blob: bedfdab97d58bff2aeee4538ac3d54aa8a4cfa8e [file] [log] [blame]
// run-pass
#![allow(unused_imports)]
#![allow(non_snake_case)]
// ASCII art shape renderer. Demonstrates traits, impls, operator overloading,
// non-copyable struct, unit testing. To run execute: rustc --test shapes.rs &&
// ./shapes
// Rust's std library is tightly bound to the language itself so it is
// automatically linked in. However the extra library is designed to be
// optional (for code that must run on constrained environments like embedded
// devices or special environments like kernel code) so it must be explicitly
// linked in.
// Extern mod controls linkage. Use controls the visibility of names to modules
// that are already linked in. Using WriterUtil allows us to use the write_line
// method.
use std::fmt;
use std::iter::repeat;
use std::slice;
// Represents a position on a canvas.
#[derive(Copy, Clone)]
struct Point {
x: isize,
y: isize,
}
// Represents an offset on a canvas. (This has the same structure as a Point.
// but different semantics).
#[derive(Copy, Clone)]
struct Size {
width: isize,
height: isize,
}
#[derive(Copy, Clone)]
struct Rect {
top_left: Point,
size: Size,
}
// Contains the information needed to do shape rendering via ASCII art.
struct AsciiArt {
width: usize,
height: usize,
fill: char,
lines: Vec<Vec<char> > ,
// This struct can be quite large so we'll disable copying: developers need
// to either pass these structs around via references or move them.
}
impl Drop for AsciiArt {
fn drop(&mut self) {}
}
// It's common to define a constructor sort of function to create struct instances.
// If there is a canonical constructor it is typically named the same as the type.
// Other constructor sort of functions are typically named from_foo, from_bar, etc.
fn AsciiArt(width: usize, height: usize, fill: char) -> AsciiArt {
// Build a vector of vectors containing blank characters for each position in
// our canvas.
let lines = vec![vec!['.'; width]; height];
// Rust code often returns values by omitting the trailing semi-colon
// instead of using an explicit return statement.
AsciiArt {width: width, height: height, fill: fill, lines: lines}
}
// Methods particular to the AsciiArt struct.
impl AsciiArt {
fn add_pt(&mut self, x: isize, y: isize) {
if x >= 0 && x < self.width as isize {
if y >= 0 && y < self.height as isize {
// Note that numeric types don't implicitly convert to each other.
let v = y as usize;
let h = x as usize;
// Vector subscripting will normally copy the element, but &v[i]
// will return a reference which is what we need because the
// element is:
// 1) potentially large
// 2) needs to be modified
let row = &mut self.lines[v];
row[h] = self.fill;
}
}
}
}
// Allows AsciiArt to be converted to a string using the libcore ToString trait.
// Note that the %s fmt! specifier will not call this automatically.
impl fmt::Display for AsciiArt {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
// Convert each line into a string.
let lines = self.lines.iter()
.map(|line| line.iter().cloned().collect())
.collect::<Vec<String>>();
// Concatenate the lines together using a new-line.
write!(f, "{}", lines.join("\n"))
}
}
// This is similar to an interface in other languages: it defines a protocol which
// developers can implement for arbitrary concrete types.
trait Canvas {
fn add_point(&mut self, shape: Point);
fn add_rect(&mut self, shape: Rect);
// Unlike interfaces traits support default implementations.
// Got an ICE as soon as I added this method.
fn add_points(&mut self, shapes: &[Point]) {
for pt in shapes {self.add_point(*pt)};
}
}
// Here we provide an implementation of the Canvas methods for AsciiArt.
// Other implementations could also be provided (e.g., for PDF or Apple's Quartz)
// and code can use them polymorphically via the Canvas trait.
impl Canvas for AsciiArt {
fn add_point(&mut self, shape: Point) {
self.add_pt(shape.x, shape.y);
}
fn add_rect(&mut self, shape: Rect) {
// Add the top and bottom lines.
for x in shape.top_left.x..shape.top_left.x + shape.size.width {
self.add_pt(x, shape.top_left.y);
self.add_pt(x, shape.top_left.y + shape.size.height - 1);
}
// Add the left and right lines.
for y in shape.top_left.y..shape.top_left.y + shape.size.height {
self.add_pt(shape.top_left.x, y);
self.add_pt(shape.top_left.x + shape.size.width - 1, y);
}
}
}
// Rust's unit testing framework is currently a bit under-developed so we'll use
// this little helper.
pub fn check_strs(actual: &str, expected: &str) -> bool {
if actual != expected {
println!("Found:\n{}\nbut expected\n{}", actual, expected);
return false;
}
return true;
}
fn test_ascii_art_ctor() {
let art = AsciiArt(3, 3, '*');
assert!(check_strs(&art.to_string(), "...\n...\n..."));
}
fn test_add_pt() {
let mut art = AsciiArt(3, 3, '*');
art.add_pt(0, 0);
art.add_pt(0, -10);
art.add_pt(1, 2);
assert!(check_strs(&art.to_string(), "*..\n...\n.*."));
}
fn test_shapes() {
let mut art = AsciiArt(4, 4, '*');
art.add_rect(Rect {top_left: Point {x: 0, y: 0}, size: Size {width: 4, height: 4}});
art.add_point(Point {x: 2, y: 2});
assert!(check_strs(&art.to_string(), "****\n*..*\n*.**\n****"));
}
pub fn main() {
test_ascii_art_ctor();
test_add_pt();
test_shapes();
}