir::map::definitions::{self, DefPathHash};
use crate::hir::map::{Entry, HirEntryMap, Map};
use crate::ich::StableHashingContext;
use crate::middle::cstore::CrateStore;
use rustc_data_structures::fingerprint::Fingerprint;
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
use rustc_data_structures::svh::Svh;
use rustc_hir as hir;
use rustc_hir::def_id::CRATE_DEF_INDEX;
use rustc_hir::def_id::{CrateNum, DefIndex, LOCAL_CRATE};
use rustc_hir::intravisit::{self, NestedVisitorMap, Visitor};
use rustc_hir::*;
use rustc_index::vec::IndexVec;
use rustc_session::{CrateDisambiguator, Session};
use rustc_span::source_map::SourceMap;
use rustc_span::{Span, Symbol, DUMMY_SP};
use syntax::ast::NodeId;
use std::iter::repeat;
/// A visitor that walks over the HIR and collects `Node`s into a HIR map.
pub(super) struct NodeCollector<'a, 'hir> {
/// The crate
krate: &'hir Crate<'hir>,
/// Source map
source_map: &'a SourceMap,
/// The node map
map: HirEntryMap<'hir>,
/// The parent of this node
parent_node: hir::HirId,
// These fields keep track of the currently relevant DepNodes during
// the visitor's traversal.
current_dep_node_owner: DefIndex,
current_signature_dep_index: DepNodeIndex,
current_full_dep_index: DepNodeIndex,
currently_in_body: bool,
dep_graph: &'a DepGraph,
definitions: &'a definitions::Definitions,
hir_to_node_id: &'a FxHashMap<HirId, NodeId>,
hcx: StableHashingContext<'a>,
// We are collecting `DepNode::HirBody` hashes here so we can compute the
// crate hash from then later on.
hir_body_nodes: Vec<(DefPathHash, Fingerprint)>,
}
fn input_dep_node_and_hash(
dep_graph: &DepGraph,
hcx: &mut StableHashingContext<'_>,
dep_node: DepNode,
input: impl for<'a> HashStable<StableHashingContext<'a>>,
) -> (DepNodeIndex, Fingerprint) {
let dep_node_index = dep_graph.input_task(dep_node, &mut *hcx, &input).1;
let hash = if dep_graph.is_fully_enabled() {
dep_graph.fingerprint_of(dep_node_index)
} else {
let mut stable_hasher = StableHasher::new();
input.hash_stable(hcx, &mut stable_hasher);
stable_hasher.finish()
};
(dep_node_index, hash)
}
fn alloc_hir_dep_nodes(
dep_graph: &DepGraph,
hcx: &mut StableHashingContext<'_>,
def_path_hash: DefPathHash,
item_like: impl for<'a> HashStable<StableHashingContext<'a>>,
hir_body_nodes: &mut Vec<(DefPathHash, Fingerprint)>,
) -> (DepNodeIndex, DepNodeIndex) {
let sig = dep_graph
.input_task(
def_path_hash.to_dep_node(DepKind::Hir),
&mut *hcx,
HirItemLike { item_like: &item_like, hash_bodies: false },
)
.1;
let (full, hash) = input_dep_node_and_hash(
dep_graph,
hcx,
def_path_hash.to_dep_node(DepKind::HirBody),
HirItemLike { item_like: &item_like, hash_bodies: true },
);
hir_body_nodes.push((def_path_hash, hash));
(sig, full)
}
fn upstream_crates(cstore: &dyn CrateStore) -> Vec<(Symbol, Fingerprint, Svh)> {
let mut upstream_crates: Vec<_> = cstore
.crates_untracked()
.iter()
.map(|&cnum| {
let name = cstore.crate_name_untracked(cnum);
let disambiguator = cstore.crate_disambiguator_untracked(cnum).to_fingerprint();
let hash = cstore.crate_hash_untracked(cnum);
(name, disambiguator, hash)
})
.collect();
upstream_crates.sort_unstable_by_key(|&(name, dis, _)| (name.as_str(), dis));
upstream_crates
}
impl<'a, 'hir> NodeCollector<'a, 'hir> {
pub(super) fn root(
sess: &'a Session,
krate: &'hir Crate<'hir>,
dep_graph: &'a DepGraph,
definitions: &'a definitions::Definitions,
hir_to_node_id: &'a FxHashMap<HirId, NodeId>,
mut hcx: StableHashingContext<'a>,
) -> NodeCollector<'a, 'hir> {
let root_mod_def_path_hash = definitions.def_path_hash(CRATE_DEF_INDEX);
let mut hir_body_nodes = Vec::new();
// Allocate `DepNode`s for the root module.
let (root_mod_sig_dep_index, root_mod_full_dep_index) = {
let Crate {
ref module,
// Crate attributes are not copied over to the root `Mod`, so hash
// them explicitly here.
ref attrs,
span,
// These fields are handled separately:
exported_macros: _,
non_exported_macro_attrs: _,
items: _,
trait_items: _,
impl_items: _,
bodies: _,
trait_impls: _,
body_ids: _,
modules: _,
} = *krate;
alloc_hir_dep_nodes(
dep_graph,
&mut hcx,
root_mod_def_path_hash,
(module, attrs, span),
&mut hir_body_nodes,
)
};
{
dep_graph.input_task(
DepNode::new_no_params(DepKind::AllLocalTraitImpls),
&mut hcx,
&krate.trait_impls,
);
}
let mut collector = NodeCollector {
krate,
source_map: sess.source_map(),
map: IndexVec::from_elem_n(IndexVec::new(), definitions.def_index_count()),
parent_node: hir::CRATE_HIR_ID,
current_signature_dep_index: root_mod_sig_dep_index,
current_full_dep_index: root_mod_full_dep_index,
current_dep_node_owner: CRATE_DEF_INDEX,
currently_in_body: false,
dep_graph,
definitions,
hir_to_node_id,
hcx,
hir_body_nodes,
};
collector.insert_entry(
hir::CRATE_HIR_ID,
Entry {
parent: hir::CRATE_HIR_ID,
dep_node: root_mod_sig_dep_index,
node: Node::Crate,
},
);
collector
}
pub(super) fn finalize_and_compute_crate_hash(
mut self,
crate_disambiguator: CrateDisambiguator,
cstore: &dyn CrateStore,
commandline_args_hash: u64,
) -> (HirEntryMap<'hir>, Svh) {
self.hir_body_nodes.sort_unstable_by_key(|bn| bn.0);
let node_hashes = self.hir_body_nodes.iter().fold(
Fingerprint::ZERO,
|combined_fingerprint, &(def_path_hash, fingerprint)| {
combined_fingerprint.combine(def_path_hash.0.combine(fingerprint))
},
);
let upstream_crates = upstream_crates(cstore);
// We hash the final, remapped names of all local source files so we
// don't have to include the path prefix remapping commandline args.
// If we included the full mapping in the SVH, we could only have
// reproducible builds by compiling from the same directory. So we just
// hash the result of the mapping instead of the mapping itself.
let mut source_file_names: Vec<_> = self
.source_map
.files()
.iter()
.filter(|source_file| CrateNum::from_u32(source_file.crate_of_origin) == LOCAL_CRATE)
.map(|source_file| source_file.name_hash)
.collect();
source_file_names.sort_unstable();
let crate_hash_input = (
((node_hashes, upstream_crates), source_file_names),
(commandline_args_hash, crate_disambiguator.to_fingerprint()),
);
let (_, crate_hash) = input_dep_node_and_hash(
self.dep_graph,
&mut self.hcx,
DepNode::new_no_params(DepKind::Krate),
crate_hash_input,
);
let svh = Svh::new(crate_hash.to_smaller_hash());
(self.map, svh)
}
fn insert_entry(&mut self, id: HirId, entry: Entry<'hir>) {
debug!("hir_map: {:?} => {:?}", id, entry);
let local_map = &mut self.map[id.owner];
let i = id.local_id.as_u32() as usize;
let len = local_map.len();
if i >= len {
local_map.extend(repeat(None).take(i - len + 1));
}
local_map[id.local_id] = Some(entry);
}
fn insert(&mut self, span: Span, hir_id: HirId, node: Node<'hir>) {
let entry = Entry {
parent: self.parent_node,
dep_node: if self.currently_in_body {
self.current_full_dep_index
} else {
self.current_signature_dep_index
},
node,
};
// Make sure that the DepNode of some node coincides with the HirId
// owner of that node.
if cfg!(debug_assertions) {
let node_id = self.hir_to_node_id[&hir_id];
assert_eq!(self.definitions.node_to_hir_id(node_id), hir_id);
if hir_id.owner != self.current_dep_node_owner {
let node_str = match self.definitions.opt_def_index(node_id) {
Some(def_index) => self.definitions.def_path(def_index).to_string_no_crate(),
None => format!("{:?}", node),
};
let forgot_str = if hir_id == hir::DUMMY_HIR_ID {
format!("\nMaybe you forgot to lower the node id {:?}?", node_id)
} else {
String::new()
};
span_bug!(
span,
"inconsistent DepNode at `{:?}` for `{}`: \
current_dep_node_owner={} ({:?}), hir_id.owner={} ({:?}){}",
self.source_map.span_to_string(span),
node_str,
self.definitions.def_path(self.current_dep_node_owner).to_string_no_crate(),
self.current_dep_node_owner,
self.definitions.def_path(hir_id.owner).to_string_no_crate(),
hir_id.owner,
forgot_str,
)
}
}
self.insert_entry(hir_id, entry);
}
fn with_parent<F: FnOnce(&mut Self)>(&mut self, parent_node_id: HirId, f: F) {
let parent_node = self.parent_node;
self.parent_node = parent_node_id;
f(self);
self.parent_node = parent_node;
}
fn with_dep_node_owner<
T: for<'b> HashStable<StableHashingContext<'b>>,
F: FnOnce(&mut Self),
>(
&mut self,
dep_node_owner: DefIndex,
item_like: &T,
f: F,
) {
let prev_owner = self.current_dep_node_owner;
let prev_signature_dep_index = self.current_signature_dep_index;
let prev_full_dep_index = self.current_full_dep_index;
let prev_in_body = self.currently_in_body;
let def_path_hash = self.definitions.def_path_hash(dep_node_owner);
let (signature_dep_index, full_dep_index) = alloc_hir_dep_nodes(
self.dep_graph,
&mut self.hcx,
def_path_hash,
item_like,
&mut self.hir_body_nodes,
);
self.current_signature_dep_index = signature_dep_index;
self.current_full_dep_index = full_dep_index;
self.current_dep_node_owner = dep_node_owner;
self.currently_in_body = false;
f(self);
self.currently_in_body = prev_in_body;
self.current_dep_node_owner = prev_owner;
self.current_full_dep_index = prev_full_dep_index;
self.current_signature_dep_index = prev_signature_dep_index;
}
}
impl<'a, 'hir> Visitor<'hir> for NodeCollector<'a, 'hir> {
type Map = Map<'hir>;
/// Because we want to track parent items and so forth, enable
/// deep walking so that we walk nested items in the context of
/// their outer items.
fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, Self::Map> {
panic!("`visit_nested_xxx` must be manually implemented in this visitor");
}
fn visit_nested_item(&mut self, item: ItemId) {
debug!("visit_nested_item: {:?}", item);
self.visit_item(self.krate.item(item.id));
}
fn visit_nested_trait_item(&mut self, item_id: TraitItemId) {
self.visit_trait_item(self.krate.trait_item(item_id));
}
fn visit_nested_impl_item(&mut self, item_id: ImplItemId) {
self.visit_impl_item(self.krate.impl_item(item_id));
}
fn visit_nested_body(&mut self, id: BodyId) {
let prev_in_body = self.currently_in_body;
self.currently_in_body = true;
self.visit_body(self.krate.body(id));
self.currently_in_body = prev_in_body;
}
fn visit_param(&mut self, param: &'hir Param<'hir>) {
let node = Node::Param(param);
self.insert(param.pat.span, param.hir_id, node);
self.with_parent(param.hir_id, |this| {
intravisit::walk_param(this, param);
});
}
fn visit_item(&mut self, i: &'hir Item<'hir>) {
debug!("visit_item: {:?}", i);
debug_assert_eq!(
i.hir_id.owner,
self.definitions.opt_def_index(self.hir_to_node_id[&i.hir_id]).unwrap()
);
self.with_dep_node_owner(i.hir_id.owner, i, |this| {
this.insert(i.span, i.hir_id, Node::Item(i));
this.with_parent(i.hir_id, |this| {
if let ItemKind::Struct(ref struct_def, _) = i.kind {
// If this is a tuple or unit-like struct, register the constructor.
if let Some(ctor_hir_id) = struct_def.ctor_hir_id() {
this.insert(i.span, ctor_hir_id, Node::Ctor(struct_def));
}
}
intravisit::walk_item(this, i);
});
});
}
fn visit_foreign_item(&mut self, foreign_item: &'hir ForeignItem<'hir>) {
self.insert(foreign_item.span, foreign_item.hir_id, Node::ForeignItem(foreign_item));
self.with_parent(foreign_item.hir_id, |this| {
intravisit::walk_foreign_item(this, foreign_item);
});
}
fn visit_generic_param(&mut self, param: &'hir GenericParam<'hir>) {
self.insert(param.span, param.hir_id, Node::GenericParam(param));
intravisit::walk_generic_param(self, param);
}
fn visit_trait_item(&mut self, ti: &'hir TraitItem<'hir>) {
debug_assert_eq!(
ti.hir_id.owner,
self.definitions.opt_def_index(self.hir_to_node_id[&ti.hir_id]).unwrap()
);
self.with_dep_node_owner(ti.hir_id.owner, ti, |this| {
this.insert(ti.span, ti.hir_id, Node::TraitItem(ti));
this.with_parent(ti.hir_id, |this| {
intravisit::walk_trait_item(this, ti);
});
});
}
fn visit_impl_item(&mut self, ii: &'hir ImplItem<'hir>) {
debug_assert_eq!(
ii.hir_id.owner,
self.definitions.opt_def_index(self.hir_to_node_id[&ii.hir_id]).unwrap()
);
self.with_dep_node_owner(ii.hir_id.owner, ii, |this| {
this.insert(ii.span, ii.hir_id, Node::ImplItem(ii));
this.with_parent(ii.hir_id, |this| {
intravisit::walk_impl_item(this, ii);
});
});
}
fn visit_pat(&mut self, pat: &'hir Pat<'hir>) {
let node =
if let PatKind::Binding(..) = pat.kind { Node::Binding(pat) } else { Node::Pat(pat) };
self.insert(pat.span, pat.hir_id, node);
self.with_parent(pat.hir_id, |this| {
intravisit::walk_pat(this, pat);
});
}
fn visit_arm(&mut self, arm: &'hir Arm<'hir>) {
let node = Node::Arm(arm);
self.insert(arm.span, arm.hir_id, node);
self.with_parent(arm.hir_id, |this| {
intravisit::walk_arm(this, arm);
});
}
fn visit_anon_const(&mut self, constant: &'hir AnonConst) {
self.insert(DUMMY_SP, constant.hir_id, Node::AnonConst(constant));
self.with_parent(constant.hir_id, |this| {
intravisit::walk_anon_const(this, constant);
});
}
fn visit_expr(&mut self, expr: &'hir Expr<'hir>) {
self.insert(expr.span, expr.hir_id, Node::Expr(expr));
self.with_parent(expr.hir_id, |this| {
intravisit::walk_expr(this, expr);
});
}
fn visit_stmt(&mut self, stmt: &'hir Stmt<'hir>) {
self.insert(stmt.span, stmt.hir_id, Node::Stmt(stmt));
self.with_parent(stmt.hir_id, |this| {
intravisit::walk_stmt(this, stmt);
});
}
fn visit_path_segment(&mut self, path_span: Span, path_segment: &'hir PathSegment<'hir>) {
if let Some(hir_id) = path_segment.hir_id {
self.insert(path_span, hir_id, Node::PathSegment(path_segment));
}
intravisit::walk_path_segment(self, path_span, path_segment);
}
fn visit_ty(&mut self, ty: &'hir Ty<'hir>) {
self.insert(ty.span, ty.hir_id, Node::Ty(ty));
self.with_parent(ty.hir_id, |this| {
intravisit::walk_ty(this, ty);
});
}
fn visit_trait_ref(&mut self, tr: &'hir TraitRef<'hir>) {
self.insert(tr.path.span, tr.hir_ref_id, Node::TraitRef(tr));
self.with_parent(tr.hir_ref_id, |this| {
intravisit::walk_trait_ref(this, tr);
});
}
fn visit_fn(
&mut self,
fk: intravisit::FnKind<'hir>,
fd: &'hir FnDecl<'hir>,
b: BodyId,
s: Span,
id: HirId,
) {
assert_eq!(self.parent_node, id);
intravisit::walk_fn(self, fk, fd, b, s, id);
}
fn visit_block(&mut self, block: &'hir Block<'hir>) {
self.insert(block.span, block.hir_id, Node::Block(block));
self.with_parent(block.hir_id, |this| {
intravisit::walk_block(this, block);
});
}
fn visit_local(&mut self, l: &'hir Local<'hir>) {
self.insert(l.span, l.hir_id, Node::Local(l));
self.with_parent(l.hir_id, |this| intravisit::walk_local(this, l))
}
fn visit_lifetime(&mut self, lifetime: &'hir Lifetime) {
self.insert(lifetime.span, lifetime.hir_id, Node::Lifetime(lifetime));
}
fn visit_vis(&mut self, visibility: &'hir Visibility<'hir>) {
match visibility.node {
VisibilityKind::Public | VisibilityKind::Crate(_) | VisibilityKind::Inherited => {}
VisibilityKind::Restricted { hir_id, .. } => {
self.insert(visibility.span, hir_id, Node::Visibility(visibility));
self.with_parent(hir_id, |this| {
intravisit::walk_vis(this, visibility);
});
}
}
}
fn visit_macro_def(&mut self, macro_def: &'hir MacroDef<'hir>) {
let node_id = self.hir_to_node_id[&macro_def.hir_id];
let def_index = self.definitions.opt_def_index(node_id).unwrap();
self.with_dep_node_owner(def_index, macro_def, |this| {
this.insert(macro_def.span, macro_def.hir_id, Node::MacroDef(macro_def));
});
}
fn visit_variant(&mut self, v: &'hir Variant<'hir>, g: &'hir Generics<'hir>, item_id: HirId) {
self.insert(v.span, v.id, Node::Variant(v));
self.with_parent(v.id, |this| {
// Register the constructor of this variant.
if let Some(ctor_hir_id) = v.data.ctor_hir_id() {
this.insert(v.span, ctor_hir_id, Node::Ctor(&v.data));
}
intravisit::walk_variant(this, v, g, item_id);
});
}
fn visit_struct_field(&mut self, field: &'hir StructField<'hir>) {
self.insert(field.span, field.hir_id, Node::Field(field));
self.with_parent(field.hir_id, |this| {
intravisit::walk_struct_field(this, field);
});
}
fn visit_trait_item_ref(&mut self, ii: &'hir TraitItemRef) {
// Do not visit the duplicate information in TraitItemRef. We want to
// map the actual nodes, not the duplicate ones in the *Ref.
let TraitItemRef { id, ident: _, kind: _, span: _, defaultness: _ } = *ii;
self.visit_nested_trait_item(id);
}
fn visit_impl_item_ref(&mut self, ii: &'hir ImplItemRef<'hir>) {
// Do not visit the duplicate information in ImplItemRef. We want to
// map the actual nodes, not the duplicate ones in the *Ref.
let ImplItemRef { id, ident: _, kind: _, span: _, vis: _, defaultness: _ } = *ii;
self.visit_nested_impl_item(id);
}
}
// This is a wrapper structure that allows determining if span values within
// the wrapped item should be hashed or not.
struct HirItemLike<T> {
item_like: T,
hash_bodies: bool,
}
impl<'hir, T> HashStable<StableHashingContext<'hir>> for HirItemLike<T>
where
T: HashStable<StableHashingContext<'hir>>,
{
fn hash_stable(&self, hcx: &mut StableHashingContext<'hir>, hasher: &mut StableHasher) {
hcx.while_hashing_hir_bodies(self.hash_bodies, |hcx| {
self.item_like.hash_stable(hcx, hasher);
});
}
}