blob: d9f2259030ff5b0b05ee715e8687b7405259bcb1 [file] [log] [blame]
//! A pass that propagates the unreachable terminator of a block to its predecessors
//! when all of their successors are unreachable. This is achieved through a
//! post-order traversal of the blocks.
use crate::transform::simplify;
use crate::transform::{MirPass, MirSource};
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_middle::mir::*;
use rustc_middle::ty::TyCtxt;
use std::borrow::Cow;
pub struct UnreachablePropagation;
impl MirPass<'_> for UnreachablePropagation {
fn run_pass<'tcx>(&self, tcx: TyCtxt<'tcx>, _: MirSource<'tcx>, body: &mut Body<'tcx>) {
if tcx.sess.opts.debugging_opts.mir_opt_level < 3 {
// Enable only under -Zmir-opt-level=3 as in some cases (check the deeply-nested-opt
// perf benchmark) LLVM may spend quite a lot of time optimizing the generated code.
return;
}
let mut unreachable_blocks = FxHashSet::default();
let mut replacements = FxHashMap::default();
for (bb, bb_data) in traversal::postorder(body) {
let terminator = bb_data.terminator();
// HACK: If the block contains any asm statement it is not regarded as unreachable.
// This is a temporary solution that handles possibly diverging asm statements.
// Accompanying testcases: mir-opt/unreachable_asm.rs and mir-opt/unreachable_asm_2.rs
let asm_stmt_in_block = || {
bb_data.statements.iter().any(|stmt: &Statement<'_>| match stmt.kind {
StatementKind::LlvmInlineAsm(..) => true,
_ => false,
})
};
if terminator.kind == TerminatorKind::Unreachable && !asm_stmt_in_block() {
unreachable_blocks.insert(bb);
} else {
let is_unreachable = |succ: BasicBlock| unreachable_blocks.contains(&succ);
let terminator_kind_opt = remove_successors(&terminator.kind, is_unreachable);
if let Some(terminator_kind) = terminator_kind_opt {
if terminator_kind == TerminatorKind::Unreachable && !asm_stmt_in_block() {
unreachable_blocks.insert(bb);
}
replacements.insert(bb, terminator_kind);
}
}
}
let replaced = !replacements.is_empty();
for (bb, terminator_kind) in replacements {
body.basic_blocks_mut()[bb].terminator_mut().kind = terminator_kind;
}
if replaced {
simplify::remove_dead_blocks(body);
}
}
}
fn remove_successors<F>(
terminator_kind: &TerminatorKind<'tcx>,
predicate: F,
) -> Option<TerminatorKind<'tcx>>
where
F: Fn(BasicBlock) -> bool,
{
match *terminator_kind {
TerminatorKind::Goto { target } if predicate(target) => Some(TerminatorKind::Unreachable),
TerminatorKind::SwitchInt { ref discr, switch_ty, ref values, ref targets } => {
let original_targets_len = targets.len();
let (otherwise, targets) = targets.split_last().unwrap();
let retained = values
.iter()
.zip(targets.iter())
.filter(|(_, &t)| !predicate(t))
.collect::<Vec<_>>();
let mut values = retained.iter().map(|&(v, _)| *v).collect::<Vec<_>>();
let mut targets = retained.iter().map(|&(_, d)| *d).collect::<Vec<_>>();
if !predicate(*otherwise) {
targets.push(*otherwise);
} else {
values.pop();
}
let retained_targets_len = targets.len();
if targets.is_empty() {
Some(TerminatorKind::Unreachable)
} else if targets.len() == 1 {
Some(TerminatorKind::Goto { target: targets[0] })
} else if original_targets_len != retained_targets_len {
Some(TerminatorKind::SwitchInt {
discr: discr.clone(),
switch_ty,
values: Cow::from(values),
targets,
})
} else {
None
}
}
_ => None,
}
}