blob: 63a73f8d50d93b62f1b51e7027609b2ac7b552e9 [file] [log] [blame]
use rustc_hir::def_id::DefId;
use rustc_infer::infer::at::ToTrace;
use rustc_infer::infer::canonical::CanonicalVarValues;
use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
use rustc_infer::infer::{
DefineOpaqueTypes, InferCtxt, InferOk, LateBoundRegionConversionTime, RegionVariableOrigin,
TyCtxtInferExt,
};
use rustc_infer::traits::query::NoSolution;
use rustc_infer::traits::ObligationCause;
use rustc_middle::infer::unify_key::{ConstVariableOrigin, ConstVariableOriginKind};
use rustc_middle::traits::solve::{CanonicalGoal, Certainty, MaybeCause, QueryResult};
use rustc_middle::ty::{
self, Ty, TyCtxt, TypeFoldable, TypeSuperVisitable, TypeVisitable, TypeVisitableExt,
TypeVisitor,
};
use rustc_span::DUMMY_SP;
use std::ops::ControlFlow;
use crate::traits::specialization_graph;
use super::search_graph::{self, OverflowHandler};
use super::SolverMode;
use super::{search_graph::SearchGraph, Goal};
mod canonical;
pub struct EvalCtxt<'a, 'tcx> {
/// The inference context that backs (mostly) inference and placeholder terms
/// instantiated while solving goals.
///
/// NOTE: The `InferCtxt` that backs the `EvalCtxt` is intentionally private,
/// because the `InferCtxt` is much more general than `EvalCtxt`. Methods such
/// as `take_registered_region_obligations` can mess up query responses,
/// using `At::normalize` is totally wrong, calling `evaluate_root_goal` can
/// cause coinductive unsoundness, etc.
///
/// Methods that are generally of use for trait solving are *intentionally*
/// re-declared through the `EvalCtxt` below, often with cleaner signatures
/// since we don't care about things like `ObligationCause`s and `Span`s here.
/// If some `InferCtxt` method is missing, please first think defensively about
/// the method's compatibility with this solver, or if an existing one does
/// the job already.
infcx: &'a InferCtxt<'tcx>,
pub(super) var_values: CanonicalVarValues<'tcx>,
/// The highest universe index nameable by the caller.
///
/// When we enter a new binder inside of the query we create new universes
/// which the caller cannot name. We have to be careful with variables from
/// these new universes when creating the query response.
///
/// Both because these new universes can prevent us from reaching a fixpoint
/// if we have a coinductive cycle and because that's the only way we can return
/// new placeholders to the caller.
pub(super) max_input_universe: ty::UniverseIndex,
pub(super) search_graph: &'a mut SearchGraph<'tcx>,
pub(super) nested_goals: NestedGoals<'tcx>,
// Has this `EvalCtxt` errored out with `NoSolution` in `try_evaluate_added_goals`?
//
// If so, then it can no longer be used to make a canonical query response,
// since subsequent calls to `try_evaluate_added_goals` have possibly dropped
// ambiguous goals. Instead, a probe needs to be introduced somewhere in the
// evaluation code.
tainted: Result<(), NoSolution>,
}
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub(super) enum IsNormalizesToHack {
Yes,
No,
}
#[derive(Debug, Clone)]
pub(super) struct NestedGoals<'tcx> {
/// This normalizes-to goal that is treated specially during the evaluation
/// loop. In each iteration we take the RHS of the projection, replace it with
/// a fresh inference variable, and only after evaluating that goal do we
/// equate the fresh inference variable with the actual RHS of the predicate.
///
/// This is both to improve caching, and to avoid using the RHS of the
/// projection predicate to influence the normalizes-to candidate we select.
///
/// This is not a 'real' nested goal. We must not forget to replace the RHS
/// with a fresh inference variable when we evaluate this goal. That can result
/// in a trait solver cycle. This would currently result in overflow but can be
/// can be unsound with more powerful coinduction in the future.
pub(super) normalizes_to_hack_goal: Option<Goal<'tcx, ty::ProjectionPredicate<'tcx>>>,
/// The rest of the goals which have not yet processed or remain ambiguous.
pub(super) goals: Vec<Goal<'tcx, ty::Predicate<'tcx>>>,
}
impl NestedGoals<'_> {
pub(super) fn new() -> Self {
Self { normalizes_to_hack_goal: None, goals: Vec::new() }
}
pub(super) fn is_empty(&self) -> bool {
self.normalizes_to_hack_goal.is_none() && self.goals.is_empty()
}
}
pub trait InferCtxtEvalExt<'tcx> {
/// Evaluates a goal from **outside** of the trait solver.
///
/// Using this while inside of the solver is wrong as it uses a new
/// search graph which would break cycle detection.
fn evaluate_root_goal(
&self,
goal: Goal<'tcx, ty::Predicate<'tcx>>,
) -> Result<(bool, Certainty, Vec<Goal<'tcx, ty::Predicate<'tcx>>>), NoSolution>;
}
impl<'tcx> InferCtxtEvalExt<'tcx> for InferCtxt<'tcx> {
#[instrument(level = "debug", skip(self), ret)]
fn evaluate_root_goal(
&self,
goal: Goal<'tcx, ty::Predicate<'tcx>>,
) -> Result<(bool, Certainty, Vec<Goal<'tcx, ty::Predicate<'tcx>>>), NoSolution> {
let mode = if self.intercrate { SolverMode::Coherence } else { SolverMode::Normal };
let mut search_graph = search_graph::SearchGraph::new(self.tcx, mode);
let mut ecx = EvalCtxt {
search_graph: &mut search_graph,
infcx: self,
// Only relevant when canonicalizing the response.
max_input_universe: ty::UniverseIndex::ROOT,
var_values: CanonicalVarValues::dummy(),
nested_goals: NestedGoals::new(),
tainted: Ok(()),
};
let result = ecx.evaluate_goal(IsNormalizesToHack::No, goal);
assert!(
ecx.nested_goals.is_empty(),
"root `EvalCtxt` should not have any goals added to it"
);
assert!(search_graph.is_empty());
result
}
}
impl<'a, 'tcx> EvalCtxt<'a, 'tcx> {
pub(super) fn solver_mode(&self) -> SolverMode {
self.search_graph.solver_mode()
}
/// The entry point of the solver.
///
/// This function deals with (coinductive) cycles, overflow, and caching
/// and then calls [`EvalCtxt::compute_goal`] which contains the actual
/// logic of the solver.
///
/// Instead of calling this function directly, use either [EvalCtxt::evaluate_goal]
/// if you're inside of the solver or [InferCtxtEvalExt::evaluate_root_goal] if you're
/// outside of it.
#[instrument(level = "debug", skip(tcx, search_graph), ret)]
fn evaluate_canonical_goal(
tcx: TyCtxt<'tcx>,
search_graph: &'a mut search_graph::SearchGraph<'tcx>,
canonical_goal: CanonicalGoal<'tcx>,
) -> QueryResult<'tcx> {
// Deal with overflow, caching, and coinduction.
//
// The actual solver logic happens in `ecx.compute_goal`.
search_graph.with_new_goal(tcx, canonical_goal, |search_graph| {
let intercrate = match search_graph.solver_mode() {
SolverMode::Normal => false,
SolverMode::Coherence => true,
};
let (ref infcx, goal, var_values) = tcx
.infer_ctxt()
.intercrate(intercrate)
.build_with_canonical(DUMMY_SP, &canonical_goal);
let mut ecx = EvalCtxt {
infcx,
var_values,
max_input_universe: canonical_goal.max_universe,
search_graph,
nested_goals: NestedGoals::new(),
tainted: Ok(()),
};
ecx.compute_goal(goal)
})
}
/// Recursively evaluates `goal`, returning whether any inference vars have
/// been constrained and the certainty of the result.
fn evaluate_goal(
&mut self,
is_normalizes_to_hack: IsNormalizesToHack,
goal: Goal<'tcx, ty::Predicate<'tcx>>,
) -> Result<(bool, Certainty, Vec<Goal<'tcx, ty::Predicate<'tcx>>>), NoSolution> {
let (orig_values, canonical_goal) = self.canonicalize_goal(goal);
let canonical_response =
EvalCtxt::evaluate_canonical_goal(self.tcx(), self.search_graph, canonical_goal)?;
let has_changed = !canonical_response.value.var_values.is_identity();
let (certainty, nested_goals) = self.instantiate_and_apply_query_response(
goal.param_env,
orig_values,
canonical_response,
)?;
if !has_changed && !nested_goals.is_empty() {
bug!("an unchanged goal shouldn't have any side-effects on instantiation");
}
// Check that rerunning this query with its inference constraints applied
// doesn't result in new inference constraints and has the same result.
//
// If we have projection goals like `<T as Trait>::Assoc == u32` we recursively
// call `exists<U> <T as Trait>::Assoc == U` to enable better caching. This goal
// could constrain `U` to `u32` which would cause this check to result in a
// solver cycle.
if cfg!(debug_assertions)
&& has_changed
&& is_normalizes_to_hack == IsNormalizesToHack::No
&& !self.search_graph.in_cycle()
{
debug!("rerunning goal to check result is stable");
let (_orig_values, canonical_goal) = self.canonicalize_goal(goal);
let new_canonical_response =
EvalCtxt::evaluate_canonical_goal(self.tcx(), self.search_graph, canonical_goal)?;
if !new_canonical_response.value.var_values.is_identity() {
bug!(
"unstable result: re-canonicalized goal={canonical_goal:#?} \
first_response={canonical_response:#?} \
second_response={new_canonical_response:#?}"
);
}
if certainty != new_canonical_response.value.certainty {
bug!(
"unstable certainty: {certainty:#?} re-canonicalized goal={canonical_goal:#?} \
first_response={canonical_response:#?} \
second_response={new_canonical_response:#?}"
);
}
}
Ok((has_changed, certainty, nested_goals))
}
fn compute_goal(&mut self, goal: Goal<'tcx, ty::Predicate<'tcx>>) -> QueryResult<'tcx> {
let Goal { param_env, predicate } = goal;
let kind = predicate.kind();
if let Some(kind) = kind.no_bound_vars() {
match kind {
ty::PredicateKind::Clause(ty::Clause::Trait(predicate)) => {
self.compute_trait_goal(Goal { param_env, predicate })
}
ty::PredicateKind::Clause(ty::Clause::Projection(predicate)) => {
self.compute_projection_goal(Goal { param_env, predicate })
}
ty::PredicateKind::Clause(ty::Clause::TypeOutlives(predicate)) => {
self.compute_type_outlives_goal(Goal { param_env, predicate })
}
ty::PredicateKind::Clause(ty::Clause::RegionOutlives(predicate)) => {
self.compute_region_outlives_goal(Goal { param_env, predicate })
}
ty::PredicateKind::Clause(ty::Clause::ConstArgHasType(ct, ty)) => {
self.compute_const_arg_has_type_goal(Goal { param_env, predicate: (ct, ty) })
}
ty::PredicateKind::Subtype(predicate) => {
self.compute_subtype_goal(Goal { param_env, predicate })
}
ty::PredicateKind::Coerce(predicate) => {
self.compute_coerce_goal(Goal { param_env, predicate })
}
ty::PredicateKind::ClosureKind(def_id, substs, kind) => self
.compute_closure_kind_goal(Goal {
param_env,
predicate: (def_id, substs, kind),
}),
ty::PredicateKind::ObjectSafe(trait_def_id) => {
self.compute_object_safe_goal(trait_def_id)
}
ty::PredicateKind::WellFormed(arg) => {
self.compute_well_formed_goal(Goal { param_env, predicate: arg })
}
ty::PredicateKind::Ambiguous => {
self.evaluate_added_goals_and_make_canonical_response(Certainty::AMBIGUOUS)
}
// FIXME: implement these predicates :)
ty::PredicateKind::ConstEvaluatable(_) | ty::PredicateKind::ConstEquate(_, _) => {
self.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
}
ty::PredicateKind::TypeWellFormedFromEnv(..) => {
bug!("TypeWellFormedFromEnv is only used for Chalk")
}
ty::PredicateKind::AliasRelate(lhs, rhs, direction) => self
.compute_alias_relate_goal(Goal {
param_env,
predicate: (lhs, rhs, direction),
}),
}
} else {
let kind = self.infcx.instantiate_binder_with_placeholders(kind);
let goal = goal.with(self.tcx(), ty::Binder::dummy(kind));
self.add_goal(goal);
self.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
}
}
// Recursively evaluates all the goals added to this `EvalCtxt` to completion, returning
// the certainty of all the goals.
#[instrument(level = "debug", skip(self))]
pub(super) fn try_evaluate_added_goals(&mut self) -> Result<Certainty, NoSolution> {
let mut goals = core::mem::replace(&mut self.nested_goals, NestedGoals::new());
let mut new_goals = NestedGoals::new();
let response = self.repeat_while_none(
|_| Ok(Certainty::Maybe(MaybeCause::Overflow)),
|this| {
let mut has_changed = Err(Certainty::Yes);
if let Some(goal) = goals.normalizes_to_hack_goal.take() {
// Replace the goal with an unconstrained infer var, so the
// RHS does not affect projection candidate assembly.
let unconstrained_rhs = this.next_term_infer_of_kind(goal.predicate.term);
let unconstrained_goal = goal.with(
this.tcx(),
ty::Binder::dummy(ty::ProjectionPredicate {
projection_ty: goal.predicate.projection_ty,
term: unconstrained_rhs,
}),
);
let (_, certainty, instantiate_goals) =
match this.evaluate_goal(IsNormalizesToHack::Yes, unconstrained_goal) {
Ok(r) => r,
Err(NoSolution) => return Some(Err(NoSolution)),
};
new_goals.goals.extend(instantiate_goals);
// Finally, equate the goal's RHS with the unconstrained var.
// We put the nested goals from this into goals instead of
// next_goals to avoid needing to process the loop one extra
// time if this goal returns something -- I don't think this
// matters in practice, though.
match this.eq_and_get_goals(
goal.param_env,
goal.predicate.term,
unconstrained_rhs,
) {
Ok(eq_goals) => {
goals.goals.extend(eq_goals);
}
Err(NoSolution) => return Some(Err(NoSolution)),
};
// We only look at the `projection_ty` part here rather than
// looking at the "has changed" return from evaluate_goal,
// because we expect the `unconstrained_rhs` part of the predicate
// to have changed -- that means we actually normalized successfully!
if goal.predicate.projection_ty
!= this.resolve_vars_if_possible(goal.predicate.projection_ty)
{
has_changed = Ok(())
}
match certainty {
Certainty::Yes => {}
Certainty::Maybe(_) => {
// We need to resolve vars here so that we correctly
// deal with `has_changed` in the next iteration.
new_goals.normalizes_to_hack_goal =
Some(this.resolve_vars_if_possible(goal));
has_changed = has_changed.map_err(|c| c.unify_with(certainty));
}
}
}
for goal in goals.goals.drain(..) {
let (changed, certainty, instantiate_goals) =
match this.evaluate_goal(IsNormalizesToHack::No, goal) {
Ok(result) => result,
Err(NoSolution) => return Some(Err(NoSolution)),
};
new_goals.goals.extend(instantiate_goals);
if changed {
has_changed = Ok(());
}
match certainty {
Certainty::Yes => {}
Certainty::Maybe(_) => {
new_goals.goals.push(goal);
has_changed = has_changed.map_err(|c| c.unify_with(certainty));
}
}
}
core::mem::swap(&mut new_goals, &mut goals);
match has_changed {
Ok(()) => None,
Err(certainty) => Some(Ok(certainty)),
}
},
);
if response.is_err() {
self.tainted = Err(NoSolution);
}
self.nested_goals = goals;
response
}
}
impl<'tcx> EvalCtxt<'_, 'tcx> {
pub(super) fn probe<T>(&mut self, f: impl FnOnce(&mut EvalCtxt<'_, 'tcx>) -> T) -> T {
let mut ecx = EvalCtxt {
infcx: self.infcx,
var_values: self.var_values,
max_input_universe: self.max_input_universe,
search_graph: self.search_graph,
nested_goals: self.nested_goals.clone(),
tainted: self.tainted,
};
self.infcx.probe(|_| f(&mut ecx))
}
pub(super) fn tcx(&self) -> TyCtxt<'tcx> {
self.infcx.tcx
}
pub(super) fn next_ty_infer(&self) -> Ty<'tcx> {
self.infcx.next_ty_var(TypeVariableOrigin {
kind: TypeVariableOriginKind::MiscVariable,
span: DUMMY_SP,
})
}
pub(super) fn next_region_infer(&self) -> ty::Region<'tcx> {
self.infcx.next_region_var(RegionVariableOrigin::MiscVariable(DUMMY_SP))
}
pub(super) fn next_const_infer(&self, ty: Ty<'tcx>) -> ty::Const<'tcx> {
self.infcx.next_const_var(
ty,
ConstVariableOrigin { kind: ConstVariableOriginKind::MiscVariable, span: DUMMY_SP },
)
}
/// Returns a ty infer or a const infer depending on whether `kind` is a `Ty` or `Const`.
/// If `kind` is an integer inference variable this will still return a ty infer var.
pub(super) fn next_term_infer_of_kind(&self, kind: ty::Term<'tcx>) -> ty::Term<'tcx> {
match kind.unpack() {
ty::TermKind::Ty(_) => self.next_ty_infer().into(),
ty::TermKind::Const(ct) => self.next_const_infer(ct.ty()).into(),
}
}
/// Is the projection predicate is of the form `exists<T> <Ty as Trait>::Assoc = T`.
///
/// This is the case if the `term` is an inference variable in the innermost universe
/// and does not occur in any other part of the predicate.
pub(super) fn term_is_fully_unconstrained(
&self,
goal: Goal<'tcx, ty::ProjectionPredicate<'tcx>>,
) -> bool {
let term_is_infer = match goal.predicate.term.unpack() {
ty::TermKind::Ty(ty) => {
if let &ty::Infer(ty::TyVar(vid)) = ty.kind() {
match self.infcx.probe_ty_var(vid) {
Ok(value) => bug!("resolved var in query: {goal:?} {value:?}"),
Err(universe) => universe == self.infcx.universe(),
}
} else {
false
}
}
ty::TermKind::Const(ct) => {
if let ty::ConstKind::Infer(ty::InferConst::Var(vid)) = ct.kind() {
match self.infcx.probe_const_var(vid) {
Ok(value) => bug!("resolved var in query: {goal:?} {value:?}"),
Err(universe) => universe == self.infcx.universe(),
}
} else {
false
}
}
};
// Guard against `<T as Trait<?0>>::Assoc = ?0>`.
struct ContainsTerm<'a, 'tcx> {
term: ty::Term<'tcx>,
infcx: &'a InferCtxt<'tcx>,
}
impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for ContainsTerm<'_, 'tcx> {
type BreakTy = ();
fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
if let Some(vid) = t.ty_vid()
&& let ty::TermKind::Ty(term) = self.term.unpack()
&& let Some(term_vid) = term.ty_vid()
&& self.infcx.root_var(vid) == self.infcx.root_var(term_vid)
{
ControlFlow::Break(())
} else if t.has_non_region_infer() {
t.super_visit_with(self)
} else {
ControlFlow::Continue(())
}
}
fn visit_const(&mut self, c: ty::Const<'tcx>) -> ControlFlow<Self::BreakTy> {
if let ty::ConstKind::Infer(ty::InferConst::Var(vid)) = c.kind()
&& let ty::TermKind::Const(term) = self.term.unpack()
&& let ty::ConstKind::Infer(ty::InferConst::Var(term_vid)) = term.kind()
&& self.infcx.root_const_var(vid) == self.infcx.root_const_var(term_vid)
{
ControlFlow::Break(())
} else if c.has_non_region_infer() {
c.super_visit_with(self)
} else {
ControlFlow::Continue(())
}
}
}
let mut visitor = ContainsTerm { infcx: self.infcx, term: goal.predicate.term };
term_is_infer
&& goal.predicate.projection_ty.visit_with(&mut visitor).is_continue()
&& goal.param_env.visit_with(&mut visitor).is_continue()
}
#[instrument(level = "debug", skip(self, param_env), ret)]
pub(super) fn eq<T: ToTrace<'tcx>>(
&mut self,
param_env: ty::ParamEnv<'tcx>,
lhs: T,
rhs: T,
) -> Result<(), NoSolution> {
self.infcx
.at(&ObligationCause::dummy(), param_env)
.eq(DefineOpaqueTypes::No, lhs, rhs)
.map(|InferOk { value: (), obligations }| {
self.add_goals(obligations.into_iter().map(|o| o.into()));
})
.map_err(|e| {
debug!(?e, "failed to equate");
NoSolution
})
}
#[instrument(level = "debug", skip(self, param_env), ret)]
pub(super) fn sub<T: ToTrace<'tcx>>(
&mut self,
param_env: ty::ParamEnv<'tcx>,
sub: T,
sup: T,
) -> Result<(), NoSolution> {
self.infcx
.at(&ObligationCause::dummy(), param_env)
.sub(DefineOpaqueTypes::No, sub, sup)
.map(|InferOk { value: (), obligations }| {
self.add_goals(obligations.into_iter().map(|o| o.into()));
})
.map_err(|e| {
debug!(?e, "failed to subtype");
NoSolution
})
}
/// Equates two values returning the nested goals without adding them
/// to the nested goals of the `EvalCtxt`.
///
/// If possible, try using `eq` instead which automatically handles nested
/// goals correctly.
#[instrument(level = "trace", skip(self, param_env), ret)]
pub(super) fn eq_and_get_goals<T: ToTrace<'tcx>>(
&self,
param_env: ty::ParamEnv<'tcx>,
lhs: T,
rhs: T,
) -> Result<Vec<Goal<'tcx, ty::Predicate<'tcx>>>, NoSolution> {
self.infcx
.at(&ObligationCause::dummy(), param_env)
.eq(DefineOpaqueTypes::No, lhs, rhs)
.map(|InferOk { value: (), obligations }| {
obligations.into_iter().map(|o| o.into()).collect()
})
.map_err(|e| {
debug!(?e, "failed to equate");
NoSolution
})
}
pub(super) fn instantiate_binder_with_infer<T: TypeFoldable<TyCtxt<'tcx>> + Copy>(
&self,
value: ty::Binder<'tcx, T>,
) -> T {
self.infcx.instantiate_binder_with_fresh_vars(
DUMMY_SP,
LateBoundRegionConversionTime::HigherRankedType,
value,
)
}
pub(super) fn instantiate_binder_with_placeholders<T: TypeFoldable<TyCtxt<'tcx>> + Copy>(
&self,
value: ty::Binder<'tcx, T>,
) -> T {
self.infcx.instantiate_binder_with_placeholders(value)
}
pub(super) fn resolve_vars_if_possible<T>(&self, value: T) -> T
where
T: TypeFoldable<TyCtxt<'tcx>>,
{
self.infcx.resolve_vars_if_possible(value)
}
pub(super) fn fresh_substs_for_item(&self, def_id: DefId) -> ty::SubstsRef<'tcx> {
self.infcx.fresh_substs_for_item(DUMMY_SP, def_id)
}
pub(super) fn translate_substs(
&self,
param_env: ty::ParamEnv<'tcx>,
source_impl: DefId,
source_substs: ty::SubstsRef<'tcx>,
target_node: specialization_graph::Node,
) -> ty::SubstsRef<'tcx> {
crate::traits::translate_substs(
self.infcx,
param_env,
source_impl,
source_substs,
target_node,
)
}
pub(super) fn register_ty_outlives(&self, ty: Ty<'tcx>, lt: ty::Region<'tcx>) {
self.infcx.register_region_obligation_with_cause(ty, lt, &ObligationCause::dummy());
}
pub(super) fn register_region_outlives(&self, a: ty::Region<'tcx>, b: ty::Region<'tcx>) {
// `b : a` ==> `a <= b`
// (inlined from `InferCtxt::region_outlives_predicate`)
self.infcx.sub_regions(
rustc_infer::infer::SubregionOrigin::RelateRegionParamBound(DUMMY_SP),
b,
a,
);
}
/// Computes the list of goals required for `arg` to be well-formed
pub(super) fn well_formed_goals(
&self,
param_env: ty::ParamEnv<'tcx>,
arg: ty::GenericArg<'tcx>,
) -> Option<impl Iterator<Item = Goal<'tcx, ty::Predicate<'tcx>>>> {
crate::traits::wf::unnormalized_obligations(self.infcx, param_env, arg)
.map(|obligations| obligations.into_iter().map(|obligation| obligation.into()))
}
pub(super) fn is_transmutable(
&self,
src_and_dst: rustc_transmute::Types<'tcx>,
scope: Ty<'tcx>,
assume: rustc_transmute::Assume,
) -> Result<Certainty, NoSolution> {
// FIXME(transmutability): This really should be returning nested goals for `Answer::If*`
match rustc_transmute::TransmuteTypeEnv::new(self.infcx).is_transmutable(
ObligationCause::dummy(),
src_and_dst,
scope,
assume,
) {
rustc_transmute::Answer::Yes => Ok(Certainty::Yes),
rustc_transmute::Answer::No(_)
| rustc_transmute::Answer::IfTransmutable { .. }
| rustc_transmute::Answer::IfAll(_)
| rustc_transmute::Answer::IfAny(_) => Err(NoSolution),
}
}
}