blob: 32f23e923d91ba8121caf583fa4d330c7ff747a2 [file] [log] [blame]
// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Support for inlining external documentation into the current AST.
use std::iter::once;
use syntax::ast;
use rustc::hir;
use rustc::hir::def::{Def, CtorKind};
use rustc::hir::def_id::DefId;
use rustc::ty;
use rustc::util::nodemap::FxHashSet;
use core::{DocContext, DocAccessLevels};
use doctree;
use clean::{self, GetDefId, get_auto_traits_with_def_id};
use super::Clean;
/// Attempt to inline a definition into this AST.
///
/// This function will fetch the definition specified, and if it is
/// from another crate it will attempt to inline the documentation
/// from the other crate into this crate.
///
/// This is primarily used for `pub use` statements which are, in general,
/// implementation details. Inlining the documentation should help provide a
/// better experience when reading the documentation in this use case.
///
/// The returned value is `None` if the definition could not be inlined,
/// and `Some` of a vector of items if it was successfully expanded.
pub fn try_inline(cx: &DocContext, def: Def, name: ast::Name)
-> Option<Vec<clean::Item>> {
if def == Def::Err { return None }
let did = def.def_id();
if did.is_local() { return None }
let mut ret = Vec::new();
let inner = match def {
Def::Trait(did) => {
record_extern_fqn(cx, did, clean::TypeKind::Trait);
ret.extend(build_impls(cx, did, false));
clean::TraitItem(build_external_trait(cx, did))
}
Def::Fn(did) => {
record_extern_fqn(cx, did, clean::TypeKind::Function);
clean::FunctionItem(build_external_function(cx, did))
}
Def::Struct(did) => {
record_extern_fqn(cx, did, clean::TypeKind::Struct);
ret.extend(build_impls(cx, did, true));
clean::StructItem(build_struct(cx, did))
}
Def::Union(did) => {
record_extern_fqn(cx, did, clean::TypeKind::Union);
ret.extend(build_impls(cx, did, true));
clean::UnionItem(build_union(cx, did))
}
Def::TyAlias(did) => {
record_extern_fqn(cx, did, clean::TypeKind::Typedef);
ret.extend(build_impls(cx, did, false));
clean::TypedefItem(build_type_alias(cx, did), false)
}
Def::Enum(did) => {
record_extern_fqn(cx, did, clean::TypeKind::Enum);
ret.extend(build_impls(cx, did, true));
clean::EnumItem(build_enum(cx, did))
}
Def::TyForeign(did) => {
record_extern_fqn(cx, did, clean::TypeKind::Foreign);
ret.extend(build_impls(cx, did, false));
clean::ForeignTypeItem
}
// Never inline enum variants but leave them shown as re-exports.
Def::Variant(..) => return None,
// Assume that enum variants and struct types are re-exported next to
// their constructors.
Def::VariantCtor(..) |
Def::StructCtor(..) => return Some(Vec::new()),
Def::Mod(did) => {
record_extern_fqn(cx, did, clean::TypeKind::Module);
clean::ModuleItem(build_module(cx, did))
}
Def::Static(did, mtbl) => {
record_extern_fqn(cx, did, clean::TypeKind::Static);
clean::StaticItem(build_static(cx, did, mtbl))
}
Def::Const(did) => {
record_extern_fqn(cx, did, clean::TypeKind::Const);
clean::ConstantItem(build_const(cx, did))
}
_ => return None,
};
cx.renderinfo.borrow_mut().inlined.insert(did);
ret.push(clean::Item {
source: cx.tcx.def_span(did).clean(cx),
name: Some(name.clean(cx)),
attrs: load_attrs(cx, did),
inner,
visibility: Some(clean::Public),
stability: cx.tcx.lookup_stability(did).clean(cx),
deprecation: cx.tcx.lookup_deprecation(did).clean(cx),
def_id: did,
});
Some(ret)
}
pub fn load_attrs(cx: &DocContext, did: DefId) -> clean::Attributes {
cx.tcx.get_attrs(did).clean(cx)
}
/// Record an external fully qualified name in the external_paths cache.
///
/// These names are used later on by HTML rendering to generate things like
/// source links back to the original item.
pub fn record_extern_fqn(cx: &DocContext, did: DefId, kind: clean::TypeKind) {
if did.is_local() {
debug!("record_extern_fqn(did={:?}, kind+{:?}): def_id is local, aborting", did, kind);
return;
}
let crate_name = cx.tcx.crate_name(did.krate).to_string();
let relative = cx.tcx.def_path(did).data.into_iter().filter_map(|elem| {
// extern blocks have an empty name
let s = elem.data.to_string();
if !s.is_empty() {
Some(s)
} else {
None
}
});
let fqn = if let clean::TypeKind::Macro = kind {
vec![crate_name, relative.last().unwrap()]
} else {
once(crate_name).chain(relative).collect()
};
cx.renderinfo.borrow_mut().external_paths.insert(did, (fqn, kind));
}
pub fn build_external_trait(cx: &DocContext, did: DefId) -> clean::Trait {
let auto_trait = cx.tcx.trait_def(did).has_auto_impl;
let trait_items = cx.tcx.associated_items(did).map(|item| item.clean(cx)).collect();
let predicates = cx.tcx.predicates_of(did);
let generics = (cx.tcx.generics_of(did), &predicates).clean(cx);
let generics = filter_non_trait_generics(did, generics);
let (generics, supertrait_bounds) = separate_supertrait_bounds(generics);
let is_spotlight = load_attrs(cx, did).has_doc_flag("spotlight");
let is_auto = cx.tcx.trait_is_auto(did);
clean::Trait {
auto: auto_trait,
unsafety: cx.tcx.trait_def(did).unsafety,
generics,
items: trait_items,
bounds: supertrait_bounds,
is_spotlight,
is_auto,
}
}
fn build_external_function(cx: &DocContext, did: DefId) -> clean::Function {
let sig = cx.tcx.fn_sig(did);
let constness = if cx.tcx.is_const_fn(did) {
hir::Constness::Const
} else {
hir::Constness::NotConst
};
let predicates = cx.tcx.predicates_of(did);
clean::Function {
decl: (did, sig).clean(cx),
generics: (cx.tcx.generics_of(did), &predicates).clean(cx),
unsafety: sig.unsafety(),
constness,
abi: sig.abi(),
}
}
fn build_enum(cx: &DocContext, did: DefId) -> clean::Enum {
let predicates = cx.tcx.predicates_of(did);
clean::Enum {
generics: (cx.tcx.generics_of(did), &predicates).clean(cx),
variants_stripped: false,
variants: cx.tcx.adt_def(did).variants.clean(cx),
}
}
fn build_struct(cx: &DocContext, did: DefId) -> clean::Struct {
let predicates = cx.tcx.predicates_of(did);
let variant = cx.tcx.adt_def(did).non_enum_variant();
clean::Struct {
struct_type: match variant.ctor_kind {
CtorKind::Fictive => doctree::Plain,
CtorKind::Fn => doctree::Tuple,
CtorKind::Const => doctree::Unit,
},
generics: (cx.tcx.generics_of(did), &predicates).clean(cx),
fields: variant.fields.clean(cx),
fields_stripped: false,
}
}
fn build_union(cx: &DocContext, did: DefId) -> clean::Union {
let predicates = cx.tcx.predicates_of(did);
let variant = cx.tcx.adt_def(did).non_enum_variant();
clean::Union {
struct_type: doctree::Plain,
generics: (cx.tcx.generics_of(did), &predicates).clean(cx),
fields: variant.fields.clean(cx),
fields_stripped: false,
}
}
fn build_type_alias(cx: &DocContext, did: DefId) -> clean::Typedef {
let predicates = cx.tcx.predicates_of(did);
clean::Typedef {
type_: cx.tcx.type_of(did).clean(cx),
generics: (cx.tcx.generics_of(did), &predicates).clean(cx),
}
}
pub fn build_impls(cx: &DocContext, did: DefId, auto_traits: bool) -> Vec<clean::Item> {
let tcx = cx.tcx;
let mut impls = Vec::new();
for &did in tcx.inherent_impls(did).iter() {
build_impl(cx, did, &mut impls);
}
if auto_traits {
let auto_impls = get_auto_traits_with_def_id(cx, did);
let mut renderinfo = cx.renderinfo.borrow_mut();
let new_impls: Vec<clean::Item> = auto_impls.into_iter()
.filter(|i| renderinfo.inlined.insert(i.def_id)).collect();
impls.extend(new_impls);
}
// If this is the first time we've inlined something from another crate, then
// we inline *all* impls from all the crates into this crate. Note that there's
// currently no way for us to filter this based on type, and we likely need
// many impls for a variety of reasons.
//
// Primarily, the impls will be used to populate the documentation for this
// type being inlined, but impls can also be used when generating
// documentation for primitives (no way to find those specifically).
if cx.populated_all_crate_impls.get() {
return impls;
}
cx.populated_all_crate_impls.set(true);
for &cnum in tcx.crates().iter() {
for did in tcx.all_trait_implementations(cnum).iter() {
build_impl(cx, *did, &mut impls);
}
}
// Also try to inline primitive impls from other crates.
let lang_items = tcx.lang_items();
let primitive_impls = [
lang_items.isize_impl(),
lang_items.i8_impl(),
lang_items.i16_impl(),
lang_items.i32_impl(),
lang_items.i64_impl(),
lang_items.i128_impl(),
lang_items.usize_impl(),
lang_items.u8_impl(),
lang_items.u16_impl(),
lang_items.u32_impl(),
lang_items.u64_impl(),
lang_items.u128_impl(),
lang_items.f32_impl(),
lang_items.f64_impl(),
lang_items.char_impl(),
lang_items.str_impl(),
lang_items.slice_impl(),
lang_items.slice_u8_impl(),
lang_items.const_ptr_impl(),
lang_items.mut_ptr_impl(),
];
for def_id in primitive_impls.iter().filter_map(|&def_id| def_id) {
if !def_id.is_local() {
build_impl(cx, def_id, &mut impls);
}
}
impls
}
pub fn build_impl(cx: &DocContext, did: DefId, ret: &mut Vec<clean::Item>) {
if !cx.renderinfo.borrow_mut().inlined.insert(did) {
return
}
let attrs = load_attrs(cx, did);
let tcx = cx.tcx;
let associated_trait = tcx.impl_trait_ref(did);
// Only inline impl if the implemented trait is
// reachable in rustdoc generated documentation
if let Some(traitref) = associated_trait {
if !cx.access_levels.borrow().is_doc_reachable(traitref.def_id) {
return
}
}
let for_ = tcx.type_of(did).clean(cx);
// Only inline impl if the implementing type is
// reachable in rustdoc generated documentation
if let Some(did) = for_.def_id() {
if !cx.access_levels.borrow().is_doc_reachable(did) {
return
}
}
let predicates = tcx.predicates_of(did);
let trait_items = tcx.associated_items(did).filter_map(|item| {
if associated_trait.is_some() || item.vis == ty::Visibility::Public {
Some(item.clean(cx))
} else {
None
}
}).collect::<Vec<_>>();
let polarity = tcx.impl_polarity(did);
let trait_ = associated_trait.clean(cx).map(|bound| {
match bound {
clean::TraitBound(polyt, _) => polyt.trait_,
clean::RegionBound(..) => unreachable!(),
}
});
if trait_.def_id() == tcx.lang_items().deref_trait() {
super::build_deref_target_impls(cx, &trait_items, ret);
}
if let Some(trait_did) = trait_.def_id() {
record_extern_trait(cx, trait_did);
}
let provided = trait_.def_id().map(|did| {
tcx.provided_trait_methods(did)
.into_iter()
.map(|meth| meth.name.to_string())
.collect()
}).unwrap_or(FxHashSet());
ret.push(clean::Item {
inner: clean::ImplItem(clean::Impl {
unsafety: hir::Unsafety::Normal,
generics: (tcx.generics_of(did), &predicates).clean(cx),
provided_trait_methods: provided,
trait_,
for_,
items: trait_items,
polarity: Some(polarity.clean(cx)),
synthetic: false,
}),
source: tcx.def_span(did).clean(cx),
name: None,
attrs,
visibility: Some(clean::Inherited),
stability: tcx.lookup_stability(did).clean(cx),
deprecation: tcx.lookup_deprecation(did).clean(cx),
def_id: did,
});
}
fn build_module(cx: &DocContext, did: DefId) -> clean::Module {
let mut items = Vec::new();
fill_in(cx, did, &mut items);
return clean::Module {
items,
is_crate: false,
};
fn fill_in(cx: &DocContext, did: DefId, items: &mut Vec<clean::Item>) {
// If we're re-exporting a re-export it may actually re-export something in
// two namespaces, so the target may be listed twice. Make sure we only
// visit each node at most once.
let mut visited = FxHashSet();
for &item in cx.tcx.item_children(did).iter() {
let def_id = item.def.def_id();
if item.vis == ty::Visibility::Public {
if !visited.insert(def_id) { continue }
if let Some(i) = try_inline(cx, item.def, item.ident.name) {
items.extend(i)
}
}
}
}
}
pub fn print_inlined_const(cx: &DocContext, did: DefId) -> String {
cx.tcx.rendered_const(did)
}
fn build_const(cx: &DocContext, did: DefId) -> clean::Constant {
clean::Constant {
type_: cx.tcx.type_of(did).clean(cx),
expr: print_inlined_const(cx, did)
}
}
fn build_static(cx: &DocContext, did: DefId, mutable: bool) -> clean::Static {
clean::Static {
type_: cx.tcx.type_of(did).clean(cx),
mutability: if mutable {clean::Mutable} else {clean::Immutable},
expr: "\n\n\n".to_string(), // trigger the "[definition]" links
}
}
/// A trait's generics clause actually contains all of the predicates for all of
/// its associated types as well. We specifically move these clauses to the
/// associated types instead when displaying, so when we're generating the
/// generics for the trait itself we need to be sure to remove them.
/// We also need to remove the implied "recursive" Self: Trait bound.
///
/// The inverse of this filtering logic can be found in the `Clean`
/// implementation for `AssociatedType`
fn filter_non_trait_generics(trait_did: DefId, mut g: clean::Generics) -> clean::Generics {
for pred in &mut g.where_predicates {
match *pred {
clean::WherePredicate::BoundPredicate {
ty: clean::Generic(ref s),
ref mut bounds
} if *s == "Self" => {
bounds.retain(|bound| {
match *bound {
clean::TyParamBound::TraitBound(clean::PolyTrait {
trait_: clean::ResolvedPath { did, .. },
..
}, _) => did != trait_did,
_ => true
}
});
}
_ => {}
}
}
g.where_predicates.retain(|pred| {
match *pred {
clean::WherePredicate::BoundPredicate {
ty: clean::QPath {
self_type: box clean::Generic(ref s),
trait_: box clean::ResolvedPath { did, .. },
name: ref _name,
}, ref bounds
} => !(*s == "Self" && did == trait_did) && !bounds.is_empty(),
_ => true,
}
});
g
}
/// Supertrait bounds for a trait are also listed in the generics coming from
/// the metadata for a crate, so we want to separate those out and create a new
/// list of explicit supertrait bounds to render nicely.
fn separate_supertrait_bounds(mut g: clean::Generics)
-> (clean::Generics, Vec<clean::TyParamBound>) {
let mut ty_bounds = Vec::new();
g.where_predicates.retain(|pred| {
match *pred {
clean::WherePredicate::BoundPredicate {
ty: clean::Generic(ref s),
ref bounds
} if *s == "Self" => {
ty_bounds.extend(bounds.iter().cloned());
false
}
_ => true,
}
});
(g, ty_bounds)
}
pub fn record_extern_trait(cx: &DocContext, did: DefId) {
if cx.external_traits.borrow().contains_key(&did) ||
cx.active_extern_traits.borrow().contains(&did)
{
return;
}
cx.active_extern_traits.borrow_mut().push(did);
let trait_ = build_external_trait(cx, did);
cx.external_traits.borrow_mut().insert(did, trait_);
cx.active_extern_traits.borrow_mut().remove_item(&did);
}