blob: 523d3c9af3f68c0dfde4f15e4272545618479c9d [file] [log] [blame]
//! This is the implementation of the pass which transforms generators into state machines.
//!
//! MIR generation for generators creates a function which has a self argument which
//! passes by value. This argument is effectively a generator type which only contains upvars and
//! is only used for this argument inside the MIR for the generator.
//! It is passed by value to enable upvars to be moved out of it. Drop elaboration runs on that
//! MIR before this pass and creates drop flags for MIR locals.
//! It will also drop the generator argument (which only consists of upvars) if any of the upvars
//! are moved out of. This pass elaborates the drops of upvars / generator argument in the case
//! that none of the upvars were moved out of. This is because we cannot have any drops of this
//! generator in the MIR, since it is used to create the drop glue for the generator. We'd get
//! infinite recursion otherwise.
//!
//! This pass creates the implementation for the Generator::resume function and the drop shim
//! for the generator based on the MIR input. It converts the generator argument from Self to
//! &mut Self adding derefs in the MIR as needed. It computes the final layout of the generator
//! struct which looks like this:
//! First upvars are stored
//! It is followed by the generator state field.
//! Then finally the MIR locals which are live across a suspension point are stored.
//!
//! struct Generator {
//! upvars...,
//! state: u32,
//! mir_locals...,
//! }
//!
//! This pass computes the meaning of the state field and the MIR locals which are live
//! across a suspension point. There are however three hardcoded generator states:
//! 0 - Generator have not been resumed yet
//! 1 - Generator has returned / is completed
//! 2 - Generator has been poisoned
//!
//! It also rewrites `return x` and `yield y` as setting a new generator state and returning
//! GeneratorState::Complete(x) and GeneratorState::Yielded(y) respectively.
//! MIR locals which are live across a suspension point are moved to the generator struct
//! with references to them being updated with references to the generator struct.
//!
//! The pass creates two functions which have a switch on the generator state giving
//! the action to take.
//!
//! One of them is the implementation of Generator::resume.
//! For generators with state 0 (unresumed) it starts the execution of the generator.
//! For generators with state 1 (returned) and state 2 (poisoned) it panics.
//! Otherwise it continues the execution from the last suspension point.
//!
//! The other function is the drop glue for the generator.
//! For generators with state 0 (unresumed) it drops the upvars of the generator.
//! For generators with state 1 (returned) and state 2 (poisoned) it does nothing.
//! Otherwise it drops all the values in scope at the last suspension point.
use crate::dataflow::impls::{
MaybeBorrowedLocals, MaybeLiveLocals, MaybeRequiresStorage, MaybeStorageLive,
};
use crate::dataflow::{self, Analysis};
use crate::transform::no_landing_pads::no_landing_pads;
use crate::transform::simplify;
use crate::transform::{MirPass, MirSource};
use crate::util::dump_mir;
use crate::util::storage;
use rustc_data_structures::fx::FxHashMap;
use rustc_hir as hir;
use rustc_hir::def_id::DefId;
use rustc_hir::lang_items::{GeneratorStateLangItem, PinTypeLangItem};
use rustc_index::bit_set::{BitMatrix, BitSet};
use rustc_index::vec::{Idx, IndexVec};
use rustc_middle::mir::visit::{MutVisitor, PlaceContext, Visitor};
use rustc_middle::mir::*;
use rustc_middle::ty::subst::SubstsRef;
use rustc_middle::ty::GeneratorSubsts;
use rustc_middle::ty::{self, AdtDef, Ty, TyCtxt};
use rustc_target::abi::VariantIdx;
use rustc_target::spec::PanicStrategy;
use std::borrow::Cow;
use std::{iter, ops};
pub struct StateTransform;
struct RenameLocalVisitor<'tcx> {
from: Local,
to: Local,
tcx: TyCtxt<'tcx>,
}
impl<'tcx> MutVisitor<'tcx> for RenameLocalVisitor<'tcx> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn visit_local(&mut self, local: &mut Local, _: PlaceContext, _: Location) {
if *local == self.from {
*local = self.to;
}
}
fn visit_terminator(&mut self, terminator: &mut Terminator<'tcx>, location: Location) {
match terminator.kind {
TerminatorKind::Return => {
// Do not replace the implicit `_0` access here, as that's not possible. The
// transform already handles `return` correctly.
}
_ => self.super_terminator(terminator, location),
}
}
}
struct DerefArgVisitor<'tcx> {
tcx: TyCtxt<'tcx>,
}
impl<'tcx> MutVisitor<'tcx> for DerefArgVisitor<'tcx> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn visit_local(&mut self, local: &mut Local, _: PlaceContext, _: Location) {
assert_ne!(*local, SELF_ARG);
}
fn visit_place(&mut self, place: &mut Place<'tcx>, context: PlaceContext, location: Location) {
if place.local == SELF_ARG {
replace_base(
place,
Place {
local: SELF_ARG,
projection: self.tcx().intern_place_elems(&[ProjectionElem::Deref]),
},
self.tcx,
);
} else {
self.visit_local(&mut place.local, context, location);
for elem in place.projection.iter() {
if let PlaceElem::Index(local) = elem {
assert_ne!(local, SELF_ARG);
}
}
}
}
}
struct PinArgVisitor<'tcx> {
ref_gen_ty: Ty<'tcx>,
tcx: TyCtxt<'tcx>,
}
impl<'tcx> MutVisitor<'tcx> for PinArgVisitor<'tcx> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn visit_local(&mut self, local: &mut Local, _: PlaceContext, _: Location) {
assert_ne!(*local, SELF_ARG);
}
fn visit_place(&mut self, place: &mut Place<'tcx>, context: PlaceContext, location: Location) {
if place.local == SELF_ARG {
replace_base(
place,
Place {
local: SELF_ARG,
projection: self.tcx().intern_place_elems(&[ProjectionElem::Field(
Field::new(0),
self.ref_gen_ty,
)]),
},
self.tcx,
);
} else {
self.visit_local(&mut place.local, context, location);
for elem in place.projection.iter() {
if let PlaceElem::Index(local) = elem {
assert_ne!(local, SELF_ARG);
}
}
}
}
}
fn replace_base<'tcx>(place: &mut Place<'tcx>, new_base: Place<'tcx>, tcx: TyCtxt<'tcx>) {
place.local = new_base.local;
let mut new_projection = new_base.projection.to_vec();
new_projection.append(&mut place.projection.to_vec());
place.projection = tcx.intern_place_elems(&new_projection);
}
const SELF_ARG: Local = Local::from_u32(1);
/// Generator has not been resumed yet.
const UNRESUMED: usize = GeneratorSubsts::UNRESUMED;
/// Generator has returned / is completed.
const RETURNED: usize = GeneratorSubsts::RETURNED;
/// Generator has panicked and is poisoned.
const POISONED: usize = GeneratorSubsts::POISONED;
/// A `yield` point in the generator.
struct SuspensionPoint<'tcx> {
/// State discriminant used when suspending or resuming at this point.
state: usize,
/// The block to jump to after resumption.
resume: BasicBlock,
/// Where to move the resume argument after resumption.
resume_arg: Place<'tcx>,
/// Which block to jump to if the generator is dropped in this state.
drop: Option<BasicBlock>,
/// Set of locals that have live storage while at this suspension point.
storage_liveness: BitSet<Local>,
}
struct TransformVisitor<'tcx> {
tcx: TyCtxt<'tcx>,
state_adt_ref: &'tcx AdtDef,
state_substs: SubstsRef<'tcx>,
// The type of the discriminant in the generator struct
discr_ty: Ty<'tcx>,
// Mapping from Local to (type of local, generator struct index)
// FIXME(eddyb) This should use `IndexVec<Local, Option<_>>`.
remap: FxHashMap<Local, (Ty<'tcx>, VariantIdx, usize)>,
// A map from a suspension point in a block to the locals which have live storage at that point
storage_liveness: IndexVec<BasicBlock, Option<BitSet<Local>>>,
// A list of suspension points, generated during the transform
suspension_points: Vec<SuspensionPoint<'tcx>>,
// The set of locals that have no `StorageLive`/`StorageDead` annotations.
always_live_locals: storage::AlwaysLiveLocals,
// The original RETURN_PLACE local
new_ret_local: Local,
}
impl TransformVisitor<'tcx> {
// Make a GeneratorState rvalue
fn make_state(&self, idx: VariantIdx, val: Operand<'tcx>) -> Rvalue<'tcx> {
let adt = AggregateKind::Adt(self.state_adt_ref, idx, self.state_substs, None, None);
Rvalue::Aggregate(box adt, vec![val])
}
// Create a Place referencing a generator struct field
fn make_field(&self, variant_index: VariantIdx, idx: usize, ty: Ty<'tcx>) -> Place<'tcx> {
let self_place = Place::from(SELF_ARG);
let base = self.tcx.mk_place_downcast_unnamed(self_place, variant_index);
let mut projection = base.projection.to_vec();
projection.push(ProjectionElem::Field(Field::new(idx), ty));
Place { local: base.local, projection: self.tcx.intern_place_elems(&projection) }
}
// Create a statement which changes the discriminant
fn set_discr(&self, state_disc: VariantIdx, source_info: SourceInfo) -> Statement<'tcx> {
let self_place = Place::from(SELF_ARG);
Statement {
source_info,
kind: StatementKind::SetDiscriminant {
place: box self_place,
variant_index: state_disc,
},
}
}
// Create a statement which reads the discriminant into a temporary
fn get_discr(&self, body: &mut Body<'tcx>) -> (Statement<'tcx>, Place<'tcx>) {
let temp_decl = LocalDecl::new(self.discr_ty, body.span).internal();
let local_decls_len = body.local_decls.push(temp_decl);
let temp = Place::from(local_decls_len);
let self_place = Place::from(SELF_ARG);
let assign = Statement {
source_info: SourceInfo::outermost(body.span),
kind: StatementKind::Assign(box (temp, Rvalue::Discriminant(self_place))),
};
(assign, temp)
}
}
impl MutVisitor<'tcx> for TransformVisitor<'tcx> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn visit_local(&mut self, local: &mut Local, _: PlaceContext, _: Location) {
assert_eq!(self.remap.get(local), None);
}
fn visit_place(
&mut self,
place: &mut Place<'tcx>,
_context: PlaceContext,
_location: Location,
) {
// Replace an Local in the remap with a generator struct access
if let Some(&(ty, variant_index, idx)) = self.remap.get(&place.local) {
replace_base(place, self.make_field(variant_index, idx, ty), self.tcx);
}
}
fn visit_basic_block_data(&mut self, block: BasicBlock, data: &mut BasicBlockData<'tcx>) {
// Remove StorageLive and StorageDead statements for remapped locals
data.retain_statements(|s| match s.kind {
StatementKind::StorageLive(l) | StatementKind::StorageDead(l) => {
!self.remap.contains_key(&l)
}
_ => true,
});
let ret_val = match data.terminator().kind {
TerminatorKind::Return => Some((
VariantIdx::new(1),
None,
Operand::Move(Place::from(self.new_ret_local)),
None,
)),
TerminatorKind::Yield { ref value, resume, resume_arg, drop } => {
Some((VariantIdx::new(0), Some((resume, resume_arg)), value.clone(), drop))
}
_ => None,
};
if let Some((state_idx, resume, v, drop)) = ret_val {
let source_info = data.terminator().source_info;
// We must assign the value first in case it gets declared dead below
data.statements.push(Statement {
source_info,
kind: StatementKind::Assign(box (
Place::return_place(),
self.make_state(state_idx, v),
)),
});
let state = if let Some((resume, resume_arg)) = resume {
// Yield
let state = 3 + self.suspension_points.len();
// The resume arg target location might itself be remapped if its base local is
// live across a yield.
let resume_arg =
if let Some(&(ty, variant, idx)) = self.remap.get(&resume_arg.local) {
self.make_field(variant, idx, ty)
} else {
resume_arg
};
self.suspension_points.push(SuspensionPoint {
state,
resume,
resume_arg,
drop,
storage_liveness: self.storage_liveness[block].clone().unwrap(),
});
VariantIdx::new(state)
} else {
// Return
VariantIdx::new(RETURNED) // state for returned
};
data.statements.push(self.set_discr(state, source_info));
data.terminator_mut().kind = TerminatorKind::Return;
}
self.super_basic_block_data(block, data);
}
}
fn make_generator_state_argument_indirect<'tcx>(tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
let gen_ty = body.local_decls.raw[1].ty;
let ref_gen_ty =
tcx.mk_ref(tcx.lifetimes.re_erased, ty::TypeAndMut { ty: gen_ty, mutbl: Mutability::Mut });
// Replace the by value generator argument
body.local_decls.raw[1].ty = ref_gen_ty;
// Add a deref to accesses of the generator state
DerefArgVisitor { tcx }.visit_body(body);
}
fn make_generator_state_argument_pinned<'tcx>(tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
let ref_gen_ty = body.local_decls.raw[1].ty;
let pin_did = tcx.require_lang_item(PinTypeLangItem, Some(body.span));
let pin_adt_ref = tcx.adt_def(pin_did);
let substs = tcx.intern_substs(&[ref_gen_ty.into()]);
let pin_ref_gen_ty = tcx.mk_adt(pin_adt_ref, substs);
// Replace the by ref generator argument
body.local_decls.raw[1].ty = pin_ref_gen_ty;
// Add the Pin field access to accesses of the generator state
PinArgVisitor { ref_gen_ty, tcx }.visit_body(body);
}
/// Allocates a new local and replaces all references of `local` with it. Returns the new local.
///
/// `local` will be changed to a new local decl with type `ty`.
///
/// Note that the new local will be uninitialized. It is the caller's responsibility to assign some
/// valid value to it before its first use.
fn replace_local<'tcx>(
local: Local,
ty: Ty<'tcx>,
body: &mut Body<'tcx>,
tcx: TyCtxt<'tcx>,
) -> Local {
let new_decl = LocalDecl::new(ty, body.span);
let new_local = body.local_decls.push(new_decl);
body.local_decls.swap(local, new_local);
RenameLocalVisitor { from: local, to: new_local, tcx }.visit_body(body);
new_local
}
struct LivenessInfo {
/// Which locals are live across any suspension point.
saved_locals: GeneratorSavedLocals,
/// The set of saved locals live at each suspension point.
live_locals_at_suspension_points: Vec<BitSet<GeneratorSavedLocal>>,
/// Parallel vec to the above with SourceInfo for each yield terminator.
source_info_at_suspension_points: Vec<SourceInfo>,
/// For every saved local, the set of other saved locals that are
/// storage-live at the same time as this local. We cannot overlap locals in
/// the layout which have conflicting storage.
storage_conflicts: BitMatrix<GeneratorSavedLocal, GeneratorSavedLocal>,
/// For every suspending block, the locals which are storage-live across
/// that suspension point.
storage_liveness: IndexVec<BasicBlock, Option<BitSet<Local>>>,
}
fn locals_live_across_suspend_points(
tcx: TyCtxt<'tcx>,
body: &Body<'tcx>,
source: MirSource<'tcx>,
always_live_locals: &storage::AlwaysLiveLocals,
movable: bool,
) -> LivenessInfo {
let def_id = source.def_id();
let body_ref: &Body<'_> = &body;
// Calculate when MIR locals have live storage. This gives us an upper bound of their
// lifetimes.
let mut storage_live = MaybeStorageLive::new(always_live_locals.clone())
.into_engine(tcx, body_ref, def_id)
.iterate_to_fixpoint()
.into_results_cursor(body_ref);
// Calculate the MIR locals which have been previously
// borrowed (even if they are still active).
let borrowed_locals_results =
MaybeBorrowedLocals::all_borrows().into_engine(tcx, body_ref, def_id).iterate_to_fixpoint();
let mut borrowed_locals_cursor =
dataflow::ResultsCursor::new(body_ref, &borrowed_locals_results);
// Calculate the MIR locals that we actually need to keep storage around
// for.
let requires_storage_results = MaybeRequiresStorage::new(body, &borrowed_locals_results)
.into_engine(tcx, body_ref, def_id)
.iterate_to_fixpoint();
let mut requires_storage_cursor =
dataflow::ResultsCursor::new(body_ref, &requires_storage_results);
// Calculate the liveness of MIR locals ignoring borrows.
let mut liveness = MaybeLiveLocals
.into_engine(tcx, body_ref, def_id)
.iterate_to_fixpoint()
.into_results_cursor(body_ref);
let mut storage_liveness_map = IndexVec::from_elem(None, body.basic_blocks());
let mut live_locals_at_suspension_points = Vec::new();
let mut source_info_at_suspension_points = Vec::new();
let mut live_locals_at_any_suspension_point = BitSet::new_empty(body.local_decls.len());
for (block, data) in body.basic_blocks().iter_enumerated() {
if let TerminatorKind::Yield { .. } = data.terminator().kind {
let loc = Location { block, statement_index: data.statements.len() };
liveness.seek_to_block_end(block);
let mut live_locals = liveness.get().clone();
if !movable {
// The `liveness` variable contains the liveness of MIR locals ignoring borrows.
// This is correct for movable generators since borrows cannot live across
// suspension points. However for immovable generators we need to account for
// borrows, so we conseratively assume that all borrowed locals are live until
// we find a StorageDead statement referencing the locals.
// To do this we just union our `liveness` result with `borrowed_locals`, which
// contains all the locals which has been borrowed before this suspension point.
// If a borrow is converted to a raw reference, we must also assume that it lives
// forever. Note that the final liveness is still bounded by the storage liveness
// of the local, which happens using the `intersect` operation below.
borrowed_locals_cursor.seek_before_primary_effect(loc);
live_locals.union(borrowed_locals_cursor.get());
}
// Store the storage liveness for later use so we can restore the state
// after a suspension point
storage_live.seek_before_primary_effect(loc);
storage_liveness_map[block] = Some(storage_live.get().clone());
// Locals live are live at this point only if they are used across
// suspension points (the `liveness` variable)
// and their storage is required (the `storage_required` variable)
requires_storage_cursor.seek_before_primary_effect(loc);
live_locals.intersect(requires_storage_cursor.get());
// The generator argument is ignored.
live_locals.remove(SELF_ARG);
debug!("loc = {:?}, live_locals = {:?}", loc, live_locals);
// Add the locals live at this suspension point to the set of locals which live across
// any suspension points
live_locals_at_any_suspension_point.union(&live_locals);
live_locals_at_suspension_points.push(live_locals);
source_info_at_suspension_points.push(data.terminator().source_info);
}
}
debug!("live_locals_anywhere = {:?}", live_locals_at_any_suspension_point);
let saved_locals = GeneratorSavedLocals(live_locals_at_any_suspension_point);
// Renumber our liveness_map bitsets to include only the locals we are
// saving.
let live_locals_at_suspension_points = live_locals_at_suspension_points
.iter()
.map(|live_here| saved_locals.renumber_bitset(&live_here))
.collect();
let storage_conflicts = compute_storage_conflicts(
body_ref,
&saved_locals,
always_live_locals.clone(),
requires_storage_results,
);
LivenessInfo {
saved_locals,
live_locals_at_suspension_points,
source_info_at_suspension_points,
storage_conflicts,
storage_liveness: storage_liveness_map,
}
}
/// The set of `Local`s that must be saved across yield points.
///
/// `GeneratorSavedLocal` is indexed in terms of the elements in this set;
/// i.e. `GeneratorSavedLocal::new(1)` corresponds to the second local
/// included in this set.
struct GeneratorSavedLocals(BitSet<Local>);
impl GeneratorSavedLocals {
/// Returns an iterator over each `GeneratorSavedLocal` along with the `Local` it corresponds
/// to.
fn iter_enumerated(&self) -> impl '_ + Iterator<Item = (GeneratorSavedLocal, Local)> {
self.iter().enumerate().map(|(i, l)| (GeneratorSavedLocal::from(i), l))
}
/// Transforms a `BitSet<Local>` that contains only locals saved across yield points to the
/// equivalent `BitSet<GeneratorSavedLocal>`.
fn renumber_bitset(&self, input: &BitSet<Local>) -> BitSet<GeneratorSavedLocal> {
assert!(self.superset(&input), "{:?} not a superset of {:?}", self.0, input);
let mut out = BitSet::new_empty(self.count());
for (saved_local, local) in self.iter_enumerated() {
if input.contains(local) {
out.insert(saved_local);
}
}
out
}
fn get(&self, local: Local) -> Option<GeneratorSavedLocal> {
if !self.contains(local) {
return None;
}
let idx = self.iter().take_while(|&l| l < local).count();
Some(GeneratorSavedLocal::new(idx))
}
}
impl ops::Deref for GeneratorSavedLocals {
type Target = BitSet<Local>;
fn deref(&self) -> &Self::Target {
&self.0
}
}
/// For every saved local, looks for which locals are StorageLive at the same
/// time. Generates a bitset for every local of all the other locals that may be
/// StorageLive simultaneously with that local. This is used in the layout
/// computation; see `GeneratorLayout` for more.
fn compute_storage_conflicts(
body: &'mir Body<'tcx>,
saved_locals: &GeneratorSavedLocals,
always_live_locals: storage::AlwaysLiveLocals,
requires_storage: dataflow::Results<'tcx, MaybeRequiresStorage<'mir, 'tcx>>,
) -> BitMatrix<GeneratorSavedLocal, GeneratorSavedLocal> {
assert_eq!(body.local_decls.len(), saved_locals.domain_size());
debug!("compute_storage_conflicts({:?})", body.span);
debug!("always_live = {:?}", always_live_locals);
// Locals that are always live or ones that need to be stored across
// suspension points are not eligible for overlap.
let mut ineligible_locals = always_live_locals.into_inner();
ineligible_locals.intersect(saved_locals);
// Compute the storage conflicts for all eligible locals.
let mut visitor = StorageConflictVisitor {
body,
saved_locals: &saved_locals,
local_conflicts: BitMatrix::from_row_n(&ineligible_locals, body.local_decls.len()),
};
// Visit only reachable basic blocks. The exact order is not important.
let reachable_blocks = traversal::preorder(body).map(|(bb, _)| bb);
requires_storage.visit_with(body, reachable_blocks, &mut visitor);
let local_conflicts = visitor.local_conflicts;
// Compress the matrix using only stored locals (Local -> GeneratorSavedLocal).
//
// NOTE: Today we store a full conflict bitset for every local. Technically
// this is twice as many bits as we need, since the relation is symmetric.
// However, in practice these bitsets are not usually large. The layout code
// also needs to keep track of how many conflicts each local has, so it's
// simpler to keep it this way for now.
let mut storage_conflicts = BitMatrix::new(saved_locals.count(), saved_locals.count());
for (saved_local_a, local_a) in saved_locals.iter_enumerated() {
if ineligible_locals.contains(local_a) {
// Conflicts with everything.
storage_conflicts.insert_all_into_row(saved_local_a);
} else {
// Keep overlap information only for stored locals.
for (saved_local_b, local_b) in saved_locals.iter_enumerated() {
if local_conflicts.contains(local_a, local_b) {
storage_conflicts.insert(saved_local_a, saved_local_b);
}
}
}
}
storage_conflicts
}
struct StorageConflictVisitor<'mir, 'tcx, 's> {
body: &'mir Body<'tcx>,
saved_locals: &'s GeneratorSavedLocals,
// FIXME(tmandry): Consider using sparse bitsets here once we have good
// benchmarks for generators.
local_conflicts: BitMatrix<Local, Local>,
}
impl dataflow::ResultsVisitor<'mir, 'tcx> for StorageConflictVisitor<'mir, 'tcx, '_> {
type FlowState = BitSet<Local>;
fn visit_statement_before_primary_effect(
&mut self,
state: &Self::FlowState,
_statement: &'mir Statement<'tcx>,
loc: Location,
) {
self.apply_state(state, loc);
}
fn visit_terminator_before_primary_effect(
&mut self,
state: &Self::FlowState,
_terminator: &'mir Terminator<'tcx>,
loc: Location,
) {
self.apply_state(state, loc);
}
}
impl<'body, 'tcx, 's> StorageConflictVisitor<'body, 'tcx, 's> {
fn apply_state(&mut self, flow_state: &BitSet<Local>, loc: Location) {
// Ignore unreachable blocks.
if self.body.basic_blocks()[loc.block].terminator().kind == TerminatorKind::Unreachable {
return;
}
let mut eligible_storage_live = flow_state.clone();
eligible_storage_live.intersect(&self.saved_locals);
for local in eligible_storage_live.iter() {
self.local_conflicts.union_row_with(&eligible_storage_live, local);
}
if eligible_storage_live.count() > 1 {
trace!("at {:?}, eligible_storage_live={:?}", loc, eligible_storage_live);
}
}
}
/// Validates the typeck view of the generator against the actual set of types saved between
/// yield points.
fn sanitize_witness<'tcx>(
tcx: TyCtxt<'tcx>,
body: &Body<'tcx>,
did: DefId,
witness: Ty<'tcx>,
upvars: &Vec<Ty<'tcx>>,
saved_locals: &GeneratorSavedLocals,
) {
let allowed_upvars = tcx.erase_regions(upvars);
let allowed = match witness.kind {
ty::GeneratorWitness(s) => tcx.erase_late_bound_regions(&s),
_ => {
tcx.sess.delay_span_bug(
body.span,
&format!("unexpected generator witness type {:?}", witness.kind),
);
return;
}
};
let param_env = tcx.param_env(did);
for (local, decl) in body.local_decls.iter_enumerated() {
// Ignore locals which are internal or not saved between yields.
if !saved_locals.contains(local) || decl.internal {
continue;
}
let decl_ty = tcx.normalize_erasing_regions(param_env, decl.ty);
// Sanity check that typeck knows about the type of locals which are
// live across a suspension point
if !allowed.contains(&decl_ty) && !allowed_upvars.contains(&decl_ty) {
span_bug!(
body.span,
"Broken MIR: generator contains type {} in MIR, \
but typeck only knows about {}",
decl.ty,
witness,
);
}
}
}
fn compute_layout<'tcx>(
liveness: LivenessInfo,
body: &mut Body<'tcx>,
) -> (
FxHashMap<Local, (Ty<'tcx>, VariantIdx, usize)>,
GeneratorLayout<'tcx>,
IndexVec<BasicBlock, Option<BitSet<Local>>>,
) {
let LivenessInfo {
saved_locals,
live_locals_at_suspension_points,
source_info_at_suspension_points,
storage_conflicts,
storage_liveness,
} = liveness;
// Gather live local types and their indices.
let mut locals = IndexVec::<GeneratorSavedLocal, _>::new();
let mut tys = IndexVec::<GeneratorSavedLocal, _>::new();
for (saved_local, local) in saved_locals.iter_enumerated() {
locals.push(local);
tys.push(body.local_decls[local].ty);
debug!("generator saved local {:?} => {:?}", saved_local, local);
}
// Leave empty variants for the UNRESUMED, RETURNED, and POISONED states.
// In debuginfo, these will correspond to the beginning (UNRESUMED) or end
// (RETURNED, POISONED) of the function.
const RESERVED_VARIANTS: usize = 3;
let body_span = body.source_scopes[OUTERMOST_SOURCE_SCOPE].span;
let mut variant_source_info: IndexVec<VariantIdx, SourceInfo> = [
SourceInfo::outermost(body_span.shrink_to_lo()),
SourceInfo::outermost(body_span.shrink_to_hi()),
SourceInfo::outermost(body_span.shrink_to_hi()),
]
.iter()
.copied()
.collect();
// Build the generator variant field list.
// Create a map from local indices to generator struct indices.
let mut variant_fields: IndexVec<VariantIdx, IndexVec<Field, GeneratorSavedLocal>> =
iter::repeat(IndexVec::new()).take(RESERVED_VARIANTS).collect();
let mut remap = FxHashMap::default();
for (suspension_point_idx, live_locals) in live_locals_at_suspension_points.iter().enumerate() {
let variant_index = VariantIdx::from(RESERVED_VARIANTS + suspension_point_idx);
let mut fields = IndexVec::new();
for (idx, saved_local) in live_locals.iter().enumerate() {
fields.push(saved_local);
// Note that if a field is included in multiple variants, we will
// just use the first one here. That's fine; fields do not move
// around inside generators, so it doesn't matter which variant
// index we access them by.
remap.entry(locals[saved_local]).or_insert((tys[saved_local], variant_index, idx));
}
variant_fields.push(fields);
variant_source_info.push(source_info_at_suspension_points[suspension_point_idx]);
}
debug!("generator variant_fields = {:?}", variant_fields);
debug!("generator storage_conflicts = {:#?}", storage_conflicts);
let layout =
GeneratorLayout { field_tys: tys, variant_fields, variant_source_info, storage_conflicts };
(remap, layout, storage_liveness)
}
/// Replaces the entry point of `body` with a block that switches on the generator discriminant and
/// dispatches to blocks according to `cases`.
///
/// After this function, the former entry point of the function will be bb1.
fn insert_switch<'tcx>(
body: &mut Body<'tcx>,
cases: Vec<(usize, BasicBlock)>,
transform: &TransformVisitor<'tcx>,
default: TerminatorKind<'tcx>,
) {
let default_block = insert_term_block(body, default);
let (assign, discr) = transform.get_discr(body);
let switch = TerminatorKind::SwitchInt {
discr: Operand::Move(discr),
switch_ty: transform.discr_ty,
values: Cow::from(cases.iter().map(|&(i, _)| i as u128).collect::<Vec<_>>()),
targets: cases.iter().map(|&(_, d)| d).chain(iter::once(default_block)).collect(),
};
let source_info = SourceInfo::outermost(body.span);
body.basic_blocks_mut().raw.insert(
0,
BasicBlockData {
statements: vec![assign],
terminator: Some(Terminator { source_info, kind: switch }),
is_cleanup: false,
},
);
let blocks = body.basic_blocks_mut().iter_mut();
for target in blocks.flat_map(|b| b.terminator_mut().successors_mut()) {
*target = BasicBlock::new(target.index() + 1);
}
}
fn elaborate_generator_drops<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId, body: &mut Body<'tcx>) {
use crate::shim::DropShimElaborator;
use crate::util::elaborate_drops::{elaborate_drop, Unwind};
use crate::util::patch::MirPatch;
// Note that `elaborate_drops` only drops the upvars of a generator, and
// this is ok because `open_drop` can only be reached within that own
// generator's resume function.
let param_env = tcx.param_env(def_id);
let mut elaborator = DropShimElaborator { body, patch: MirPatch::new(body), tcx, param_env };
for (block, block_data) in body.basic_blocks().iter_enumerated() {
let (target, unwind, source_info) = match block_data.terminator() {
Terminator { source_info, kind: TerminatorKind::Drop { place, target, unwind } } => {
if let Some(local) = place.as_local() {
if local == SELF_ARG {
(target, unwind, source_info)
} else {
continue;
}
} else {
continue;
}
}
_ => continue,
};
let unwind = if block_data.is_cleanup {
Unwind::InCleanup
} else {
Unwind::To(unwind.unwrap_or_else(|| elaborator.patch.resume_block()))
};
elaborate_drop(
&mut elaborator,
*source_info,
Place::from(SELF_ARG),
(),
*target,
unwind,
block,
);
}
elaborator.patch.apply(body);
}
fn create_generator_drop_shim<'tcx>(
tcx: TyCtxt<'tcx>,
transform: &TransformVisitor<'tcx>,
source: MirSource<'tcx>,
gen_ty: Ty<'tcx>,
body: &mut Body<'tcx>,
drop_clean: BasicBlock,
) -> Body<'tcx> {
let mut body = body.clone();
body.arg_count = 1; // make sure the resume argument is not included here
let source_info = SourceInfo::outermost(body.span);
let mut cases = create_cases(&mut body, transform, Operation::Drop);
cases.insert(0, (UNRESUMED, drop_clean));
// The returned state and the poisoned state fall through to the default
// case which is just to return
insert_switch(&mut body, cases, &transform, TerminatorKind::Return);
for block in body.basic_blocks_mut() {
let kind = &mut block.terminator_mut().kind;
if let TerminatorKind::GeneratorDrop = *kind {
*kind = TerminatorKind::Return;
}
}
// Replace the return variable
body.local_decls[RETURN_PLACE] = LocalDecl::with_source_info(tcx.mk_unit(), source_info);
make_generator_state_argument_indirect(tcx, &mut body);
// Change the generator argument from &mut to *mut
body.local_decls[SELF_ARG] = LocalDecl::with_source_info(
tcx.mk_ptr(ty::TypeAndMut { ty: gen_ty, mutbl: hir::Mutability::Mut }),
source_info,
);
if tcx.sess.opts.debugging_opts.mir_emit_retag {
// Alias tracking must know we changed the type
body.basic_blocks_mut()[START_BLOCK].statements.insert(
0,
Statement {
source_info,
kind: StatementKind::Retag(RetagKind::Raw, box Place::from(SELF_ARG)),
},
)
}
no_landing_pads(tcx, &mut body);
// Make sure we remove dead blocks to remove
// unrelated code from the resume part of the function
simplify::remove_dead_blocks(&mut body);
dump_mir(tcx, None, "generator_drop", &0, source, &body, |_, _| Ok(()));
body
}
fn insert_term_block<'tcx>(body: &mut Body<'tcx>, kind: TerminatorKind<'tcx>) -> BasicBlock {
let source_info = SourceInfo::outermost(body.span);
body.basic_blocks_mut().push(BasicBlockData {
statements: Vec::new(),
terminator: Some(Terminator { source_info, kind }),
is_cleanup: false,
})
}
fn insert_panic_block<'tcx>(
tcx: TyCtxt<'tcx>,
body: &mut Body<'tcx>,
message: AssertMessage<'tcx>,
) -> BasicBlock {
let assert_block = BasicBlock::new(body.basic_blocks().len());
let term = TerminatorKind::Assert {
cond: Operand::Constant(box Constant {
span: body.span,
user_ty: None,
literal: ty::Const::from_bool(tcx, false),
}),
expected: true,
msg: message,
target: assert_block,
cleanup: None,
};
let source_info = SourceInfo::outermost(body.span);
body.basic_blocks_mut().push(BasicBlockData {
statements: Vec::new(),
terminator: Some(Terminator { source_info, kind: term }),
is_cleanup: false,
});
assert_block
}
fn can_return<'tcx>(tcx: TyCtxt<'tcx>, body: &Body<'tcx>) -> bool {
// Returning from a function with an uninhabited return type is undefined behavior.
if body.return_ty().conservative_is_privately_uninhabited(tcx) {
return false;
}
// If there's a return terminator the function may return.
for block in body.basic_blocks() {
if let TerminatorKind::Return = block.terminator().kind {
return true;
}
}
// Otherwise the function can't return.
false
}
fn can_unwind<'tcx>(tcx: TyCtxt<'tcx>, body: &Body<'tcx>) -> bool {
// Nothing can unwind when landing pads are off.
if tcx.sess.panic_strategy() == PanicStrategy::Abort {
return false;
}
// Unwinds can only start at certain terminators.
for block in body.basic_blocks() {
match block.terminator().kind {
// These never unwind.
TerminatorKind::Goto { .. }
| TerminatorKind::SwitchInt { .. }
| TerminatorKind::Abort
| TerminatorKind::Return
| TerminatorKind::Unreachable
| TerminatorKind::GeneratorDrop
| TerminatorKind::FalseEdge { .. }
| TerminatorKind::FalseUnwind { .. }
| TerminatorKind::InlineAsm { .. } => {}
// Resume will *continue* unwinding, but if there's no other unwinding terminator it
// will never be reached.
TerminatorKind::Resume => {}
TerminatorKind::Yield { .. } => {
unreachable!("`can_unwind` called before generator transform")
}
// These may unwind.
TerminatorKind::Drop { .. }
| TerminatorKind::DropAndReplace { .. }
| TerminatorKind::Call { .. }
| TerminatorKind::Assert { .. } => return true,
}
}
// If we didn't find an unwinding terminator, the function cannot unwind.
false
}
fn create_generator_resume_function<'tcx>(
tcx: TyCtxt<'tcx>,
transform: TransformVisitor<'tcx>,
source: MirSource<'tcx>,
body: &mut Body<'tcx>,
can_return: bool,
) {
let can_unwind = can_unwind(tcx, body);
// Poison the generator when it unwinds
if can_unwind {
let source_info = SourceInfo::outermost(body.span);
let poison_block = body.basic_blocks_mut().push(BasicBlockData {
statements: vec![transform.set_discr(VariantIdx::new(POISONED), source_info)],
terminator: Some(Terminator { source_info, kind: TerminatorKind::Resume }),
is_cleanup: true,
});
for (idx, block) in body.basic_blocks_mut().iter_enumerated_mut() {
let source_info = block.terminator().source_info;
if let TerminatorKind::Resume = block.terminator().kind {
// An existing `Resume` terminator is redirected to jump to our dedicated
// "poisoning block" above.
if idx != poison_block {
*block.terminator_mut() = Terminator {
source_info,
kind: TerminatorKind::Goto { target: poison_block },
};
}
} else if !block.is_cleanup {
// Any terminators that *can* unwind but don't have an unwind target set are also
// pointed at our poisoning block (unless they're part of the cleanup path).
if let Some(unwind @ None) = block.terminator_mut().unwind_mut() {
*unwind = Some(poison_block);
}
}
}
}
let mut cases = create_cases(body, &transform, Operation::Resume);
use rustc_middle::mir::AssertKind::{ResumedAfterPanic, ResumedAfterReturn};
// Jump to the entry point on the unresumed
cases.insert(0, (UNRESUMED, BasicBlock::new(0)));
// Panic when resumed on the returned or poisoned state
let generator_kind = body.generator_kind.unwrap();
if can_unwind {
cases.insert(
1,
(POISONED, insert_panic_block(tcx, body, ResumedAfterPanic(generator_kind))),
);
}
if can_return {
cases.insert(
1,
(RETURNED, insert_panic_block(tcx, body, ResumedAfterReturn(generator_kind))),
);
}
insert_switch(body, cases, &transform, TerminatorKind::Unreachable);
make_generator_state_argument_indirect(tcx, body);
make_generator_state_argument_pinned(tcx, body);
no_landing_pads(tcx, body);
// Make sure we remove dead blocks to remove
// unrelated code from the drop part of the function
simplify::remove_dead_blocks(body);
dump_mir(tcx, None, "generator_resume", &0, source, body, |_, _| Ok(()));
}
fn insert_clean_drop(body: &mut Body<'_>) -> BasicBlock {
let return_block = insert_term_block(body, TerminatorKind::Return);
let term =
TerminatorKind::Drop { place: Place::from(SELF_ARG), target: return_block, unwind: None };
let source_info = SourceInfo::outermost(body.span);
// Create a block to destroy an unresumed generators. This can only destroy upvars.
body.basic_blocks_mut().push(BasicBlockData {
statements: Vec::new(),
terminator: Some(Terminator { source_info, kind: term }),
is_cleanup: false,
})
}
/// An operation that can be performed on a generator.
#[derive(PartialEq, Copy, Clone)]
enum Operation {
Resume,
Drop,
}
impl Operation {
fn target_block(self, point: &SuspensionPoint<'_>) -> Option<BasicBlock> {
match self {
Operation::Resume => Some(point.resume),
Operation::Drop => point.drop,
}
}
}
fn create_cases<'tcx>(
body: &mut Body<'tcx>,
transform: &TransformVisitor<'tcx>,
operation: Operation,
) -> Vec<(usize, BasicBlock)> {
let source_info = SourceInfo::outermost(body.span);
transform
.suspension_points
.iter()
.filter_map(|point| {
// Find the target for this suspension point, if applicable
operation.target_block(point).map(|target| {
let mut statements = Vec::new();
// Create StorageLive instructions for locals with live storage
for i in 0..(body.local_decls.len()) {
if i == 2 {
// The resume argument is live on function entry. Don't insert a
// `StorageLive`, or the following `Assign` will read from uninitialized
// memory.
continue;
}
let l = Local::new(i);
let needs_storage_live = point.storage_liveness.contains(l)
&& !transform.remap.contains_key(&l)
&& !transform.always_live_locals.contains(l);
if needs_storage_live {
statements
.push(Statement { source_info, kind: StatementKind::StorageLive(l) });
}
}
if operation == Operation::Resume {
// Move the resume argument to the destination place of the `Yield` terminator
let resume_arg = Local::new(2); // 0 = return, 1 = self
statements.push(Statement {
source_info,
kind: StatementKind::Assign(box (
point.resume_arg,
Rvalue::Use(Operand::Move(resume_arg.into())),
)),
});
}
// Then jump to the real target
let block = body.basic_blocks_mut().push(BasicBlockData {
statements,
terminator: Some(Terminator {
source_info,
kind: TerminatorKind::Goto { target },
}),
is_cleanup: false,
});
(point.state, block)
})
})
.collect()
}
impl<'tcx> MirPass<'tcx> for StateTransform {
fn run_pass(&self, tcx: TyCtxt<'tcx>, source: MirSource<'tcx>, body: &mut Body<'tcx>) {
let yield_ty = if let Some(yield_ty) = body.yield_ty {
yield_ty
} else {
// This only applies to generators
return;
};
assert!(body.generator_drop.is_none());
let def_id = source.def_id();
// The first argument is the generator type passed by value
let gen_ty = body.local_decls.raw[1].ty;
// Get the interior types and substs which typeck computed
let (upvars, interior, discr_ty, movable) = match gen_ty.kind {
ty::Generator(_, substs, movability) => {
let substs = substs.as_generator();
(
substs.upvar_tys().collect(),
substs.witness(),
substs.discr_ty(tcx),
movability == hir::Movability::Movable,
)
}
_ => {
tcx.sess
.delay_span_bug(body.span, &format!("unexpected generator type {}", gen_ty));
return;
}
};
// Compute GeneratorState<yield_ty, return_ty>
let state_did = tcx.require_lang_item(GeneratorStateLangItem, None);
let state_adt_ref = tcx.adt_def(state_did);
let state_substs = tcx.intern_substs(&[yield_ty.into(), body.return_ty().into()]);
let ret_ty = tcx.mk_adt(state_adt_ref, state_substs);
// We rename RETURN_PLACE which has type mir.return_ty to new_ret_local
// RETURN_PLACE then is a fresh unused local with type ret_ty.
let new_ret_local = replace_local(RETURN_PLACE, ret_ty, body, tcx);
// We also replace the resume argument and insert an `Assign`.
// This is needed because the resume argument `_2` might be live across a `yield`, in which
// case there is no `Assign` to it that the transform can turn into a store to the generator
// state. After the yield the slot in the generator state would then be uninitialized.
let resume_local = Local::new(2);
let new_resume_local =
replace_local(resume_local, body.local_decls[resume_local].ty, body, tcx);
// When first entering the generator, move the resume argument into its new local.
let source_info = SourceInfo::outermost(body.span);
let stmts = &mut body.basic_blocks_mut()[BasicBlock::new(0)].statements;
stmts.insert(
0,
Statement {
source_info,
kind: StatementKind::Assign(box (
new_resume_local.into(),
Rvalue::Use(Operand::Move(resume_local.into())),
)),
},
);
let always_live_locals = storage::AlwaysLiveLocals::new(&body);
let liveness_info =
locals_live_across_suspend_points(tcx, body, source, &always_live_locals, movable);
sanitize_witness(tcx, body, def_id, interior, &upvars, &liveness_info.saved_locals);
if tcx.sess.opts.debugging_opts.validate_mir {
let mut vis = EnsureGeneratorFieldAssignmentsNeverAlias {
assigned_local: None,
saved_locals: &liveness_info.saved_locals,
storage_conflicts: &liveness_info.storage_conflicts,
};
vis.visit_body(body);
}
// Extract locals which are live across suspension point into `layout`
// `remap` gives a mapping from local indices onto generator struct indices
// `storage_liveness` tells us which locals have live storage at suspension points
let (remap, layout, storage_liveness) = compute_layout(liveness_info, body);
let can_return = can_return(tcx, body);
// Run the transformation which converts Places from Local to generator struct
// accesses for locals in `remap`.
// It also rewrites `return x` and `yield y` as writing a new generator state and returning
// GeneratorState::Complete(x) and GeneratorState::Yielded(y) respectively.
let mut transform = TransformVisitor {
tcx,
state_adt_ref,
state_substs,
remap,
storage_liveness,
always_live_locals,
suspension_points: Vec::new(),
new_ret_local,
discr_ty,
};
transform.visit_body(body);
// Update our MIR struct to reflect the changes we've made
body.yield_ty = None;
body.arg_count = 2; // self, resume arg
body.spread_arg = None;
body.generator_layout = Some(layout);
// Insert `drop(generator_struct)` which is used to drop upvars for generators in
// the unresumed state.
// This is expanded to a drop ladder in `elaborate_generator_drops`.
let drop_clean = insert_clean_drop(body);
dump_mir(tcx, None, "generator_pre-elab", &0, source, body, |_, _| Ok(()));
// Expand `drop(generator_struct)` to a drop ladder which destroys upvars.
// If any upvars are moved out of, drop elaboration will handle upvar destruction.
// However we need to also elaborate the code generated by `insert_clean_drop`.
elaborate_generator_drops(tcx, def_id, body);
dump_mir(tcx, None, "generator_post-transform", &0, source, body, |_, _| Ok(()));
// Create a copy of our MIR and use it to create the drop shim for the generator
let drop_shim =
create_generator_drop_shim(tcx, &transform, source, gen_ty, body, drop_clean);
body.generator_drop = Some(box drop_shim);
// Create the Generator::resume function
create_generator_resume_function(tcx, transform, source, body, can_return);
}
}
/// Looks for any assignments between locals (e.g., `_4 = _5`) that will both be converted to fields
/// in the generator state machine but whose storage is not marked as conflicting
///
/// Validation needs to happen immediately *before* `TransformVisitor` is invoked, not after.
///
/// This condition would arise when the assignment is the last use of `_5` but the initial
/// definition of `_4` if we weren't extra careful to mark all locals used inside a statement as
/// conflicting. Non-conflicting generator saved locals may be stored at the same location within
/// the generator state machine, which would result in ill-formed MIR: the left-hand and right-hand
/// sides of an assignment may not alias. This caused a miscompilation in [#73137].
///
/// [#73137]: https://github.com/rust-lang/rust/issues/73137
struct EnsureGeneratorFieldAssignmentsNeverAlias<'a> {
saved_locals: &'a GeneratorSavedLocals,
storage_conflicts: &'a BitMatrix<GeneratorSavedLocal, GeneratorSavedLocal>,
assigned_local: Option<GeneratorSavedLocal>,
}
impl EnsureGeneratorFieldAssignmentsNeverAlias<'_> {
fn saved_local_for_direct_place(&self, place: Place<'_>) -> Option<GeneratorSavedLocal> {
if place.is_indirect() {
return None;
}
self.saved_locals.get(place.local)
}
fn check_assigned_place(&mut self, place: Place<'tcx>, f: impl FnOnce(&mut Self)) {
if let Some(assigned_local) = self.saved_local_for_direct_place(place) {
assert!(self.assigned_local.is_none(), "`check_assigned_place` must not recurse");
self.assigned_local = Some(assigned_local);
f(self);
self.assigned_local = None;
}
}
}
impl Visitor<'tcx> for EnsureGeneratorFieldAssignmentsNeverAlias<'_> {
fn visit_place(&mut self, place: &Place<'tcx>, context: PlaceContext, location: Location) {
let lhs = match self.assigned_local {
Some(l) => l,
None => {
// This visitor only invokes `visit_place` for the right-hand side of an assignment
// and only after setting `self.assigned_local`. However, the default impl of
// `Visitor::super_body` may call `visit_place` with a `NonUseContext` for places
// with debuginfo. Ignore them here.
assert!(!context.is_use());
return;
}
};
let rhs = match self.saved_local_for_direct_place(*place) {
Some(l) => l,
None => return,
};
if !self.storage_conflicts.contains(lhs, rhs) {
bug!(
"Assignment between generator saved locals whose storage is not \
marked as conflicting: {:?}: {:?} = {:?}",
location,
lhs,
rhs,
);
}
}
fn visit_statement(&mut self, statement: &Statement<'tcx>, location: Location) {
match &statement.kind {
StatementKind::Assign(box (lhs, rhs)) => {
self.check_assigned_place(*lhs, |this| this.visit_rvalue(rhs, location));
}
// FIXME: Does `llvm_asm!` have any aliasing requirements?
StatementKind::LlvmInlineAsm(_) => {}
StatementKind::FakeRead(..)
| StatementKind::SetDiscriminant { .. }
| StatementKind::StorageLive(_)
| StatementKind::StorageDead(_)
| StatementKind::Retag(..)
| StatementKind::AscribeUserType(..)
| StatementKind::Nop => {}
}
}
fn visit_terminator(&mut self, terminator: &Terminator<'tcx>, location: Location) {
// Checking for aliasing in terminators is probably overkill, but until we have actual
// semantics, we should be conservative here.
match &terminator.kind {
TerminatorKind::Call {
func,
args,
destination: Some((dest, _)),
cleanup: _,
from_hir_call: _,
fn_span: _,
} => {
self.check_assigned_place(*dest, |this| {
this.visit_operand(func, location);
for arg in args {
this.visit_operand(arg, location);
}
});
}
TerminatorKind::Yield { value, resume: _, resume_arg, drop: _ } => {
self.check_assigned_place(*resume_arg, |this| this.visit_operand(value, location));
}
// FIXME: Does `asm!` have any aliasing requirements?
TerminatorKind::InlineAsm { .. } => {}
TerminatorKind::Call { .. }
| TerminatorKind::Goto { .. }
| TerminatorKind::SwitchInt { .. }
| TerminatorKind::Resume
| TerminatorKind::Abort
| TerminatorKind::Return
| TerminatorKind::Unreachable
| TerminatorKind::Drop { .. }
| TerminatorKind::DropAndReplace { .. }
| TerminatorKind::Assert { .. }
| TerminatorKind::GeneratorDrop
| TerminatorKind::FalseEdge { .. }
| TerminatorKind::FalseUnwind { .. } => {}
}
}
}