blob: 327be40a58f2f5dd3d854b3500529f1eacf924ad [file] [log] [blame]
// ignore-tidy-filelength
//! This module contains the "cleaned" pieces of the AST, and the functions
//! that clean them.
pub mod inline;
pub mod cfg;
mod auto_trait;
mod blanket_impl;
mod simplify;
pub mod types;
use rustc_index::vec::{IndexVec, Idx};
use rustc_typeck::hir_ty_to_ty;
use rustc::infer::region_constraints::{RegionConstraintData, Constraint};
use rustc::middle::resolve_lifetime as rl;
use rustc::middle::lang_items;
use rustc::middle::stability;
use rustc::mir::interpret::GlobalId;
use rustc::hir;
use rustc::hir::def::{CtorKind, DefKind, Res};
use rustc::hir::def_id::{CrateNum, DefId, CRATE_DEF_INDEX, LOCAL_CRATE};
use rustc::hir::ptr::P;
use rustc::ty::subst::{InternalSubsts, SubstsRef, GenericArgKind};
use rustc::ty::{self, DefIdTree, TyCtxt, Region, RegionVid, Ty, AdtKind};
use rustc::ty::fold::TypeFolder;
use rustc::util::nodemap::{FxHashMap, FxHashSet};
use syntax::ast::{self, Ident};
use syntax::attr;
use syntax_pos::symbol::{Symbol, kw, sym};
use syntax_pos::hygiene::MacroKind;
use syntax_pos::{self, Pos};
use std::collections::hash_map::Entry;
use std::hash::Hash;
use std::default::Default;
use std::{mem, vec};
use std::rc::Rc;
use std::u32;
use crate::core::{self, DocContext, ImplTraitParam};
use crate::doctree;
use self::auto_trait::AutoTraitFinder;
use self::blanket_impl::BlanketImplFinder;
pub use self::types::*;
pub use self::types::Type::*;
pub use self::types::Mutability::*;
pub use self::types::ItemEnum::*;
pub use self::types::SelfTy::*;
pub use self::types::FunctionRetTy::*;
pub use self::types::Visibility::{Public, Inherited};
const FN_OUTPUT_NAME: &'static str = "Output";
// extract the stability index for a node from tcx, if possible
fn get_stability(cx: &DocContext<'_>, def_id: DefId) -> Option<Stability> {
cx.tcx.lookup_stability(def_id).clean(cx)
}
fn get_deprecation(cx: &DocContext<'_>, def_id: DefId) -> Option<Deprecation> {
cx.tcx.lookup_deprecation(def_id).clean(cx)
}
pub trait Clean<T> {
fn clean(&self, cx: &DocContext<'_>) -> T;
}
impl<T: Clean<U>, U> Clean<Vec<U>> for [T] {
fn clean(&self, cx: &DocContext<'_>) -> Vec<U> {
self.iter().map(|x| x.clean(cx)).collect()
}
}
impl<T: Clean<U>, U, V: Idx> Clean<IndexVec<V, U>> for IndexVec<V, T> {
fn clean(&self, cx: &DocContext<'_>) -> IndexVec<V, U> {
self.iter().map(|x| x.clean(cx)).collect()
}
}
impl<T: Clean<U>, U> Clean<U> for P<T> {
fn clean(&self, cx: &DocContext<'_>) -> U {
(**self).clean(cx)
}
}
impl<T: Clean<U>, U> Clean<U> for Rc<T> {
fn clean(&self, cx: &DocContext<'_>) -> U {
(**self).clean(cx)
}
}
impl<T: Clean<U>, U> Clean<Option<U>> for Option<T> {
fn clean(&self, cx: &DocContext<'_>) -> Option<U> {
self.as_ref().map(|v| v.clean(cx))
}
}
impl<T, U> Clean<U> for ty::Binder<T> where T: Clean<U> {
fn clean(&self, cx: &DocContext<'_>) -> U {
self.skip_binder().clean(cx)
}
}
impl<T: Clean<U>, U> Clean<Vec<U>> for P<[T]> {
fn clean(&self, cx: &DocContext<'_>) -> Vec<U> {
self.iter().map(|x| x.clean(cx)).collect()
}
}
pub fn krate(mut cx: &mut DocContext<'_>) -> Crate {
use crate::visit_lib::LibEmbargoVisitor;
let krate = cx.tcx.hir().krate();
let module = crate::visit_ast::RustdocVisitor::new(&mut cx).visit(krate);
let mut r = cx.renderinfo.get_mut();
r.deref_trait_did = cx.tcx.lang_items().deref_trait();
r.deref_mut_trait_did = cx.tcx.lang_items().deref_mut_trait();
r.owned_box_did = cx.tcx.lang_items().owned_box();
let mut externs = Vec::new();
for &cnum in cx.tcx.crates().iter() {
externs.push((cnum, cnum.clean(cx)));
// Analyze doc-reachability for extern items
LibEmbargoVisitor::new(&mut cx).visit_lib(cnum);
}
externs.sort_by(|&(a, _), &(b, _)| a.cmp(&b));
// Clean the crate, translating the entire libsyntax AST to one that is
// understood by rustdoc.
let mut module = module.clean(cx);
let mut masked_crates = FxHashSet::default();
match module.inner {
ModuleItem(ref module) => {
for it in &module.items {
// `compiler_builtins` should be masked too, but we can't apply
// `#[doc(masked)]` to the injected `extern crate` because it's unstable.
if it.is_extern_crate()
&& (it.attrs.has_doc_flag(sym::masked)
|| cx.tcx.is_compiler_builtins(it.def_id.krate))
{
masked_crates.insert(it.def_id.krate);
}
}
}
_ => unreachable!(),
}
let ExternalCrate { name, src, primitives, keywords, .. } = LOCAL_CRATE.clean(cx);
{
let m = match module.inner {
ModuleItem(ref mut m) => m,
_ => unreachable!(),
};
m.items.extend(primitives.iter().map(|&(def_id, prim, ref attrs)| {
Item {
source: Span::empty(),
name: Some(prim.to_url_str().to_string()),
attrs: attrs.clone(),
visibility: Public,
stability: get_stability(cx, def_id),
deprecation: get_deprecation(cx, def_id),
def_id,
inner: PrimitiveItem(prim),
}
}));
m.items.extend(keywords.into_iter().map(|(def_id, kw, attrs)| {
Item {
source: Span::empty(),
name: Some(kw.clone()),
attrs,
visibility: Public,
stability: get_stability(cx, def_id),
deprecation: get_deprecation(cx, def_id),
def_id,
inner: KeywordItem(kw),
}
}));
}
Crate {
name,
version: None,
src,
module: Some(module),
externs,
primitives,
external_traits: cx.external_traits.clone(),
masked_crates,
collapsed: false,
}
}
impl Clean<ExternalCrate> for CrateNum {
fn clean(&self, cx: &DocContext<'_>) -> ExternalCrate {
let root = DefId { krate: *self, index: CRATE_DEF_INDEX };
let krate_span = cx.tcx.def_span(root);
let krate_src = cx.sess().source_map().span_to_filename(krate_span);
// Collect all inner modules which are tagged as implementations of
// primitives.
//
// Note that this loop only searches the top-level items of the crate,
// and this is intentional. If we were to search the entire crate for an
// item tagged with `#[doc(primitive)]` then we would also have to
// search the entirety of external modules for items tagged
// `#[doc(primitive)]`, which is a pretty inefficient process (decoding
// all that metadata unconditionally).
//
// In order to keep the metadata load under control, the
// `#[doc(primitive)]` feature is explicitly designed to only allow the
// primitive tags to show up as the top level items in a crate.
//
// Also note that this does not attempt to deal with modules tagged
// duplicately for the same primitive. This is handled later on when
// rendering by delegating everything to a hash map.
let as_primitive = |res: Res| {
if let Res::Def(DefKind::Mod, def_id) = res {
let attrs = cx.tcx.get_attrs(def_id).clean(cx);
let mut prim = None;
for attr in attrs.lists(sym::doc) {
if let Some(v) = attr.value_str() {
if attr.check_name(sym::primitive) {
prim = PrimitiveType::from_str(&v.as_str());
if prim.is_some() {
break;
}
// FIXME: should warn on unknown primitives?
}
}
}
return prim.map(|p| (def_id, p, attrs));
}
None
};
let primitives = if root.is_local() {
cx.tcx.hir().krate().module.item_ids.iter().filter_map(|&id| {
let item = cx.tcx.hir().expect_item(id.id);
match item.kind {
hir::ItemKind::Mod(_) => {
as_primitive(Res::Def(
DefKind::Mod,
cx.tcx.hir().local_def_id(id.id),
))
}
hir::ItemKind::Use(ref path, hir::UseKind::Single)
if item.vis.node.is_pub() => {
as_primitive(path.res).map(|(_, prim, attrs)| {
// Pretend the primitive is local.
(cx.tcx.hir().local_def_id(id.id), prim, attrs)
})
}
_ => None
}
}).collect()
} else {
cx.tcx.item_children(root).iter().map(|item| item.res)
.filter_map(as_primitive).collect()
};
let as_keyword = |res: Res| {
if let Res::Def(DefKind::Mod, def_id) = res {
let attrs = cx.tcx.get_attrs(def_id).clean(cx);
let mut keyword = None;
for attr in attrs.lists(sym::doc) {
if let Some(v) = attr.value_str() {
if attr.check_name(sym::keyword) {
if v.is_doc_keyword() {
keyword = Some(v.to_string());
break;
}
// FIXME: should warn on unknown keywords?
}
}
}
return keyword.map(|p| (def_id, p, attrs));
}
None
};
let keywords = if root.is_local() {
cx.tcx.hir().krate().module.item_ids.iter().filter_map(|&id| {
let item = cx.tcx.hir().expect_item(id.id);
match item.kind {
hir::ItemKind::Mod(_) => {
as_keyword(Res::Def(
DefKind::Mod,
cx.tcx.hir().local_def_id(id.id),
))
}
hir::ItemKind::Use(ref path, hir::UseKind::Single)
if item.vis.node.is_pub() => {
as_keyword(path.res).map(|(_, prim, attrs)| {
(cx.tcx.hir().local_def_id(id.id), prim, attrs)
})
}
_ => None
}
}).collect()
} else {
cx.tcx.item_children(root).iter().map(|item| item.res)
.filter_map(as_keyword).collect()
};
ExternalCrate {
name: cx.tcx.crate_name(*self).to_string(),
src: krate_src,
attrs: cx.tcx.get_attrs(root).clean(cx),
primitives,
keywords,
}
}
}
impl Clean<Item> for doctree::Module<'_> {
fn clean(&self, cx: &DocContext<'_>) -> Item {
let name = if self.name.is_some() {
self.name.expect("No name provided").clean(cx)
} else {
String::new()
};
// maintain a stack of mod ids, for doc comment path resolution
// but we also need to resolve the module's own docs based on whether its docs were written
// inside or outside the module, so check for that
let attrs = self.attrs.clean(cx);
let mut items: Vec<Item> = vec![];
items.extend(self.extern_crates.iter().flat_map(|x| x.clean(cx)));
items.extend(self.imports.iter().flat_map(|x| x.clean(cx)));
items.extend(self.structs.iter().map(|x| x.clean(cx)));
items.extend(self.unions.iter().map(|x| x.clean(cx)));
items.extend(self.enums.iter().map(|x| x.clean(cx)));
items.extend(self.fns.iter().map(|x| x.clean(cx)));
items.extend(self.foreigns.iter().map(|x| x.clean(cx)));
items.extend(self.mods.iter().map(|x| x.clean(cx)));
items.extend(self.typedefs.iter().map(|x| x.clean(cx)));
items.extend(self.opaque_tys.iter().map(|x| x.clean(cx)));
items.extend(self.statics.iter().map(|x| x.clean(cx)));
items.extend(self.constants.iter().map(|x| x.clean(cx)));
items.extend(self.traits.iter().map(|x| x.clean(cx)));
items.extend(self.impls.iter().flat_map(|x| x.clean(cx)));
items.extend(self.macros.iter().map(|x| x.clean(cx)));
items.extend(self.proc_macros.iter().map(|x| x.clean(cx)));
items.extend(self.trait_aliases.iter().map(|x| x.clean(cx)));
// determine if we should display the inner contents or
// the outer `mod` item for the source code.
let whence = {
let cm = cx.sess().source_map();
let outer = cm.lookup_char_pos(self.where_outer.lo());
let inner = cm.lookup_char_pos(self.where_inner.lo());
if outer.file.start_pos == inner.file.start_pos {
// mod foo { ... }
self.where_outer
} else {
// mod foo; (and a separate SourceFile for the contents)
self.where_inner
}
};
Item {
name: Some(name),
attrs,
source: whence.clean(cx),
visibility: self.vis.clean(cx),
stability: cx.stability(self.id).clean(cx),
deprecation: cx.deprecation(self.id).clean(cx),
def_id: cx.tcx.hir().local_def_id(self.id),
inner: ModuleItem(Module {
is_crate: self.is_crate,
items,
})
}
}
}
impl Clean<Attributes> for [ast::Attribute] {
fn clean(&self, cx: &DocContext<'_>) -> Attributes {
Attributes::from_ast(cx.sess().diagnostic(), self)
}
}
impl Clean<GenericBound> for hir::GenericBound {
fn clean(&self, cx: &DocContext<'_>) -> GenericBound {
match *self {
hir::GenericBound::Outlives(lt) => GenericBound::Outlives(lt.clean(cx)),
hir::GenericBound::Trait(ref t, modifier) => {
GenericBound::TraitBound(t.clean(cx), modifier)
}
}
}
}
fn external_generic_args(
cx: &DocContext<'_>,
trait_did: Option<DefId>,
has_self: bool,
bindings: Vec<TypeBinding>,
substs: SubstsRef<'_>,
) -> GenericArgs {
let mut skip_self = has_self;
let mut ty_kind = None;
let args: Vec<_> = substs.iter().filter_map(|kind| match kind.unpack() {
GenericArgKind::Lifetime(lt) => {
lt.clean(cx).and_then(|lt| Some(GenericArg::Lifetime(lt)))
}
GenericArgKind::Type(_) if skip_self => {
skip_self = false;
None
}
GenericArgKind::Type(ty) => {
ty_kind = Some(&ty.kind);
Some(GenericArg::Type(ty.clean(cx)))
}
GenericArgKind::Const(ct) => Some(GenericArg::Const(ct.clean(cx))),
}).collect();
match trait_did {
// Attempt to sugar an external path like Fn<(A, B,), C> to Fn(A, B) -> C
Some(did) if cx.tcx.lang_items().fn_trait_kind(did).is_some() => {
assert!(ty_kind.is_some());
let inputs = match ty_kind {
Some(ty::Tuple(ref tys)) => tys.iter().map(|t| t.expect_ty().clean(cx)).collect(),
_ => return GenericArgs::AngleBracketed { args, bindings },
};
let output = None;
// FIXME(#20299) return type comes from a projection now
// match types[1].kind {
// ty::Tuple(ref v) if v.is_empty() => None, // -> ()
// _ => Some(types[1].clean(cx))
// };
GenericArgs::Parenthesized { inputs, output }
},
_ => {
GenericArgs::AngleBracketed { args, bindings }
}
}
}
// trait_did should be set to a trait's DefId if called on a TraitRef, in order to sugar
// from Fn<(A, B,), C> to Fn(A, B) -> C
fn external_path(cx: &DocContext<'_>, name: Symbol, trait_did: Option<DefId>, has_self: bool,
bindings: Vec<TypeBinding>, substs: SubstsRef<'_>) -> Path {
Path {
global: false,
res: Res::Err,
segments: vec![PathSegment {
name: name.to_string(),
args: external_generic_args(cx, trait_did, has_self, bindings, substs)
}],
}
}
impl<'a, 'tcx> Clean<GenericBound> for (&'a ty::TraitRef<'tcx>, Vec<TypeBinding>) {
fn clean(&self, cx: &DocContext<'_>) -> GenericBound {
let (trait_ref, ref bounds) = *self;
inline::record_extern_fqn(cx, trait_ref.def_id, TypeKind::Trait);
let path = external_path(cx, cx.tcx.item_name(trait_ref.def_id),
Some(trait_ref.def_id), true, bounds.clone(), trait_ref.substs);
debug!("ty::TraitRef\n subst: {:?}\n", trait_ref.substs);
// collect any late bound regions
let mut late_bounds = vec![];
for ty_s in trait_ref.input_types().skip(1) {
if let ty::Tuple(ts) = ty_s.kind {
for &ty_s in ts {
if let ty::Ref(ref reg, _, _) = ty_s.expect_ty().kind {
if let &ty::RegionKind::ReLateBound(..) = *reg {
debug!(" hit an ReLateBound {:?}", reg);
if let Some(Lifetime(name)) = reg.clean(cx) {
late_bounds.push(GenericParamDef {
name,
kind: GenericParamDefKind::Lifetime,
});
}
}
}
}
}
}
GenericBound::TraitBound(
PolyTrait {
trait_: ResolvedPath {
path,
param_names: None,
did: trait_ref.def_id,
is_generic: false,
},
generic_params: late_bounds,
},
hir::TraitBoundModifier::None
)
}
}
impl<'tcx> Clean<GenericBound> for ty::TraitRef<'tcx> {
fn clean(&self, cx: &DocContext<'_>) -> GenericBound {
(self, vec![]).clean(cx)
}
}
impl<'tcx> Clean<Option<Vec<GenericBound>>> for InternalSubsts<'tcx> {
fn clean(&self, cx: &DocContext<'_>) -> Option<Vec<GenericBound>> {
let mut v = Vec::new();
v.extend(self.regions().filter_map(|r| r.clean(cx)).map(GenericBound::Outlives));
v.extend(self.types().map(|t| GenericBound::TraitBound(PolyTrait {
trait_: t.clean(cx),
generic_params: Vec::new(),
}, hir::TraitBoundModifier::None)));
if !v.is_empty() {Some(v)} else {None}
}
}
impl Clean<Lifetime> for hir::Lifetime {
fn clean(&self, cx: &DocContext<'_>) -> Lifetime {
if self.hir_id != hir::DUMMY_HIR_ID {
let def = cx.tcx.named_region(self.hir_id);
match def {
Some(rl::Region::EarlyBound(_, node_id, _)) |
Some(rl::Region::LateBound(_, node_id, _)) |
Some(rl::Region::Free(_, node_id)) => {
if let Some(lt) = cx.lt_substs.borrow().get(&node_id).cloned() {
return lt;
}
}
_ => {}
}
}
Lifetime(self.name.ident().to_string())
}
}
impl Clean<Lifetime> for hir::GenericParam {
fn clean(&self, _: &DocContext<'_>) -> Lifetime {
match self.kind {
hir::GenericParamKind::Lifetime { .. } => {
if self.bounds.len() > 0 {
let mut bounds = self.bounds.iter().map(|bound| match bound {
hir::GenericBound::Outlives(lt) => lt,
_ => panic!(),
});
let name = bounds.next().expect("no more bounds").name.ident();
let mut s = format!("{}: {}", self.name.ident(), name);
for bound in bounds {
s.push_str(&format!(" + {}", bound.name.ident()));
}
Lifetime(s)
} else {
Lifetime(self.name.ident().to_string())
}
}
_ => panic!(),
}
}
}
impl Clean<Constant> for hir::ConstArg {
fn clean(&self, cx: &DocContext<'_>) -> Constant {
Constant {
type_: cx.tcx.type_of(cx.tcx.hir().body_owner_def_id(self.value.body)).clean(cx),
expr: print_const_expr(cx, self.value.body),
}
}
}
impl Clean<Lifetime> for ty::GenericParamDef {
fn clean(&self, _cx: &DocContext<'_>) -> Lifetime {
Lifetime(self.name.to_string())
}
}
impl Clean<Option<Lifetime>> for ty::RegionKind {
fn clean(&self, cx: &DocContext<'_>) -> Option<Lifetime> {
match *self {
ty::ReStatic => Some(Lifetime::statik()),
ty::ReLateBound(_, ty::BrNamed(_, name)) => Some(Lifetime(name.to_string())),
ty::ReEarlyBound(ref data) => Some(Lifetime(data.name.clean(cx))),
ty::ReLateBound(..) |
ty::ReFree(..) |
ty::ReScope(..) |
ty::ReVar(..) |
ty::RePlaceholder(..) |
ty::ReEmpty |
ty::ReClosureBound(_) |
ty::ReErased => {
debug!("cannot clean region {:?}", self);
None
}
}
}
}
impl Clean<WherePredicate> for hir::WherePredicate {
fn clean(&self, cx: &DocContext<'_>) -> WherePredicate {
match *self {
hir::WherePredicate::BoundPredicate(ref wbp) => {
WherePredicate::BoundPredicate {
ty: wbp.bounded_ty.clean(cx),
bounds: wbp.bounds.clean(cx)
}
}
hir::WherePredicate::RegionPredicate(ref wrp) => {
WherePredicate::RegionPredicate {
lifetime: wrp.lifetime.clean(cx),
bounds: wrp.bounds.clean(cx)
}
}
hir::WherePredicate::EqPredicate(ref wrp) => {
WherePredicate::EqPredicate {
lhs: wrp.lhs_ty.clean(cx),
rhs: wrp.rhs_ty.clean(cx)
}
}
}
}
}
impl<'a> Clean<Option<WherePredicate>> for ty::Predicate<'a> {
fn clean(&self, cx: &DocContext<'_>) -> Option<WherePredicate> {
use rustc::ty::Predicate;
match *self {
Predicate::Trait(ref pred) => Some(pred.clean(cx)),
Predicate::Subtype(ref pred) => Some(pred.clean(cx)),
Predicate::RegionOutlives(ref pred) => pred.clean(cx),
Predicate::TypeOutlives(ref pred) => pred.clean(cx),
Predicate::Projection(ref pred) => Some(pred.clean(cx)),
Predicate::WellFormed(..) |
Predicate::ObjectSafe(..) |
Predicate::ClosureKind(..) |
Predicate::ConstEvaluatable(..) => panic!("not user writable"),
}
}
}
impl<'a> Clean<WherePredicate> for ty::TraitPredicate<'a> {
fn clean(&self, cx: &DocContext<'_>) -> WherePredicate {
WherePredicate::BoundPredicate {
ty: self.trait_ref.self_ty().clean(cx),
bounds: vec![self.trait_ref.clean(cx)]
}
}
}
impl<'tcx> Clean<WherePredicate> for ty::SubtypePredicate<'tcx> {
fn clean(&self, _cx: &DocContext<'_>) -> WherePredicate {
panic!("subtype predicates are an internal rustc artifact \
and should not be seen by rustdoc")
}
}
impl<'tcx> Clean<Option<WherePredicate>> for
ty::OutlivesPredicate<ty::Region<'tcx>,ty::Region<'tcx>> {
fn clean(&self, cx: &DocContext<'_>) -> Option<WherePredicate> {
let ty::OutlivesPredicate(ref a, ref b) = *self;
match (a, b) {
(ty::ReEmpty, ty::ReEmpty) => {
return None;
},
_ => {}
}
Some(WherePredicate::RegionPredicate {
lifetime: a.clean(cx).expect("failed to clean lifetime"),
bounds: vec![GenericBound::Outlives(b.clean(cx).expect("failed to clean bounds"))]
})
}
}
impl<'tcx> Clean<Option<WherePredicate>> for ty::OutlivesPredicate<Ty<'tcx>, ty::Region<'tcx>> {
fn clean(&self, cx: &DocContext<'_>) -> Option<WherePredicate> {
let ty::OutlivesPredicate(ref ty, ref lt) = *self;
match lt {
ty::ReEmpty => return None,
_ => {}
}
Some(WherePredicate::BoundPredicate {
ty: ty.clean(cx),
bounds: vec![GenericBound::Outlives(lt.clean(cx).expect("failed to clean lifetimes"))]
})
}
}
impl<'tcx> Clean<WherePredicate> for ty::ProjectionPredicate<'tcx> {
fn clean(&self, cx: &DocContext<'_>) -> WherePredicate {
WherePredicate::EqPredicate {
lhs: self.projection_ty.clean(cx),
rhs: self.ty.clean(cx)
}
}
}
impl<'tcx> Clean<Type> for ty::ProjectionTy<'tcx> {
fn clean(&self, cx: &DocContext<'_>) -> Type {
let trait_ = match self.trait_ref(cx.tcx).clean(cx) {
GenericBound::TraitBound(t, _) => t.trait_,
GenericBound::Outlives(_) => panic!("cleaning a trait got a lifetime"),
};
Type::QPath {
name: cx.tcx.associated_item(self.item_def_id).ident.name.clean(cx),
self_type: box self.self_ty().clean(cx),
trait_: box trait_
}
}
}
impl Clean<GenericParamDef> for ty::GenericParamDef {
fn clean(&self, cx: &DocContext<'_>) -> GenericParamDef {
let (name, kind) = match self.kind {
ty::GenericParamDefKind::Lifetime => {
(self.name.to_string(), GenericParamDefKind::Lifetime)
}
ty::GenericParamDefKind::Type { has_default, synthetic, .. } => {
let default = if has_default {
Some(cx.tcx.type_of(self.def_id).clean(cx))
} else {
None
};
(self.name.clean(cx), GenericParamDefKind::Type {
did: self.def_id,
bounds: vec![], // These are filled in from the where-clauses.
default,
synthetic,
})
}
ty::GenericParamDefKind::Const { .. } => {
(self.name.clean(cx), GenericParamDefKind::Const {
did: self.def_id,
ty: cx.tcx.type_of(self.def_id).clean(cx),
})
}
};
GenericParamDef {
name,
kind,
}
}
}
impl Clean<GenericParamDef> for hir::GenericParam {
fn clean(&self, cx: &DocContext<'_>) -> GenericParamDef {
let (name, kind) = match self.kind {
hir::GenericParamKind::Lifetime { .. } => {
let name = if self.bounds.len() > 0 {
let mut bounds = self.bounds.iter().map(|bound| match bound {
hir::GenericBound::Outlives(lt) => lt,
_ => panic!(),
});
let name = bounds.next().expect("no more bounds").name.ident();
let mut s = format!("{}: {}", self.name.ident(), name);
for bound in bounds {
s.push_str(&format!(" + {}", bound.name.ident()));
}
s
} else {
self.name.ident().to_string()
};
(name, GenericParamDefKind::Lifetime)
}
hir::GenericParamKind::Type { ref default, synthetic } => {
(self.name.ident().name.clean(cx), GenericParamDefKind::Type {
did: cx.tcx.hir().local_def_id(self.hir_id),
bounds: self.bounds.clean(cx),
default: default.clean(cx),
synthetic,
})
}
hir::GenericParamKind::Const { ref ty } => {
(self.name.ident().name.clean(cx), GenericParamDefKind::Const {
did: cx.tcx.hir().local_def_id(self.hir_id),
ty: ty.clean(cx),
})
}
};
GenericParamDef {
name,
kind,
}
}
}
impl Clean<Generics> for hir::Generics {
fn clean(&self, cx: &DocContext<'_>) -> Generics {
// Synthetic type-parameters are inserted after normal ones.
// In order for normal parameters to be able to refer to synthetic ones,
// scans them first.
fn is_impl_trait(param: &hir::GenericParam) -> bool {
match param.kind {
hir::GenericParamKind::Type { synthetic, .. } => {
synthetic == Some(hir::SyntheticTyParamKind::ImplTrait)
}
_ => false,
}
}
let impl_trait_params = self.params
.iter()
.filter(|param| is_impl_trait(param))
.map(|param| {
let param: GenericParamDef = param.clean(cx);
match param.kind {
GenericParamDefKind::Lifetime => unreachable!(),
GenericParamDefKind::Type { did, ref bounds, .. } => {
cx.impl_trait_bounds.borrow_mut().insert(did.into(), bounds.clone());
}
GenericParamDefKind::Const { .. } => unreachable!(),
}
param
})
.collect::<Vec<_>>();
let mut params = Vec::with_capacity(self.params.len());
for p in self.params.iter().filter(|p| !is_impl_trait(p)) {
let p = p.clean(cx);
params.push(p);
}
params.extend(impl_trait_params);
let mut generics = Generics {
params,
where_predicates: self.where_clause.predicates.clean(cx),
};
// Some duplicates are generated for ?Sized bounds between type params and where
// predicates. The point in here is to move the bounds definitions from type params
// to where predicates when such cases occur.
for where_pred in &mut generics.where_predicates {
match *where_pred {
WherePredicate::BoundPredicate { ty: Generic(ref name), ref mut bounds } => {
if bounds.is_empty() {
for param in &mut generics.params {
match param.kind {
GenericParamDefKind::Lifetime => {}
GenericParamDefKind::Type { bounds: ref mut ty_bounds, .. } => {
if &param.name == name {
mem::swap(bounds, ty_bounds);
break
}
}
GenericParamDefKind::Const { .. } => {}
}
}
}
}
_ => continue,
}
}
generics
}
}
impl<'a, 'tcx> Clean<Generics> for (&'a ty::Generics, ty::GenericPredicates<'tcx>) {
fn clean(&self, cx: &DocContext<'_>) -> Generics {
use self::WherePredicate as WP;
use std::collections::BTreeMap;
let (gens, preds) = *self;
// Don't populate `cx.impl_trait_bounds` before `clean`ning `where` clauses,
// since `Clean for ty::Predicate` would consume them.
let mut impl_trait = BTreeMap::<ImplTraitParam, Vec<GenericBound>>::default();
// Bounds in the type_params and lifetimes fields are repeated in the
// predicates field (see rustc_typeck::collect::ty_generics), so remove
// them.
let stripped_typarams = gens.params.iter()
.filter_map(|param| match param.kind {
ty::GenericParamDefKind::Lifetime => None,
ty::GenericParamDefKind::Type { synthetic, .. } => {
if param.name == kw::SelfUpper {
assert_eq!(param.index, 0);
return None;
}
if synthetic == Some(hir::SyntheticTyParamKind::ImplTrait) {
impl_trait.insert(param.index.into(), vec![]);
return None;
}
Some(param.clean(cx))
}
ty::GenericParamDefKind::Const { .. } => None,
}).collect::<Vec<GenericParamDef>>();
// param index -> [(DefId of trait, associated type name, type)]
let mut impl_trait_proj =
FxHashMap::<u32, Vec<(DefId, String, Ty<'tcx>)>>::default();
let where_predicates = preds.predicates.iter()
.flat_map(|(p, _)| {
let mut projection = None;
let param_idx = (|| {
if let Some(trait_ref) = p.to_opt_poly_trait_ref() {
if let ty::Param(param) = trait_ref.self_ty().kind {
return Some(param.index);
}
} else if let Some(outlives) = p.to_opt_type_outlives() {
if let ty::Param(param) = outlives.skip_binder().0.kind {
return Some(param.index);
}
} else if let ty::Predicate::Projection(p) = p {
if let ty::Param(param) = p.skip_binder().projection_ty.self_ty().kind {
projection = Some(p);
return Some(param.index);
}
}
None
})();
if let Some(param_idx) = param_idx {
if let Some(b) = impl_trait.get_mut(&param_idx.into()) {
let p = p.clean(cx)?;
b.extend(
p.get_bounds()
.into_iter()
.flatten()
.cloned()
.filter(|b| !b.is_sized_bound(cx))
);
let proj = projection
.map(|p| (p.skip_binder().projection_ty.clean(cx), p.skip_binder().ty));
if let Some(((_, trait_did, name), rhs)) =
proj.as_ref().and_then(|(lhs, rhs)| Some((lhs.projection()?, rhs)))
{
impl_trait_proj
.entry(param_idx)
.or_default()
.push((trait_did, name.to_string(), rhs));
}
return None;
}
}
Some(p)
})
.collect::<Vec<_>>();
for (param, mut bounds) in impl_trait {
// Move trait bounds to the front.
bounds.sort_by_key(|b| if let GenericBound::TraitBound(..) = b {
false
} else {
true
});
if let crate::core::ImplTraitParam::ParamIndex(idx) = param {
if let Some(proj) = impl_trait_proj.remove(&idx) {
for (trait_did, name, rhs) in proj {
simplify::merge_bounds(
cx,
&mut bounds,
trait_did,
&name,
&rhs.clean(cx),
);
}
}
} else {
unreachable!();
}
cx.impl_trait_bounds.borrow_mut().insert(param, bounds);
}
// Now that `cx.impl_trait_bounds` is populated, we can process
// remaining predicates which could contain `impl Trait`.
let mut where_predicates = where_predicates
.into_iter()
.flat_map(|p| p.clean(cx))
.collect::<Vec<_>>();
// Type parameters and have a Sized bound by default unless removed with
// ?Sized. Scan through the predicates and mark any type parameter with
// a Sized bound, removing the bounds as we find them.
//
// Note that associated types also have a sized bound by default, but we
// don't actually know the set of associated types right here so that's
// handled in cleaning associated types
let mut sized_params = FxHashSet::default();
where_predicates.retain(|pred| {
match *pred {
WP::BoundPredicate { ty: Generic(ref g), ref bounds } => {
if bounds.iter().any(|b| b.is_sized_bound(cx)) {
sized_params.insert(g.clone());
false
} else {
true
}
}
_ => true,
}
});
// Run through the type parameters again and insert a ?Sized
// unbound for any we didn't find to be Sized.
for tp in &stripped_typarams {
if !sized_params.contains(&tp.name) {
where_predicates.push(WP::BoundPredicate {
ty: Type::Generic(tp.name.clone()),
bounds: vec![GenericBound::maybe_sized(cx)],
})
}
}
// It would be nice to collect all of the bounds on a type and recombine
// them if possible, to avoid e.g., `where T: Foo, T: Bar, T: Sized, T: 'a`
// and instead see `where T: Foo + Bar + Sized + 'a`
Generics {
params: gens.params
.iter()
.flat_map(|param| match param.kind {
ty::GenericParamDefKind::Lifetime => Some(param.clean(cx)),
ty::GenericParamDefKind::Type { .. } => None,
ty::GenericParamDefKind::Const { .. } => Some(param.clean(cx)),
}).chain(simplify::ty_params(stripped_typarams).into_iter())
.collect(),
where_predicates: simplify::where_clauses(cx, where_predicates),
}
}
}
/// The point of this function is to replace bounds with types.
///
/// i.e. `[T, U]` when you have the following bounds: `T: Display, U: Option<T>` will return
/// `[Display, Option]` (we just returns the list of the types, we don't care about the
/// wrapped types in here).
fn get_real_types(
generics: &Generics,
arg: &Type,
cx: &DocContext<'_>,
recurse: i32,
) -> FxHashSet<Type> {
let arg_s = arg.print().to_string();
let mut res = FxHashSet::default();
if recurse >= 10 { // FIXME: remove this whole recurse thing when the recursion bug is fixed
return res;
}
if arg.is_full_generic() {
if let Some(where_pred) = generics.where_predicates.iter().find(|g| {
match g {
&WherePredicate::BoundPredicate { ref ty, .. } => ty.def_id() == arg.def_id(),
_ => false,
}
}) {
let bounds = where_pred.get_bounds().unwrap_or_else(|| &[]);
for bound in bounds.iter() {
match *bound {
GenericBound::TraitBound(ref poly_trait, _) => {
for x in poly_trait.generic_params.iter() {
if !x.is_type() {
continue
}
if let Some(ty) = x.get_type() {
let adds = get_real_types(generics, &ty, cx, recurse + 1);
if !adds.is_empty() {
res.extend(adds);
} else if !ty.is_full_generic() {
res.insert(ty);
}
}
}
}
_ => {}
}
}
}
if let Some(bound) = generics.params.iter().find(|g| {
g.is_type() && g.name == arg_s
}) {
for bound in bound.get_bounds().unwrap_or_else(|| &[]) {
if let Some(ty) = bound.get_trait_type() {
let adds = get_real_types(generics, &ty, cx, recurse + 1);
if !adds.is_empty() {
res.extend(adds);
} else if !ty.is_full_generic() {
res.insert(ty.clone());
}
}
}
}
} else {
res.insert(arg.clone());
if let Some(gens) = arg.generics() {
for gen in gens.iter() {
if gen.is_full_generic() {
let adds = get_real_types(generics, gen, cx, recurse + 1);
if !adds.is_empty() {
res.extend(adds);
}
} else {
res.insert(gen.clone());
}
}
}
}
res
}
/// Return the full list of types when bounds have been resolved.
///
/// i.e. `fn foo<A: Display, B: Option<A>>(x: u32, y: B)` will return
/// `[u32, Display, Option]`.
pub fn get_all_types(
generics: &Generics,
decl: &FnDecl,
cx: &DocContext<'_>,
) -> (Vec<Type>, Vec<Type>) {
let mut all_types = FxHashSet::default();
for arg in decl.inputs.values.iter() {
if arg.type_.is_self_type() {
continue;
}
let args = get_real_types(generics, &arg.type_, cx, 0);
if !args.is_empty() {
all_types.extend(args);
} else {
all_types.insert(arg.type_.clone());
}
}
let ret_types = match decl.output {
FunctionRetTy::Return(ref return_type) => {
let mut ret = get_real_types(generics, &return_type, cx, 0);
if ret.is_empty() {
ret.insert(return_type.clone());
}
ret.into_iter().collect()
}
_ => Vec::new(),
};
(all_types.into_iter().collect(), ret_types)
}
impl<'a> Clean<Method> for (&'a hir::FnSig, &'a hir::Generics, hir::BodyId,
Option<hir::Defaultness>) {
fn clean(&self, cx: &DocContext<'_>) -> Method {
let (generics, decl) = enter_impl_trait(cx, || {
(self.1.clean(cx), (&*self.0.decl, self.2).clean(cx))
});
let (all_types, ret_types) = get_all_types(&generics, &decl, cx);
Method {
decl,
generics,
header: self.0.header,
defaultness: self.3,
all_types,
ret_types,
}
}
}
impl Clean<Item> for doctree::Function<'_> {
fn clean(&self, cx: &DocContext<'_>) -> Item {
let (generics, decl) = enter_impl_trait(cx, || {
(self.generics.clean(cx), (self.decl, self.body).clean(cx))
});
let did = cx.tcx.hir().local_def_id(self.id);
let constness = if cx.tcx.is_min_const_fn(did) {
hir::Constness::Const
} else {
hir::Constness::NotConst
};
let (all_types, ret_types) = get_all_types(&generics, &decl, cx);
Item {
name: Some(self.name.clean(cx)),
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
visibility: self.vis.clean(cx),
stability: cx.stability(self.id).clean(cx),
deprecation: cx.deprecation(self.id).clean(cx),
def_id: did,
inner: FunctionItem(Function {
decl,
generics,
header: hir::FnHeader { constness, ..self.header },
all_types,
ret_types,
}),
}
}
}
impl<'a> Clean<Arguments> for (&'a [hir::Ty], &'a [ast::Ident]) {
fn clean(&self, cx: &DocContext<'_>) -> Arguments {
Arguments {
values: self.0.iter().enumerate().map(|(i, ty)| {
let mut name = self.1.get(i).map(|ident| ident.to_string())
.unwrap_or(String::new());
if name.is_empty() {
name = "_".to_string();
}
Argument {
name,
type_: ty.clean(cx),
}
}).collect()
}
}
}
impl<'a> Clean<Arguments> for (&'a [hir::Ty], hir::BodyId) {
fn clean(&self, cx: &DocContext<'_>) -> Arguments {
let body = cx.tcx.hir().body(self.1);
Arguments {
values: self.0.iter().enumerate().map(|(i, ty)| {
Argument {
name: name_from_pat(&body.params[i].pat),
type_: ty.clean(cx),
}
}).collect()
}
}
}
impl<'a, A: Copy> Clean<FnDecl> for (&'a hir::FnDecl, A)
where (&'a [hir::Ty], A): Clean<Arguments>
{
fn clean(&self, cx: &DocContext<'_>) -> FnDecl {
FnDecl {
inputs: (&self.0.inputs[..], self.1).clean(cx),
output: self.0.output.clean(cx),
c_variadic: self.0.c_variadic,
attrs: Attributes::default(),
}
}
}
impl<'tcx> Clean<FnDecl> for (DefId, ty::PolyFnSig<'tcx>) {
fn clean(&self, cx: &DocContext<'_>) -> FnDecl {
let (did, sig) = *self;
let mut names = if cx.tcx.hir().as_local_hir_id(did).is_some() {
vec![].into_iter()
} else {
cx.tcx.fn_arg_names(did).into_iter()
};
FnDecl {
output: Return(sig.skip_binder().output().clean(cx)),
attrs: Attributes::default(),
c_variadic: sig.skip_binder().c_variadic,
inputs: Arguments {
values: sig.skip_binder().inputs().iter().map(|t| {
Argument {
type_: t.clean(cx),
name: names.next().map_or(String::new(), |name| name.to_string()),
}
}).collect(),
},
}
}
}
impl Clean<FunctionRetTy> for hir::FunctionRetTy {
fn clean(&self, cx: &DocContext<'_>) -> FunctionRetTy {
match *self {
hir::Return(ref typ) => Return(typ.clean(cx)),
hir::DefaultReturn(..) => DefaultReturn,
}
}
}
impl Clean<Item> for doctree::Trait<'_> {
fn clean(&self, cx: &DocContext<'_>) -> Item {
let attrs = self.attrs.clean(cx);
let is_spotlight = attrs.has_doc_flag(sym::spotlight);
Item {
name: Some(self.name.clean(cx)),
attrs,
source: self.whence.clean(cx),
def_id: cx.tcx.hir().local_def_id(self.id),
visibility: self.vis.clean(cx),
stability: cx.stability(self.id).clean(cx),
deprecation: cx.deprecation(self.id).clean(cx),
inner: TraitItem(Trait {
auto: self.is_auto.clean(cx),
unsafety: self.unsafety,
items: self.items.iter().map(|ti| ti.clean(cx)).collect(),
generics: self.generics.clean(cx),
bounds: self.bounds.clean(cx),
is_spotlight,
is_auto: self.is_auto.clean(cx),
}),
}
}
}
impl Clean<Item> for doctree::TraitAlias<'_> {
fn clean(&self, cx: &DocContext<'_>) -> Item {
let attrs = self.attrs.clean(cx);
Item {
name: Some(self.name.clean(cx)),
attrs,
source: self.whence.clean(cx),
def_id: cx.tcx.hir().local_def_id(self.id),
visibility: self.vis.clean(cx),
stability: cx.stability(self.id).clean(cx),
deprecation: cx.deprecation(self.id).clean(cx),
inner: TraitAliasItem(TraitAlias {
generics: self.generics.clean(cx),
bounds: self.bounds.clean(cx),
}),
}
}
}
impl Clean<bool> for hir::IsAuto {
fn clean(&self, _: &DocContext<'_>) -> bool {
match *self {
hir::IsAuto::Yes => true,
hir::IsAuto::No => false,
}
}
}
impl Clean<Type> for hir::TraitRef {
fn clean(&self, cx: &DocContext<'_>) -> Type {
resolve_type(cx, self.path.clean(cx), self.hir_ref_id)
}
}
impl Clean<PolyTrait> for hir::PolyTraitRef {
fn clean(&self, cx: &DocContext<'_>) -> PolyTrait {
PolyTrait {
trait_: self.trait_ref.clean(cx),
generic_params: self.bound_generic_params.clean(cx)
}
}
}
impl Clean<Item> for hir::TraitItem {
fn clean(&self, cx: &DocContext<'_>) -> Item {
let inner = match self.kind {
hir::TraitItemKind::Const(ref ty, default) => {
AssocConstItem(ty.clean(cx),
default.map(|e| print_const_expr(cx, e)))
}
hir::TraitItemKind::Method(ref sig, hir::TraitMethod::Provided(body)) => {
MethodItem((sig, &self.generics, body, None).clean(cx))
}
hir::TraitItemKind::Method(ref sig, hir::TraitMethod::Required(ref names)) => {
let (generics, decl) = enter_impl_trait(cx, || {
(self.generics.clean(cx), (&*sig.decl, &names[..]).clean(cx))
});
let (all_types, ret_types) = get_all_types(&generics, &decl, cx);
TyMethodItem(TyMethod {
header: sig.header,
decl,
generics,
all_types,
ret_types,
})
}
hir::TraitItemKind::Type(ref bounds, ref default) => {
AssocTypeItem(bounds.clean(cx), default.clean(cx))
}
};
let local_did = cx.tcx.hir().local_def_id(self.hir_id);
Item {
name: Some(self.ident.name.clean(cx)),
attrs: self.attrs.clean(cx),
source: self.span.clean(cx),
def_id: local_did,
visibility: Visibility::Inherited,
stability: get_stability(cx, local_did),
deprecation: get_deprecation(cx, local_did),
inner,
}
}
}
impl Clean<Item> for hir::ImplItem {
fn clean(&self, cx: &DocContext<'_>) -> Item {
let inner = match self.kind {
hir::ImplItemKind::Const(ref ty, expr) => {
AssocConstItem(ty.clean(cx),
Some(print_const_expr(cx, expr)))
}
hir::ImplItemKind::Method(ref sig, body) => {
MethodItem((sig, &self.generics, body, Some(self.defaultness)).clean(cx))
}
hir::ImplItemKind::TyAlias(ref ty) => TypedefItem(Typedef {
type_: ty.clean(cx),
generics: Generics::default(),
}, true),
hir::ImplItemKind::OpaqueTy(ref bounds) => OpaqueTyItem(OpaqueTy {
bounds: bounds.clean(cx),
generics: Generics::default(),
}, true),
};
let local_did = cx.tcx.hir().local_def_id(self.hir_id);
Item {
name: Some(self.ident.name.clean(cx)),
source: self.span.clean(cx),
attrs: self.attrs.clean(cx),
def_id: local_did,
visibility: self.vis.clean(cx),
stability: get_stability(cx, local_did),
deprecation: get_deprecation(cx, local_did),
inner,
}
}
}
impl Clean<Item> for ty::AssocItem {
fn clean(&self, cx: &DocContext<'_>) -> Item {
let inner = match self.kind {
ty::AssocKind::Const => {
let ty = cx.tcx.type_of(self.def_id);
let default = if self.defaultness.has_value() {
Some(inline::print_inlined_const(cx, self.def_id))
} else {
None
};
AssocConstItem(ty.clean(cx), default)
}
ty::AssocKind::Method => {
let generics = (cx.tcx.generics_of(self.def_id),
cx.tcx.explicit_predicates_of(self.def_id)).clean(cx);
let sig = cx.tcx.fn_sig(self.def_id);
let mut decl = (self.def_id, sig).clean(cx);
if self.method_has_self_argument {
let self_ty = match self.container {
ty::ImplContainer(def_id) => {
cx.tcx.type_of(def_id)
}
ty::TraitContainer(_) => cx.tcx.types.self_param,
};
let self_arg_ty = *sig.input(0).skip_binder();
if self_arg_ty == self_ty {
decl.inputs.values[0].type_ = Generic(String::from("Self"));
} else if let ty::Ref(_, ty, _) = self_arg_ty.kind {
if ty == self_ty {
match decl.inputs.values[0].type_ {
BorrowedRef{ref mut type_, ..} => {
**type_ = Generic(String::from("Self"))
}
_ => unreachable!(),
}
}
}
}
let provided = match self.container {
ty::ImplContainer(_) => true,
ty::TraitContainer(_) => self.defaultness.has_value()
};
let (all_types, ret_types) = get_all_types(&generics, &decl, cx);
if provided {
let constness = if cx.tcx.is_min_const_fn(self.def_id) {
hir::Constness::Const
} else {
hir::Constness::NotConst
};
let asyncness = cx.tcx.asyncness(self.def_id);
let defaultness = match self.container {
ty::ImplContainer(_) => Some(self.defaultness),
ty::TraitContainer(_) => None,
};
MethodItem(Method {
generics,
decl,
header: hir::FnHeader {
unsafety: sig.unsafety(),
abi: sig.abi(),
constness,
asyncness,
},
defaultness,
all_types,
ret_types,
})
} else {
TyMethodItem(TyMethod {
generics,
decl,
header: hir::FnHeader {
unsafety: sig.unsafety(),
abi: sig.abi(),
constness: hir::Constness::NotConst,
asyncness: hir::IsAsync::NotAsync,
},
all_types,
ret_types,
})
}
}
ty::AssocKind::Type => {
let my_name = self.ident.name.clean(cx);
if let ty::TraitContainer(did) = self.container {
// When loading a cross-crate associated type, the bounds for this type
// are actually located on the trait/impl itself, so we need to load
// all of the generics from there and then look for bounds that are
// applied to this associated type in question.
let predicates = cx.tcx.explicit_predicates_of(did);
let generics = (cx.tcx.generics_of(did), predicates).clean(cx);
let mut bounds = generics.where_predicates.iter().filter_map(|pred| {
let (name, self_type, trait_, bounds) = match *pred {
WherePredicate::BoundPredicate {
ty: QPath { ref name, ref self_type, ref trait_ },
ref bounds
} => (name, self_type, trait_, bounds),
_ => return None,
};
if *name != my_name { return None }
match **trait_ {
ResolvedPath { did, .. } if did == self.container.id() => {}
_ => return None,
}
match **self_type {
Generic(ref s) if *s == "Self" => {}
_ => return None,
}
Some(bounds)
}).flat_map(|i| i.iter().cloned()).collect::<Vec<_>>();
// Our Sized/?Sized bound didn't get handled when creating the generics
// because we didn't actually get our whole set of bounds until just now
// (some of them may have come from the trait). If we do have a sized
// bound, we remove it, and if we don't then we add the `?Sized` bound
// at the end.
match bounds.iter().position(|b| b.is_sized_bound(cx)) {
Some(i) => { bounds.remove(i); }
None => bounds.push(GenericBound::maybe_sized(cx)),
}
let ty = if self.defaultness.has_value() {
Some(cx.tcx.type_of(self.def_id))
} else {
None
};
AssocTypeItem(bounds, ty.clean(cx))
} else {
TypedefItem(Typedef {
type_: cx.tcx.type_of(self.def_id).clean(cx),
generics: Generics {
params: Vec::new(),
where_predicates: Vec::new(),
},
}, true)
}
}
ty::AssocKind::OpaqueTy => unimplemented!(),
};
let visibility = match self.container {
ty::ImplContainer(_) => self.vis.clean(cx),
ty::TraitContainer(_) => Inherited,
};
Item {
name: Some(self.ident.name.clean(cx)),
visibility,
stability: get_stability(cx, self.def_id),
deprecation: get_deprecation(cx, self.def_id),
def_id: self.def_id,
attrs: inline::load_attrs(cx, self.def_id).clean(cx),
source: cx.tcx.def_span(self.def_id).clean(cx),
inner,
}
}
}
impl Clean<Type> for hir::Ty {
fn clean(&self, cx: &DocContext<'_>) -> Type {
use rustc::hir::*;
match self.kind {
TyKind::Never => Never,
TyKind::Ptr(ref m) => RawPointer(m.mutbl.clean(cx), box m.ty.clean(cx)),
TyKind::Rptr(ref l, ref m) => {
let lifetime = if l.is_elided() {
None
} else {
Some(l.clean(cx))
};
BorrowedRef {lifetime, mutability: m.mutbl.clean(cx),
type_: box m.ty.clean(cx)}
}
TyKind::Slice(ref ty) => Slice(box ty.clean(cx)),
TyKind::Array(ref ty, ref length) => {
let def_id = cx.tcx.hir().local_def_id(length.hir_id);
let param_env = cx.tcx.param_env(def_id);
let substs = InternalSubsts::identity_for_item(cx.tcx, def_id);
let cid = GlobalId {
instance: ty::Instance::new(def_id, substs),
promoted: None
};
let length = match cx.tcx.const_eval(param_env.and(cid)) {
Ok(length) => print_const(cx, length),
Err(_) => cx.sess()
.source_map()
.span_to_snippet(cx.tcx.def_span(def_id))
.unwrap_or_else(|_| "_".to_string()),
};
Array(box ty.clean(cx), length)
},
TyKind::Tup(ref tys) => Tuple(tys.clean(cx)),
TyKind::Def(item_id, _) => {
let item = cx.tcx.hir().expect_item(item_id.id);
if let hir::ItemKind::OpaqueTy(ref ty) = item.kind {
ImplTrait(ty.bounds.clean(cx))
} else {
unreachable!()
}
}
TyKind::Path(hir::QPath::Resolved(None, ref path)) => {
if let Res::Def(DefKind::TyParam, did) = path.res {
if let Some(new_ty) = cx.ty_substs.borrow().get(&did).cloned() {
return new_ty;
}
if let Some(bounds) = cx.impl_trait_bounds.borrow_mut().remove(&did.into()) {
return ImplTrait(bounds);
}
}
let mut alias = None;
if let Res::Def(DefKind::TyAlias, def_id) = path.res {
// Substitute private type aliases
if let Some(hir_id) = cx.tcx.hir().as_local_hir_id(def_id) {
if !cx.renderinfo.borrow().access_levels.is_exported(def_id) {
alias = Some(&cx.tcx.hir().expect_item(hir_id).kind);
}
}
};
if let Some(&hir::ItemKind::TyAlias(ref ty, ref generics)) = alias {
let provided_params = &path.segments.last().expect("segments were empty");
let mut ty_substs = FxHashMap::default();
let mut lt_substs = FxHashMap::default();
let mut ct_substs = FxHashMap::default();
let generic_args = provided_params.generic_args();
{
let mut indices: GenericParamCount = Default::default();
for param in generics.params.iter() {
match param.kind {
hir::GenericParamKind::Lifetime { .. } => {
let mut j = 0;
let lifetime = generic_args.args.iter().find_map(|arg| {
match arg {
hir::GenericArg::Lifetime(lt) => {
if indices.lifetimes == j {
return Some(lt);
}
j += 1;
None
}
_ => None,
}
});
if let Some(lt) = lifetime.cloned() {
if !lt.is_elided() {
let lt_def_id =
cx.tcx.hir().local_def_id(param.hir_id);
lt_substs.insert(lt_def_id, lt.clean(cx));
}
}
indices.lifetimes += 1;
}
hir::GenericParamKind::Type { ref default, .. } => {
let ty_param_def_id =
cx.tcx.hir().local_def_id(param.hir_id);
let mut j = 0;
let type_ = generic_args.args.iter().find_map(|arg| {
match arg {
hir::GenericArg::Type(ty) => {
if indices.types == j {
return Some(ty);
}
j += 1;
None
}
_ => None,
}
});
if let Some(ty) = type_ {
ty_substs.insert(ty_param_def_id, ty.clean(cx));
} else if let Some(default) = default.clone() {
ty_substs.insert(ty_param_def_id,
default.clean(cx));
}
indices.types += 1;
}
hir::GenericParamKind::Const { .. } => {
let const_param_def_id =
cx.tcx.hir().local_def_id(param.hir_id);
let mut j = 0;
let const_ = generic_args.args.iter().find_map(|arg| {
match arg {
hir::GenericArg::Const(ct) => {
if indices.consts == j {
return Some(ct);
}
j += 1;
None
}
_ => None,
}
});
if let Some(ct) = const_ {
ct_substs.insert(const_param_def_id, ct.clean(cx));
}
// FIXME(const_generics:defaults)
indices.consts += 1;
}
}
}
}
return cx.enter_alias(ty_substs, lt_substs, ct_substs, || ty.clean(cx));
}
resolve_type(cx, path.clean(cx), self.hir_id)
}
TyKind::Path(hir::QPath::Resolved(Some(ref qself), ref p)) => {
let segments = if p.is_global() { &p.segments[1..] } else { &p.segments };
let trait_segments = &segments[..segments.len() - 1];
let trait_path = self::Path {
global: p.is_global(),
res: Res::Def(
DefKind::Trait,
cx.tcx.associated_item(p.res.def_id()).container.id(),
),
segments: trait_segments.clean(cx),
};
Type::QPath {
name: p.segments.last().expect("segments were empty").ident.name.clean(cx),
self_type: box qself.clean(cx),
trait_: box resolve_type(cx, trait_path, self.hir_id)
}
}
TyKind::Path(hir::QPath::TypeRelative(ref qself, ref segment)) => {
let mut res = Res::Err;
let ty = hir_ty_to_ty(cx.tcx, self);
if let ty::Projection(proj) = ty.kind {
res = Res::Def(DefKind::Trait, proj.trait_ref(cx.tcx).def_id);
}
let trait_path = hir::Path {
span: self.span,
res,
segments: vec![].into(),
};
Type::QPath {
name: segment.ident.name.clean(cx),
self_type: box qself.clean(cx),
trait_: box resolve_type(cx, trait_path.clean(cx), self.hir_id)
}
}
TyKind::TraitObject(ref bounds, ref lifetime) => {
match bounds[0].clean(cx).trait_ {
ResolvedPath { path, param_names: None, did, is_generic } => {
let mut bounds: Vec<self::GenericBound> = bounds[1..].iter().map(|bound| {
self::GenericBound::TraitBound(bound.clean(cx),
hir::TraitBoundModifier::None)
}).collect();
if !lifetime.is_elided() {
bounds.push(self::GenericBound::Outlives(lifetime.clean(cx)));
}
ResolvedPath { path, param_names: Some(bounds), did, is_generic, }
}
_ => Infer, // shouldn't happen
}
}
TyKind::BareFn(ref barefn) => BareFunction(box barefn.clean(cx)),
TyKind::Infer | TyKind::Err => Infer,
TyKind::Typeof(..) => panic!("unimplemented type {:?}", self.kind),
}
}
}
impl<'tcx> Clean<Type> for Ty<'tcx> {
fn clean(&self, cx: &DocContext<'_>) -> Type {
debug!("cleaning type: {:?}", self);
match self.kind {
ty::Never => Never,
ty::Bool => Primitive(PrimitiveType::Bool),
ty::Char => Primitive(PrimitiveType::Char),
ty::Int(int_ty) => Primitive(int_ty.into()),
ty::Uint(uint_ty) => Primitive(uint_ty.into()),
ty::Float(float_ty) => Primitive(float_ty.into()),
ty::Str => Primitive(PrimitiveType::Str),
ty::Slice(ty) => Slice(box ty.clean(cx)),
ty::Array(ty, n) => {
let mut n = cx.tcx.lift(&n).expect("array lift failed");
if let ty::ConstKind::Unevaluated(def_id, substs) = n.val {
let param_env = cx.tcx.param_env(def_id);
let cid = GlobalId {
instance: ty::Instance::new(def_id, substs),
promoted: None
};
if let Ok(new_n) = cx.tcx.const_eval(param_env.and(cid)) {
n = new_n;
}
};
let n = print_const(cx, n);
Array(box ty.clean(cx), n)
}
ty::RawPtr(mt) => RawPointer(mt.mutbl.clean(cx), box mt.ty.clean(cx)),
ty::Ref(r, ty, mutbl) => BorrowedRef {
lifetime: r.clean(cx),
mutability: mutbl.clean(cx),
type_: box ty.clean(cx),
},
ty::FnDef(..) |
ty::FnPtr(_) => {
let ty = cx.tcx.lift(self).expect("FnPtr lift failed");
let sig = ty.fn_sig(cx.tcx);
let local_def_id = cx.tcx.hir().local_def_id_from_node_id(ast::CRATE_NODE_ID);
BareFunction(box BareFunctionDecl {
unsafety: sig.unsafety(),
generic_params: Vec::new(),
decl: (local_def_id, sig).clean(cx),
abi: sig.abi(),
})
}
ty::Adt(def, substs) => {
let did = def.did;
let kind = match def.adt_kind() {
AdtKind::Struct => TypeKind::Struct,
AdtKind::Union => TypeKind::Union,
AdtKind::Enum => TypeKind::Enum,
};
inline::record_extern_fqn(cx, did, kind);
let path = external_path(cx, cx.tcx.item_name(did), None, false, vec![], substs);
ResolvedPath {
path,
param_names: None,
did,
is_generic: false,
}
}
ty::Foreign(did) => {
inline::record_extern_fqn(cx, did, TypeKind::Foreign);
let path = external_path(cx, cx.tcx.item_name(did),
None, false, vec![], InternalSubsts::empty());
ResolvedPath {
path,
param_names: None,
did,
is_generic: false,
}
}
ty::Dynamic(ref obj, ref reg) => {
// HACK: pick the first `did` as the `did` of the trait object. Someone
// might want to implement "native" support for marker-trait-only
// trait objects.
let mut dids = obj.principal_def_id().into_iter().chain(obj.auto_traits());
let did = dids.next().unwrap_or_else(|| {
panic!("found trait object `{:?}` with no traits?", self)
});
let substs = match obj.principal() {
Some(principal) => principal.skip_binder().substs,
// marker traits have no substs.
_ => cx.tcx.intern_substs(&[])
};
inline::record_extern_fqn(cx, did, TypeKind::Trait);
let mut param_names = vec![];
reg.clean(cx).map(|b| param_names.push(GenericBound::Outlives(b)));
for did in dids {
let empty = cx.tcx.intern_substs(&[]);
let path = external_path(cx, cx.tcx.item_name(did),
Some(did), false, vec![], empty);
inline::record_extern_fqn(cx, did, TypeKind::Trait);
let bound = GenericBound::TraitBound(PolyTrait {
trait_: ResolvedPath {
path,
param_names: None,
did,
is_generic: false,
},
generic_params: Vec::new(),
}, hir::TraitBoundModifier::None);
param_names.push(bound);
}
let mut bindings = vec![];
for pb in obj.projection_bounds() {
bindings.push(TypeBinding {
name: cx.tcx.associated_item(pb.item_def_id()).ident.name.clean(cx),
kind: TypeBindingKind::Equality {
ty: pb.skip_binder().ty.clean(cx)
},
});
}
let path = external_path(cx, cx.tcx.item_name(did), Some(did),
false, bindings, substs);
ResolvedPath {
path,
param_names: Some(param_names),
did,
is_generic: false,
}
}
ty::Tuple(ref t) => {
Tuple(t.iter().map(|t| t.expect_ty()).collect::<Vec<_>>().clean(cx))
}
ty::Projection(ref data) => data.clean(cx),
ty::Param(ref p) => {
if let Some(bounds) = cx.impl_trait_bounds.borrow_mut().remove(&p.index.into()) {
ImplTrait(bounds)
} else {
Generic(p.name.to_string())
}
}
ty::Opaque(def_id, substs) => {
// Grab the "TraitA + TraitB" from `impl TraitA + TraitB`,
// by looking up the projections associated with the def_id.
let predicates_of = cx.tcx.explicit_predicates_of(def_id);
let substs = cx.tcx.lift(&substs).expect("Opaque lift failed");
let bounds = predicates_of.instantiate(cx.tcx, substs);
let mut regions = vec![];
let mut has_sized = false;
let mut bounds = bounds.predicates.iter().filter_map(|predicate| {
let trait_ref = if let Some(tr) = predicate.to_opt_poly_trait_ref() {
tr
} else if let ty::Predicate::TypeOutlives(pred) = *predicate {
// these should turn up at the end
pred.skip_binder().1.clean(cx).map(|r| {
regions.push(GenericBound::Outlives(r))
});
return None;
} else {
return None;
};
if let Some(sized) = cx.tcx.lang_items().sized_trait() {
if trait_ref.def_id() == sized {
has_sized = true;
return None;
}
}
let bounds = bounds.predicates.iter().filter_map(|pred|
if let ty::Predicate::Projection(proj) = *pred {
let proj = proj.skip_binder();
if proj.projection_ty.trait_ref(cx.tcx) == *trait_ref.skip_binder() {
Some(TypeBinding {
name: cx.tcx.associated_item(proj.projection_ty.item_def_id)
.ident.name.clean(cx),
kind: TypeBindingKind::Equality {
ty: proj.ty.clean(cx),
},
})
} else {
None
}
} else {
None
}
).collect();
Some((trait_ref.skip_binder(), bounds).clean(cx))
}).collect::<Vec<_>>();
bounds.extend(regions);
if !has_sized && !bounds.is_empty() {
bounds.insert(0, GenericBound::maybe_sized(cx));
}
ImplTrait(bounds)
}
ty::Closure(..) | ty::Generator(..) => Tuple(vec![]), // FIXME(pcwalton)
ty::Bound(..) => panic!("Bound"),
ty::Placeholder(..) => panic!("Placeholder"),
ty::UnnormalizedProjection(..) => panic!("UnnormalizedProjection"),
ty::GeneratorWitness(..) => panic!("GeneratorWitness"),
ty::Infer(..) => panic!("Infer"),
ty::Error => panic!("Error"),
}
}
}
impl<'tcx> Clean<Constant> for ty::Const<'tcx> {
fn clean(&self, cx: &DocContext<'_>) -> Constant {
Constant {
type_: self.ty.clean(cx),
expr: format!("{}", self),
}
}
}
impl Clean<Item> for hir::StructField {
fn clean(&self, cx: &DocContext<'_>) -> Item {
let local_did = cx.tcx.hir().local_def_id(self.hir_id);
Item {
name: Some(self.ident.name).clean(cx),
attrs: self.attrs.clean(cx),
source: self.span.clean(cx),
visibility: self.vis.clean(cx),
stability: get_stability(cx, local_did),
deprecation: get_deprecation(cx, local_did),
def_id: local_did,
inner: StructFieldItem(self.ty.clean(cx)),
}
}
}
impl Clean<Item> for ty::FieldDef {
fn clean(&self, cx: &DocContext<'_>) -> Item {
Item {
name: Some(self.ident.name).clean(cx),
attrs: cx.tcx.get_attrs(self.did).clean(cx),
source: cx.tcx.def_span(self.did).clean(cx),
visibility: self.vis.clean(cx),
stability: get_stability(cx, self.did),
deprecation: get_deprecation(cx, self.did),
def_id: self.did,
inner: StructFieldItem(cx.tcx.type_of(self.did).clean(cx)),
}
}
}
impl Clean<Visibility> for hir::Visibility {
fn clean(&self, cx: &DocContext<'_>) -> Visibility {
match self.node {
hir::VisibilityKind::Public => Visibility::Public,
hir::VisibilityKind::Inherited => Visibility::Inherited,
hir::VisibilityKind::Crate(_) => Visibility::Crate,
hir::VisibilityKind::Restricted { ref path, .. } => {
let path = path.clean(cx);
let did = register_res(cx, path.res);
Visibility::Restricted(did, path)
}
}
}
}
impl Clean<Visibility> for ty::Visibility {
fn clean(&self, _: &DocContext<'_>) -> Visibility {
if *self == ty::Visibility::Public { Public } else { Inherited }
}
}
impl Clean<Item> for doctree::Struct<'_> {
fn clean(&self, cx: &DocContext<'_>) -> Item {
Item {
name: Some(self.name.clean(cx)),
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
def_id: cx.tcx.hir().local_def_id(self.id),
visibility: self.vis.clean(cx),
stability: cx.stability(self.id).clean(cx),
deprecation: cx.deprecation(self.id).clean(cx),
inner: StructItem(Struct {
struct_type: self.struct_type,
generics: self.generics.clean(cx),
fields: self.fields.clean(cx),
fields_stripped: false,
}),
}
}
}
impl Clean<Item> for doctree::Union<'_> {
fn clean(&self, cx: &DocContext<'_>) -> Item {
Item {
name: Some(self.name.clean(cx)),
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
def_id: cx.tcx.hir().local_def_id(self.id),
visibility: self.vis.clean(cx),
stability: cx.stability(self.id).clean(cx),
deprecation: cx.deprecation(self.id).clean(cx),
inner: UnionItem(Union {
struct_type: self.struct_type,
generics: self.generics.clean(cx),
fields: self.fields.clean(cx),
fields_stripped: false,
}),
}
}
}
impl Clean<VariantStruct> for ::rustc::hir::VariantData {
fn clean(&self, cx: &DocContext<'_>) -> VariantStruct {
VariantStruct {
struct_type: doctree::struct_type_from_def(self),
fields: self.fields().iter().map(|x| x.clean(cx)).collect(),
fields_stripped: false,
}
}
}
impl Clean<Item> for doctree::Enum<'_> {
fn clean(&self, cx: &DocContext<'_>) -> Item {
Item {
name: Some(self.name.clean(cx)),
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
def_id: cx.tcx.hir().local_def_id(self.id),
visibility: self.vis.clean(cx),
stability: cx.stability(self.id).clean(cx),
deprecation: cx.deprecation(self.id).clean(cx),
inner: EnumItem(Enum {
variants: self.variants.iter().map(|v| v.clean(cx)).collect(),
generics: self.generics.clean(cx),
variants_stripped: false,
}),
}
}
}
impl Clean<Item> for doctree::Variant<'_> {
fn clean(&self, cx: &DocContext<'_>) -> Item {
Item {
name: Some(self.name.clean(cx)),
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
visibility: Inherited,
stability: cx.stability(self.id).clean(cx),
deprecation: cx.deprecation(self.id).clean(cx),
def_id: cx.tcx.hir().local_def_id(self.id),
inner: VariantItem(Variant {
kind: self.def.clean(cx),
}),
}
}
}
impl Clean<Item> for ty::VariantDef {
fn clean(&self, cx: &DocContext<'_>) -> Item {
let kind = match self.ctor_kind {
CtorKind::Const => VariantKind::CLike,
CtorKind::Fn => {
VariantKind::Tuple(
self.fields.iter().map(|f| cx.tcx.type_of(f.did).clean(cx)).collect()
)
}
CtorKind::Fictive => {
VariantKind::Struct(VariantStruct {
struct_type: doctree::Plain,
fields_stripped: false,
fields: self.fields.iter().map(|field| {
Item {
source: cx.tcx.def_span(field.did).clean(cx),
name: Some(field.ident.name.clean(cx)),
attrs: cx.tcx.get_attrs(field.did).clean(cx),
visibility: field.vis.clean(cx),
def_id: field.did,
stability: get_stability(cx, field.did),
deprecation: get_deprecation(cx, field.did),
inner: StructFieldItem(cx.tcx.type_of(field.did).clean(cx))
}
}).collect()
})
}
};
Item {
name: Some(self.ident.clean(cx)),
attrs: inline::load_attrs(cx, self.def_id).clean(cx),
source: cx.tcx.def_span(self.def_id).clean(cx),
visibility: Inherited,
def_id: self.def_id,
inner: VariantItem(Variant { kind }),
stability: get_stability(cx, self.def_id),
deprecation: get_deprecation(cx, self.def_id),
}
}
}
impl Clean<VariantKind> for hir::VariantData {
fn clean(&self, cx: &DocContext<'_>) -> VariantKind {
match self {
hir::VariantData::Struct(..) => VariantKind::Struct(self.clean(cx)),
hir::VariantData::Tuple(..) =>
VariantKind::Tuple(self.fields().iter().map(|x| x.ty.clean(cx)).collect()),
hir::VariantData::Unit(..) => VariantKind::CLike,
}
}
}
impl Clean<Span> for syntax_pos::Span {
fn clean(&self, cx: &DocContext<'_>) -> Span {
if self.is_dummy() {
return Span::empty();
}
let cm = cx.sess().source_map();
let filename = cm.span_to_filename(*self);
let lo = cm.lookup_char_pos(self.lo());
let hi = cm.lookup_char_pos(self.hi());
Span {
filename,
loline: lo.line,
locol: lo.col.to_usize(),
hiline: hi.line,
hicol: hi.col.to_usize(),
original: *self,
}
}
}
impl Clean<Path> for hir::Path {
fn clean(&self, cx: &DocContext<'_>) -> Path {
Path {
global: self.is_global(),
res: self.res,
segments: if self.is_global() { &self.segments[1..] } else { &self.segments }.clean(cx),
}
}
}
impl Clean<GenericArgs> for hir::GenericArgs {
fn clean(&self, cx: &DocContext<'_>) -> GenericArgs {
if self.parenthesized {
let output = self.bindings[0].ty().clean(cx);
GenericArgs::Parenthesized {
inputs: self.inputs().clean(cx),
output: if output != Type::Tuple(Vec::new()) { Some(output) } else { None }
}
} else {
let elide_lifetimes = self.args.iter().all(|arg| match arg {
hir::GenericArg::Lifetime(lt) => lt.is_elided(),
_ => true,
});
GenericArgs::AngleBracketed {
args: self.args.iter().filter_map(|arg| match arg {
hir::GenericArg::Lifetime(lt) if !elide_lifetimes => {
Some(GenericArg::Lifetime(lt.clean(cx)))
}
hir::GenericArg::Lifetime(_) => None,
hir::GenericArg::Type(ty) => Some(GenericArg::Type(ty.clean(cx))),
hir::GenericArg::Const(ct) => Some(GenericArg::Const(ct.clean(cx))),
}).collect(),
bindings: self.bindings.clean(cx),
}
}
}
}
impl Clean<PathSegment> for hir::PathSegment {
fn clean(&self, cx: &DocContext<'_>) -> PathSegment {
PathSegment {
name: self.ident.name.clean(cx),
args: self.generic_args().clean(cx),
}
}
}
fn strip_type(ty: Type) -> Type {
match ty {
Type::ResolvedPath { path, param_names, did, is_generic } => {
Type::ResolvedPath { path: strip_path(&path), param_names, did, is_generic }
}
Type::Tuple(inner_tys) => {
Type::Tuple(inner_tys.iter().map(|t| strip_type(t.clone())).collect())
}
Type::Slice(inner_ty) => Type::Slice(Box::new(strip_type(*inner_ty))),
Type::Array(inner_ty, s) => Type::Array(Box::new(strip_type(*inner_ty)), s),
Type::RawPointer(m, inner_ty) => Type::RawPointer(m, Box::new(strip_type(*inner_ty))),
Type::BorrowedRef { lifetime, mutability, type_ } => {
Type::BorrowedRef { lifetime, mutability, type_: Box::new(strip_type(*type_)) }
}
Type::QPath { name, self_type, trait_ } => {
Type::QPath {
name,
self_type: Box::new(strip_type(*self_type)), trait_: Box::new(strip_type(*trait_))
}
}
_ => ty
}
}
fn strip_path(path: &Path) -> Path {
let segments = path.segments.iter().map(|s| {
PathSegment {
name: s.name.clone(),
args: GenericArgs::AngleBracketed {
args: vec![],
bindings: vec![],
}
}
}).collect();
Path {
global: path.global,
res: path.res.clone(),
segments,
}
}
fn qpath_to_string(p: &hir::QPath) -> String {
let segments = match *p {
hir::QPath::Resolved(_, ref path) => &path.segments,
hir::QPath::TypeRelative(_, ref segment) => return segment.ident.to_string(),
};
let mut s = String::new();
for (i, seg) in segments.iter().enumerate() {
if i > 0 {
s.push_str("::");
}
if seg.ident.name != kw::PathRoot {
s.push_str(&seg.ident.as_str());
}
}
s
}
impl Clean<String> for Ident {
#[inline]
fn clean(&self, cx: &DocContext<'_>) -> String {
self.name.clean(cx)
}
}
impl Clean<String> for ast::Name {
#[inline]
fn clean(&self, _: &DocContext<'_>) -> String {
self.to_string()
}
}
impl Clean<Item> for doctree::Typedef<'_> {
fn clean(&self, cx: &DocContext<'_>) -> Item {
Item {
name: Some(self.name.clean(cx)),
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
def_id: cx.tcx.hir().local_def_id(self.id),
visibility: self.vis.clean(cx),
stability: cx.stability(self.id).clean(cx),
deprecation: cx.deprecation(self.id).clean(cx),
inner: TypedefItem(Typedef {
type_: self.ty.clean(cx),
generics: self.gen.clean(cx),
}, false),
}
}
}
impl Clean<Item> for doctree::OpaqueTy<'_> {
fn clean(&self, cx: &DocContext<'_>) -> Item {
Item {
name: Some(self.name.clean(cx)),
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
def_id: cx.tcx.hir().local_def_id(self.id),
visibility: self.vis.clean(cx),
stability: cx.stability(self.id).clean(cx),
deprecation: cx.deprecation(self.id).clean(cx),
inner: OpaqueTyItem(OpaqueTy {
bounds: self.opaque_ty.bounds.clean(cx),
generics: self.opaque_ty.generics.clean(cx),
}, false),
}
}
}
impl Clean<BareFunctionDecl> for hir::BareFnTy {
fn clean(&self, cx: &DocContext<'_>) -> BareFunctionDecl {
let (generic_params, decl) = enter_impl_trait(cx, || {
(self.generic_params.clean(cx), (&*self.decl, &self.param_names[..]).clean(cx))
});
BareFunctionDecl {
unsafety: self.unsafety,
abi: self.abi,
decl,
generic_params,
}
}
}
impl Clean<Item> for doctree::Static<'_> {
fn clean(&self, cx: &DocContext<'_>) -> Item {
debug!("cleaning static {}: {:?}", self.name.clean(cx), self);
Item {
name: Some(self.name.clean(cx)),
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
def_id: cx.tcx.hir().local_def_id(self.id),
visibility: self.vis.clean(cx),
stability: cx.stability(self.id).clean(cx),
deprecation: cx.deprecation(self.id).clean(cx),
inner: StaticItem(Static {
type_: self.type_.clean(cx),
mutability: self.mutability.clean(cx),
expr: print_const_expr(cx, self.expr),
}),
}
}
}
impl Clean<Item> for doctree::Constant<'_> {
fn clean(&self, cx: &DocContext<'_>) -> Item {
Item {
name: Some(self.name.clean(cx)),
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
def_id: cx.tcx.hir().local_def_id(self.id),
visibility: self.vis.clean(cx),
stability: cx.stability(self.id).clean(cx),
deprecation: cx.deprecation(self.id).clean(cx),
inner: ConstantItem(Constant {
type_: self.type_.clean(cx),
expr: print_const_expr(cx, self.expr),
}),
}
}
}
impl Clean<Mutability> for hir::Mutability {
fn clean(&self, _: &DocContext<'_>) -> Mutability {
match self {
&hir::Mutability::Mutable => Mutable,
&hir::Mutability::Immutable => Immutable,
}
}
}
impl Clean<ImplPolarity> for ty::ImplPolarity {
fn clean(&self, _: &DocContext<'_>) -> ImplPolarity {
match self {
&ty::ImplPolarity::Positive |
// FIXME: do we want to do something else here?
&ty::ImplPolarity::Reservation => ImplPolarity::Positive,
&ty::ImplPolarity::Negative => ImplPolarity::Negative,
}
}
}
pub fn get_auto_trait_and_blanket_impls(
cx: &DocContext<'tcx>,
ty: Ty<'tcx>,
param_env_def_id: DefId,
) -> impl Iterator<Item = Item> {
AutoTraitFinder::new(cx).get_auto_trait_impls(ty, param_env_def_id).into_iter()
.chain(BlanketImplFinder::new(cx).get_blanket_impls(ty, param_env_def_id))
}
impl Clean<Vec<Item>> for doctree::Impl<'_> {
fn clean(&self, cx: &DocContext<'_>) -> Vec<Item> {
let mut ret = Vec::new();
let trait_ = self.trait_.clean(cx);
let items = self.items.iter().map(|ii| ii.clean(cx)).collect::<Vec<_>>();
let def_id = cx.tcx.hir().local_def_id(self.id);
// If this impl block is an implementation of the Deref trait, then we
// need to try inlining the target's inherent impl blocks as well.
if trait_.def_id() == cx.tcx.lang_items().deref_trait() {
build_deref_target_impls(cx, &items, &mut ret);
}
let provided = trait_.def_id().map(|did| {
cx.tcx.provided_trait_methods(did)
.into_iter()
.map(|meth| meth.ident.to_string())
.collect()
}).unwrap_or_default();
ret.push(Item {
name: None,
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
def_id,
visibility: self.vis.clean(cx),
stability: cx.stability(self.id).clean(cx),
deprecation: cx.deprecation(self.id).clean(cx),
inner: ImplItem(Impl {
unsafety: self.unsafety,
generics: self.generics.clean(cx),
provided_trait_methods: provided,
trait_,
for_: self.for_.clean(cx),
items,
polarity: Some(cx.tcx.impl_polarity(def_id).clean(cx)),
synthetic: false,
blanket_impl: None,
})
});
ret
}
}
fn build_deref_target_impls(cx: &DocContext<'_>,
items: &[Item],
ret: &mut Vec<Item>) {
use self::PrimitiveType::*;
let tcx = cx.tcx;
for item in items {
let target = match item.inner {
TypedefItem(ref t, true) => &t.type_,
_ => continue,
};
let primitive = match *target {
ResolvedPath { did, .. } if did.is_local() => continue,
ResolvedPath { did, .. } => {
ret.extend(inline::build_impls(cx, did, None));
continue
}
_ => match target.primitive_type() {
Some(prim) => prim,
None => continue,
}
};
let did = match primitive {
Isize => tcx.lang_items().isize_impl(),
I8 => tcx.lang_items().i8_impl(),
I16 => tcx.lang_items().i16_impl(),
I32 => tcx.lang_items().i32_impl(),
I64 => tcx.lang_items().i64_impl(),
I128 => tcx.lang_items().i128_impl(),
Usize => tcx.lang_items().usize_impl(),
U8 => tcx.lang_items().u8_impl(),
U16 => tcx.lang_items().u16_impl(),
U32 => tcx.lang_items().u32_impl(),
U64 => tcx.lang_items().u64_impl(),
U128 => tcx.lang_items().u128_impl(),
F32 => tcx.lang_items().f32_impl(),
F64 => tcx.lang_items().f64_impl(),
Char => tcx.lang_items().char_impl(),
Bool => tcx.lang_items().bool_impl(),
Str => tcx.lang_items().str_impl(),
Slice => tcx.lang_items().slice_impl(),
Array => tcx.lang_items().slice_impl(),
Tuple => None,
Unit => None,
RawPointer => tcx.lang_items().const_ptr_impl(),
Reference => None,
Fn => None,
Never => None,
};
if let Some(did) = did {
if !did.is_local() {
inline::build_impl(cx, did, None, ret);
}
}
}
}
impl Clean<Vec<Item>> for doctree::ExternCrate<'_> {
fn clean(&self, cx: &DocContext<'_>) -> Vec<Item> {
let please_inline = self.vis.node.is_pub() && self.attrs.iter().any(|a| {
a.check_name(sym::doc) && match a.meta_item_list() {
Some(l) => attr::list_contains_name(&l, sym::inline),
None => false,
}
});
if please_inline {
let mut visited = FxHashSet::default();
let res = Res::Def(
DefKind::Mod,
DefId {
krate: self.cnum,
index: CRATE_DEF_INDEX,
},
);
if let Some(items) = inline::try_inline(
cx, res, self.name,
Some(rustc::ty::Attributes::Borrowed(self.attrs)),
&mut visited
) {
return items;
}
}
vec![Item {
name: None,
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
def_id: DefId { krate: self.cnum, index: CRATE_DEF_INDEX },
visibility: self.vis.clean(cx),
stability: None,
deprecation: None,
inner: ExternCrateItem(self.name.clean(cx), self.path.clone())
}]
}
}
impl Clean<Vec<Item>> for doctree::Import<'_> {
fn clean(&self, cx: &DocContext<'_>) -> Vec<Item> {
// We consider inlining the documentation of `pub use` statements, but we
// forcefully don't inline if this is not public or if the
// #[doc(no_inline)] attribute is present.
// Don't inline doc(hidden) imports so they can be stripped at a later stage.
let mut denied = !self.vis.node.is_pub() || self.attrs.iter().any(|a| {
a.check_name(sym::doc) && match a.meta_item_list() {
Some(l) => attr::list_contains_name(&l, sym::no_inline) ||
attr::list_contains_name(&l, sym::hidden),
None => false,
}
});
// Also check whether imports were asked to be inlined, in case we're trying to re-export a
// crate in Rust 2018+
let please_inline = self.attrs.lists(sym::doc).has_word(sym::inline);
let path = self.path.clean(cx);
let inner = if self.glob {
if !denied {
let mut visited = FxHashSet::default();
if let Some(items) = inline::try_inline_glob(cx, path.res, &mut visited) {
return items;
}
}
Import::Glob(resolve_use_source(cx, path))
} else {
let name = self.name;
if !please_inline {
match path.res {
Res::Def(DefKind::Mod, did) => {
if !did.is_local() && did.index == CRATE_DEF_INDEX {
// if we're `pub use`ing an extern crate root, don't inline it unless we
// were specifically asked for it
denied = true;
}
}
_ => {}
}
}
if !denied {
let mut visited = FxHashSet::default();
if let Some(items) = inline::try_inline(
cx, path.res, name,
Some(rustc::ty::Attributes::Borrowed(self.attrs)),
&mut visited
) {
return items;
}
}
Import::Simple(name.clean(cx), resolve_use_source(cx, path))
};
vec![Item {
name: None,
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
def_id: cx.tcx.hir().local_def_id_from_node_id(ast::CRATE_NODE_ID),
visibility: self.vis.clean(cx),
stability: None,
deprecation: None,
inner: ImportItem(inner)
}]
}
}
impl Clean<Item> for doctree::ForeignItem<'_> {
fn clean(&self, cx: &DocContext<'_>) -> Item {
let inner = match self.kind {
hir::ForeignItemKind::Fn(ref decl, ref names, ref generics) => {
let abi = cx.tcx.hir().get_foreign_abi(self.id);
let (generics, decl) = enter_impl_trait(cx, || {
(generics.clean(cx), (&**decl, &names[..]).clean(cx))
});
let (all_types, ret_types) = get_all_types(&generics, &decl, cx);
ForeignFunctionItem(Function {
decl,
generics,
header: hir::FnHeader {
unsafety: hir::Unsafety::Unsafe,
abi,
constness: hir::Constness::NotConst,
asyncness: hir::IsAsync::NotAsync,
},
all_types,
ret_types,
})
}
hir::ForeignItemKind::Static(ref ty, mutbl) => {
ForeignStaticItem(Static {
type_: ty.clean(cx),
mutability: mutbl.clean(cx),
expr: String::new(),
})
}
hir::ForeignItemKind::Type => {
ForeignTypeItem
}
};
Item {
name: Some(self.name.clean(cx)),
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
def_id: cx.tcx.hir().local_def_id(self.id),
visibility: self.vis.clean(cx),
stability: cx.stability(self.id).clean(cx),
deprecation: cx.deprecation(self.id).clean(cx),
inner,
}
}
}
// Utilities
pub trait ToSource {
fn to_src(&self, cx: &DocContext<'_>) -> String;
}
impl ToSource for syntax_pos::Span {
fn to_src(&self, cx: &DocContext<'_>) -> String {
debug!("converting span {:?} to snippet", self.clean(cx));
let sn = match cx.sess().source_map().span_to_snippet(*self) {
Ok(x) => x,
Err(_) => String::new()
};
debug!("got snippet {}", sn);
sn
}
}
fn name_from_pat(p: &hir::Pat) -> String {
use rustc::hir::*;
debug!("trying to get a name from pattern: {:?}", p);
match p.kind {
PatKind::Wild => "_".to_string(),
PatKind::Binding(_, _, ident, _) => ident.to_string(),
PatKind::TupleStruct(ref p, ..) | PatKind::Path(ref p) => qpath_to_string(p),
PatKind::Struct(ref name, ref fields, etc) => {
format!("{} {{ {}{} }}", qpath_to_string(name),
fields.iter().map(|fp| format!("{}: {}", fp.ident, name_from_pat(&fp.pat)))
.collect::<Vec<String>>().join(", "),
if etc { ", .." } else { "" }
)
}
PatKind::Or(ref pats) => {
pats.iter().map(|p| name_from_pat(&**p)).collect::<Vec<String>>().join(" | ")
}
PatKind::Tuple(ref elts, _) => format!("({})", elts.iter().map(|p| name_from_pat(&**p))
.collect::<Vec<String>>().join(", ")),
PatKind::Box(ref p) => name_from_pat(&**p),
PatKind::Ref(ref p, _) => name_from_pat(&**p),
PatKind::Lit(..) => {
warn!("tried to get argument name from PatKind::Lit, \
which is silly in function arguments");
"()".to_string()
},
PatKind::Range(..) => panic!("tried to get argument name from PatKind::Range, \
which is not allowed in function arguments"),
PatKind::Slice(ref begin, ref mid, ref end) => {
let begin = begin.iter().map(|p| name_from_pat(&**p));
let mid = mid.as_ref().map(|p| format!("..{}", name_from_pat(&**p))).into_iter();
let end = end.iter().map(|p| name_from_pat(&**p));
format!("[{}]", begin.chain(mid).chain(end).collect::<Vec<_>>().join(", "))
},
}
}
fn print_const(cx: &DocContext<'_>, n: &ty::Const<'_>) -> String {
match n.val {
ty::ConstKind::Unevaluated(def_id, _) => {
if let Some(hir_id) = cx.tcx.hir().as_local_hir_id(def_id) {
print_const_expr(cx, cx.tcx.hir().body_owned_by(hir_id))
} else {
inline::print_inlined_const(cx, def_id)
}
},
_ => {
let mut s = n.to_string();
// array lengths are obviously usize
if s.ends_with("usize") {
let n = s.len() - "usize".len();
s.truncate(n);
if s.ends_with(": ") {
let n = s.len() - ": ".len();
s.truncate(n);
}
}
s
},
}
}
fn print_const_expr(cx: &DocContext<'_>, body: hir::BodyId) -> String {
cx.tcx.hir().hir_to_pretty_string(body.hir_id)
}
/// Given a type Path, resolve it to a Type using the TyCtxt
fn resolve_type(cx: &DocContext<'_>,
path: Path,
id: hir::HirId) -> Type {
if id == hir::DUMMY_HIR_ID {
debug!("resolve_type({:?})", path);
} else {
debug!("resolve_type({:?},{:?})", path, id);
}
let is_generic = match path.res {
Res::PrimTy(p) => match p {
hir::Str => return Primitive(PrimitiveType::Str),
hir::Bool => return Primitive(PrimitiveType::Bool),
hir::Char => return Primitive(PrimitiveType::Char),
hir::Int(int_ty) => return Primitive(int_ty.into()),
hir::Uint(uint_ty) => return Primitive(uint_ty.into()),
hir::Float(float_ty) => return Primitive(float_ty.into()),
},
Res::SelfTy(..) if path.segments.len() == 1 => {
return Generic(kw::SelfUpper.to_string());
}
Res::Def(DefKind::TyParam, _) if path.segments.len() == 1 => {
return Generic(format!("{:#}", path.print()));
}
Res::SelfTy(..)
| Res::Def(DefKind::TyParam, _)
| Res::Def(DefKind::AssocTy, _) => true,
_ => false,
};
let did = register_res(&*cx, path.res);
ResolvedPath { path, param_names: None, did, is_generic }
}
pub fn register_res(cx: &DocContext<'_>, res: Res) -> DefId {
debug!("register_res({:?})", res);
let (did, kind) = match res {
Res::Def(DefKind::Fn, i) => (i, TypeKind::Function),
Res::Def(DefKind::TyAlias, i) => (i, TypeKind::Typedef),
Res::Def(DefKind::Enum, i) => (i, TypeKind::Enum),
Res::Def(DefKind::Trait, i) => (i, TypeKind::Trait),
Res::Def(DefKind::Struct, i) => (i, TypeKind::Struct),
Res::Def(DefKind::Union, i) => (i, TypeKind::Union),
Res::Def(DefKind::Mod, i) => (i, TypeKind::Module),
Res::Def(DefKind::ForeignTy, i) => (i, TypeKind::Foreign),
Res::Def(DefKind::Const, i) => (i, TypeKind::Const),
Res::Def(DefKind::Static, i) => (i, TypeKind::Static),
Res::Def(DefKind::Variant, i) => (cx.tcx.parent(i).expect("cannot get parent def id"),
TypeKind::Enum),
Res::Def(DefKind::Macro(mac_kind), i) => match mac_kind {
MacroKind::Bang => (i, TypeKind::Macro),
MacroKind::Attr => (i, TypeKind::Attr),
MacroKind::Derive => (i, TypeKind::Derive),
},
Res::Def(DefKind::TraitAlias, i) => (i, TypeKind::TraitAlias),
Res::SelfTy(Some(def_id), _) => (def_id, TypeKind::Trait),
Res::SelfTy(_, Some(impl_def_id)) => return impl_def_id,
_ => return res.def_id()
};
if did.is_local() { return did }
inline::record_extern_fqn(cx, did, kind);
if let TypeKind::Trait = kind {
inline::record_extern_trait(cx, did);
}
did
}
fn resolve_use_source(cx: &DocContext<'_>, path: Path) -> ImportSource {
ImportSource {
did: if path.res.opt_def_id().is_none() {
None
} else {
Some(register_res(cx, path.res))
},
path,
}
}
impl Clean<Item> for doctree::Macro<'_> {
fn clean(&self, cx: &DocContext<'_>) -> Item {
let name = self.name.clean(cx);
Item {
name: Some(name.clone()),
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
visibility: Public,
stability: cx.stability(self.hid).clean(cx),
deprecation: cx.deprecation(self.hid).clean(cx),
def_id: self.def_id,
inner: MacroItem(Macro {
source: format!("macro_rules! {} {{\n{}}}",
name,
self.matchers.iter().map(|span| {
format!(" {} => {{ ... }};\n", span.to_src(cx))
}).collect::<String>()),
imported_from: self.imported_from.clean(cx),
}),
}
}
}
impl Clean<Item> for doctree::ProcMacro<'_> {
fn clean(&self, cx: &DocContext<'_>) -> Item {
Item {
name: Some(self.name.clean(cx)),
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
visibility: Public,
stability: cx.stability(self.id).clean(cx),
deprecation: cx.deprecation(self.id).clean(cx),
def_id: cx.tcx.hir().local_def_id(self.id),
inner: ProcMacroItem(ProcMacro {
kind: self.kind,
helpers: self.helpers.clean(cx),
}),
}
}
}
impl Clean<Stability> for attr::Stability {
fn clean(&self, _: &DocContext<'_>) -> Stability {
Stability {
level: stability::StabilityLevel::from_attr_level(&self.level),
feature: Some(self.feature.to_string()).filter(|f| !f.is_empty()),
since: match self.level {
attr::Stable {ref since} => since.to_string(),
_ => String::new(),
},
deprecation: self.rustc_depr.as_ref().map(|d| {
Deprecation {
note: Some(d.reason.to_string()).filter(|r| !r.is_empty()),
since: Some(d.since.to_string()).filter(|d| !d.is_empty()),
}
}),
unstable_reason: match self.level {
attr::Unstable { reason: Some(ref reason), .. } => Some(reason.to_string()),
_ => None,
},
issue: match self.level {
attr::Unstable {issue, ..} => issue,
_ => None,
}
}
}
}
impl<'a> Clean<Stability> for &'a attr::Stability {
fn clean(&self, dc: &DocContext<'_>) -> Stability {
(**self).clean(dc)
}
}
impl Clean<Deprecation> for attr::Deprecation {
fn clean(&self, _: &DocContext<'_>) -> Deprecation {
Deprecation {
since: self.since.map(|s| s.to_string()).filter(|s| !s.is_empty()),
note: self.note.map(|n| n.to_string()).filter(|n| !n.is_empty()),
}
}
}
impl Clean<TypeBinding> for hir::TypeBinding {
fn clean(&self, cx: &DocContext<'_>) -> TypeBinding {
TypeBinding {
name: self.ident.name.clean(cx),
kind: self.kind.clean(cx),
}
}
}
impl Clean<TypeBindingKind> for hir::TypeBindingKind {
fn clean(&self, cx: &DocContext<'_>) -> TypeBindingKind {
match *self {
hir::TypeBindingKind::Equality { ref ty } =>
TypeBindingKind::Equality {
ty: ty.clean(cx),
},
hir::TypeBindingKind::Constraint { ref bounds } =>
TypeBindingKind::Constraint {
bounds: bounds.into_iter().map(|b| b.clean(cx)).collect(),
},
}
}
}
pub fn enter_impl_trait<F, R>(cx: &DocContext<'_>, f: F) -> R
where
F: FnOnce() -> R,
{
let old_bounds = mem::take(&mut *cx.impl_trait_bounds.borrow_mut());
let r = f();
assert!(cx.impl_trait_bounds.borrow().is_empty());
*cx.impl_trait_bounds.borrow_mut() = old_bounds;
r
}
#[derive(Eq, PartialEq, Hash, Copy, Clone, Debug)]
enum RegionTarget<'tcx> {
Region(Region<'tcx>),
RegionVid(RegionVid)
}
#[derive(Default, Debug, Clone)]
struct RegionDeps<'tcx> {
larger: FxHashSet<RegionTarget<'tcx>>,
smaller: FxHashSet<RegionTarget<'tcx>>
}
enum SimpleBound {
TraitBound(Vec<PathSegment>, Vec<SimpleBound>, Vec<GenericParamDef>, hir::TraitBoundModifier),
Outlives(Lifetime),
}
impl From<GenericBound> for SimpleBound {
fn from(bound: GenericBound) -> Self {
match bound.clone() {
GenericBound::Outlives(l) => SimpleBound::Outlives(l),
GenericBound::TraitBound(t, mod_) => match t.trait_ {
Type::ResolvedPath { path, param_names, .. } => {
SimpleBound::TraitBound(path.segments,
param_names
.map_or_else(|| Vec::new(), |v| v.iter()
.map(|p| SimpleBound::from(p.clone()))
.collect()),
t.generic_params,
mod_)
}
_ => panic!("Unexpected bound {:?}", bound),
}
}
}
}