blob: a7c382eba5091608fb375738858cab77b230a001 [file] [log] [blame]
// Copyright 2012-2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use self::Constructor::*;
use self::Usefulness::*;
use self::WitnessPreference::*;
use rustc::middle::const_val::ConstVal;
use eval::{compare_const_vals};
use rustc_const_math::ConstInt;
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::indexed_vec::Idx;
use pattern::{FieldPattern, Pattern, PatternKind};
use pattern::{PatternFoldable, PatternFolder};
use rustc::hir::def_id::DefId;
use rustc::hir::RangeEnd;
use rustc::ty::{self, Ty, TyCtxt, TypeFoldable};
use rustc::mir::Field;
use rustc::util::common::ErrorReported;
use syntax_pos::{Span, DUMMY_SP};
use arena::TypedArena;
use std::cmp::{self, Ordering};
use std::fmt;
use std::iter::{FromIterator, IntoIterator, repeat};
pub fn expand_pattern<'a, 'tcx>(cx: &MatchCheckCtxt<'a, 'tcx>, pat: Pattern<'tcx>)
-> &'a Pattern<'tcx>
{
cx.pattern_arena.alloc(LiteralExpander.fold_pattern(&pat))
}
struct LiteralExpander;
impl<'tcx> PatternFolder<'tcx> for LiteralExpander {
fn fold_pattern(&mut self, pat: &Pattern<'tcx>) -> Pattern<'tcx> {
match (&pat.ty.sty, &*pat.kind) {
(&ty::TyRef(_, mt), &PatternKind::Constant { ref value }) => {
Pattern {
ty: pat.ty,
span: pat.span,
kind: box PatternKind::Deref {
subpattern: Pattern {
ty: mt.ty,
span: pat.span,
kind: box PatternKind::Constant { value: value.clone() },
}
}
}
}
(_, &PatternKind::Binding { subpattern: Some(ref s), .. }) => {
s.fold_with(self)
}
_ => pat.super_fold_with(self)
}
}
}
impl<'tcx> Pattern<'tcx> {
fn is_wildcard(&self) -> bool {
match *self.kind {
PatternKind::Binding { subpattern: None, .. } | PatternKind::Wild =>
true,
_ => false
}
}
}
pub struct Matrix<'a, 'tcx: 'a>(Vec<Vec<&'a Pattern<'tcx>>>);
impl<'a, 'tcx> Matrix<'a, 'tcx> {
pub fn empty() -> Self {
Matrix(vec![])
}
pub fn push(&mut self, row: Vec<&'a Pattern<'tcx>>) {
self.0.push(row)
}
}
/// Pretty-printer for matrices of patterns, example:
/// ++++++++++++++++++++++++++
/// + _ + [] +
/// ++++++++++++++++++++++++++
/// + true + [First] +
/// ++++++++++++++++++++++++++
/// + true + [Second(true)] +
/// ++++++++++++++++++++++++++
/// + false + [_] +
/// ++++++++++++++++++++++++++
/// + _ + [_, _, ..tail] +
/// ++++++++++++++++++++++++++
impl<'a, 'tcx> fmt::Debug for Matrix<'a, 'tcx> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "\n")?;
let &Matrix(ref m) = self;
let pretty_printed_matrix: Vec<Vec<String>> = m.iter().map(|row| {
row.iter().map(|pat| format!("{:?}", pat)).collect()
}).collect();
let column_count = m.iter().map(|row| row.len()).max().unwrap_or(0);
assert!(m.iter().all(|row| row.len() == column_count));
let column_widths: Vec<usize> = (0..column_count).map(|col| {
pretty_printed_matrix.iter().map(|row| row[col].len()).max().unwrap_or(0)
}).collect();
let total_width = column_widths.iter().cloned().sum::<usize>() + column_count * 3 + 1;
let br = repeat('+').take(total_width).collect::<String>();
write!(f, "{}\n", br)?;
for row in pretty_printed_matrix {
write!(f, "+")?;
for (column, pat_str) in row.into_iter().enumerate() {
write!(f, " ")?;
write!(f, "{:1$}", pat_str, column_widths[column])?;
write!(f, " +")?;
}
write!(f, "\n")?;
write!(f, "{}\n", br)?;
}
Ok(())
}
}
impl<'a, 'tcx> FromIterator<Vec<&'a Pattern<'tcx>>> for Matrix<'a, 'tcx> {
fn from_iter<T: IntoIterator<Item=Vec<&'a Pattern<'tcx>>>>(iter: T) -> Self
{
Matrix(iter.into_iter().collect())
}
}
//NOTE: appears to be the only place other then InferCtxt to contain a ParamEnv
pub struct MatchCheckCtxt<'a, 'tcx: 'a> {
pub tcx: TyCtxt<'a, 'tcx, 'tcx>,
/// The module in which the match occurs. This is necessary for
/// checking inhabited-ness of types because whether a type is (visibly)
/// inhabited can depend on whether it was defined in the current module or
/// not. eg. `struct Foo { _private: ! }` cannot be seen to be empty
/// outside it's module and should not be matchable with an empty match
/// statement.
pub module: DefId,
pub pattern_arena: &'a TypedArena<Pattern<'tcx>>,
pub byte_array_map: FxHashMap<*const Pattern<'tcx>, Vec<&'a Pattern<'tcx>>>,
}
impl<'a, 'tcx> MatchCheckCtxt<'a, 'tcx> {
pub fn create_and_enter<F, R>(
tcx: TyCtxt<'a, 'tcx, 'tcx>,
module: DefId,
f: F) -> R
where F: for<'b> FnOnce(MatchCheckCtxt<'b, 'tcx>) -> R
{
let pattern_arena = TypedArena::new();
f(MatchCheckCtxt {
tcx,
module,
pattern_arena: &pattern_arena,
byte_array_map: FxHashMap(),
})
}
// convert a byte-string pattern to a list of u8 patterns.
fn lower_byte_str_pattern<'p>(&mut self, pat: &'p Pattern<'tcx>) -> Vec<&'p Pattern<'tcx>>
where 'a: 'p
{
let pattern_arena = &*self.pattern_arena;
let tcx = self.tcx;
self.byte_array_map.entry(pat).or_insert_with(|| {
match pat.kind {
box PatternKind::Constant {
value: &ty::Const { val: ConstVal::ByteStr(b), .. }
} => {
b.data.iter().map(|&b| &*pattern_arena.alloc(Pattern {
ty: tcx.types.u8,
span: pat.span,
kind: box PatternKind::Constant {
value: tcx.mk_const(ty::Const {
val: ConstVal::Integral(ConstInt::U8(b)),
ty: tcx.types.u8
})
}
})).collect()
}
_ => span_bug!(pat.span, "unexpected byte array pattern {:?}", pat)
}
}).clone()
}
fn is_uninhabited(&self, ty: Ty<'tcx>) -> bool {
if self.tcx.sess.features.borrow().never_type {
self.tcx.is_ty_uninhabited_from(self.module, ty)
} else {
false
}
}
fn is_non_exhaustive_enum(&self, ty: Ty<'tcx>) -> bool {
match ty.sty {
ty::TyAdt(adt_def, ..) => adt_def.is_enum() && adt_def.is_non_exhaustive(),
_ => false,
}
}
fn is_local(&self, ty: Ty<'tcx>) -> bool {
match ty.sty {
ty::TyAdt(adt_def, ..) => adt_def.did.is_local(),
_ => false,
}
}
fn is_variant_uninhabited(&self,
variant: &'tcx ty::VariantDef,
substs: &'tcx ty::subst::Substs<'tcx>)
-> bool
{
if self.tcx.sess.features.borrow().never_type {
self.tcx.is_enum_variant_uninhabited_from(self.module, variant, substs)
} else {
false
}
}
}
#[derive(Clone, Debug, PartialEq)]
pub enum Constructor<'tcx> {
/// The constructor of all patterns that don't vary by constructor,
/// e.g. struct patterns and fixed-length arrays.
Single,
/// Enum variants.
Variant(DefId),
/// Literal values.
ConstantValue(&'tcx ty::Const<'tcx>),
/// Ranges of literal values (`2...5` and `2..5`).
ConstantRange(&'tcx ty::Const<'tcx>, &'tcx ty::Const<'tcx>, RangeEnd),
/// Array patterns of length n.
Slice(u64),
}
impl<'tcx> Constructor<'tcx> {
fn variant_index_for_adt(&self, adt: &'tcx ty::AdtDef) -> usize {
match self {
&Variant(vid) => adt.variant_index_with_id(vid),
&Single => {
assert!(!adt.is_enum());
0
}
_ => bug!("bad constructor {:?} for adt {:?}", self, adt)
}
}
}
#[derive(Clone)]
pub enum Usefulness<'tcx> {
Useful,
UsefulWithWitness(Vec<Witness<'tcx>>),
NotUseful
}
impl<'tcx> Usefulness<'tcx> {
fn is_useful(&self) -> bool {
match *self {
NotUseful => false,
_ => true
}
}
}
#[derive(Copy, Clone)]
pub enum WitnessPreference {
ConstructWitness,
LeaveOutWitness
}
#[derive(Copy, Clone, Debug)]
struct PatternContext<'tcx> {
ty: Ty<'tcx>,
max_slice_length: u64,
}
/// A stack of patterns in reverse order of construction
#[derive(Clone)]
pub struct Witness<'tcx>(Vec<Pattern<'tcx>>);
impl<'tcx> Witness<'tcx> {
pub fn single_pattern(&self) -> &Pattern<'tcx> {
assert_eq!(self.0.len(), 1);
&self.0[0]
}
fn push_wild_constructor<'a>(
mut self,
cx: &MatchCheckCtxt<'a, 'tcx>,
ctor: &Constructor<'tcx>,
ty: Ty<'tcx>)
-> Self
{
let sub_pattern_tys = constructor_sub_pattern_tys(cx, ctor, ty);
self.0.extend(sub_pattern_tys.into_iter().map(|ty| {
Pattern {
ty,
span: DUMMY_SP,
kind: box PatternKind::Wild,
}
}));
self.apply_constructor(cx, ctor, ty)
}
/// Constructs a partial witness for a pattern given a list of
/// patterns expanded by the specialization step.
///
/// When a pattern P is discovered to be useful, this function is used bottom-up
/// to reconstruct a complete witness, e.g. a pattern P' that covers a subset
/// of values, V, where each value in that set is not covered by any previously
/// used patterns and is covered by the pattern P'. Examples:
///
/// left_ty: tuple of 3 elements
/// pats: [10, 20, _] => (10, 20, _)
///
/// left_ty: struct X { a: (bool, &'static str), b: usize}
/// pats: [(false, "foo"), 42] => X { a: (false, "foo"), b: 42 }
fn apply_constructor<'a>(
mut self,
cx: &MatchCheckCtxt<'a,'tcx>,
ctor: &Constructor<'tcx>,
ty: Ty<'tcx>)
-> Self
{
let arity = constructor_arity(cx, ctor, ty);
let pat = {
let len = self.0.len() as u64;
let mut pats = self.0.drain((len-arity) as usize..).rev();
match ty.sty {
ty::TyAdt(..) |
ty::TyTuple(..) => {
let pats = pats.enumerate().map(|(i, p)| {
FieldPattern {
field: Field::new(i),
pattern: p
}
}).collect();
if let ty::TyAdt(adt, substs) = ty.sty {
if adt.is_enum() {
PatternKind::Variant {
adt_def: adt,
substs,
variant_index: ctor.variant_index_for_adt(adt),
subpatterns: pats
}
} else {
PatternKind::Leaf { subpatterns: pats }
}
} else {
PatternKind::Leaf { subpatterns: pats }
}
}
ty::TyRef(..) => {
PatternKind::Deref { subpattern: pats.nth(0).unwrap() }
}
ty::TySlice(_) | ty::TyArray(..) => {
PatternKind::Slice {
prefix: pats.collect(),
slice: None,
suffix: vec![]
}
}
_ => {
match *ctor {
ConstantValue(value) => PatternKind::Constant { value },
_ => PatternKind::Wild,
}
}
}
};
self.0.push(Pattern {
ty,
span: DUMMY_SP,
kind: Box::new(pat),
});
self
}
}
/// This determines the set of all possible constructors of a pattern matching
/// values of type `left_ty`. For vectors, this would normally be an infinite set
/// but is instead bounded by the maximum fixed length of slice patterns in
/// the column of patterns being analyzed.
///
/// This intentionally does not list ConstantValue specializations for
/// non-booleans, because we currently assume that there is always a
/// "non-standard constant" that matches. See issue #12483.
///
/// We make sure to omit constructors that are statically impossible. eg for
/// Option<!> we do not include Some(_) in the returned list of constructors.
fn all_constructors<'a, 'tcx: 'a>(cx: &mut MatchCheckCtxt<'a, 'tcx>,
pcx: PatternContext<'tcx>)
-> Vec<Constructor<'tcx>>
{
debug!("all_constructors({:?})", pcx.ty);
match pcx.ty.sty {
ty::TyBool => {
[true, false].iter().map(|&b| {
ConstantValue(cx.tcx.mk_const(ty::Const {
val: ConstVal::Bool(b),
ty: cx.tcx.types.bool
}))
}).collect()
}
ty::TyArray(ref sub_ty, len) if len.val.to_const_int().is_some() => {
let len = len.val.to_const_int().unwrap().to_u64().unwrap();
if len != 0 && cx.is_uninhabited(sub_ty) {
vec![]
} else {
vec![Slice(len)]
}
}
// Treat arrays of a constant but unknown length like slices.
ty::TyArray(ref sub_ty, _) |
ty::TySlice(ref sub_ty) => {
if cx.is_uninhabited(sub_ty) {
vec![Slice(0)]
} else {
(0..pcx.max_slice_length+1).map(|length| Slice(length)).collect()
}
}
ty::TyAdt(def, substs) if def.is_enum() => {
def.variants.iter()
.filter(|v| !cx.is_variant_uninhabited(v, substs))
.map(|v| Variant(v.did))
.collect()
}
_ => {
if cx.is_uninhabited(pcx.ty) {
vec![]
} else {
vec![Single]
}
}
}
}
fn max_slice_length<'p, 'a: 'p, 'tcx: 'a, I>(
_cx: &mut MatchCheckCtxt<'a, 'tcx>,
patterns: I) -> u64
where I: Iterator<Item=&'p Pattern<'tcx>>
{
// The exhaustiveness-checking paper does not include any details on
// checking variable-length slice patterns. However, they are matched
// by an infinite collection of fixed-length array patterns.
//
// Checking the infinite set directly would take an infinite amount
// of time. However, it turns out that for each finite set of
// patterns `P`, all sufficiently large array lengths are equivalent:
//
// Each slice `s` with a "sufficiently-large" length `l ≥ L` that applies
// to exactly the subset `Pₜ` of `P` can be transformed to a slice
// `sₘ` for each sufficiently-large length `m` that applies to exactly
// the same subset of `P`.
//
// Because of that, each witness for reachability-checking from one
// of the sufficiently-large lengths can be transformed to an
// equally-valid witness from any other length, so we only have
// to check slice lengths from the "minimal sufficiently-large length"
// and below.
//
// Note that the fact that there is a *single* `sₘ` for each `m`
// not depending on the specific pattern in `P` is important: if
// you look at the pair of patterns
// `[true, ..]`
// `[.., false]`
// Then any slice of length ≥1 that matches one of these two
// patterns can be be trivially turned to a slice of any
// other length ≥1 that matches them and vice-versa - for
// but the slice from length 2 `[false, true]` that matches neither
// of these patterns can't be turned to a slice from length 1 that
// matches neither of these patterns, so we have to consider
// slices from length 2 there.
//
// Now, to see that that length exists and find it, observe that slice
// patterns are either "fixed-length" patterns (`[_, _, _]`) or
// "variable-length" patterns (`[_, .., _]`).
//
// For fixed-length patterns, all slices with lengths *longer* than
// the pattern's length have the same outcome (of not matching), so
// as long as `L` is greater than the pattern's length we can pick
// any `sₘ` from that length and get the same result.
//
// For variable-length patterns, the situation is more complicated,
// because as seen above the precise value of `sₘ` matters.
//
// However, for each variable-length pattern `p` with a prefix of length
// `plâ‚š` and suffix of length `slâ‚š`, only the first `plâ‚š` and the last
// `slâ‚š` elements are examined.
//
// Therefore, as long as `L` is positive (to avoid concerns about empty
// types), all elements after the maximum prefix length and before
// the maximum suffix length are not examined by any variable-length
// pattern, and therefore can be added/removed without affecting
// them - creating equivalent patterns from any sufficiently-large
// length.
//
// Of course, if fixed-length patterns exist, we must be sure
// that our length is large enough to miss them all, so
// we can pick `L = max(FIXED_LEN+1 ∪ {max(PREFIX_LEN) + max(SUFFIX_LEN)})`
//
// for example, with the above pair of patterns, all elements
// but the first and last can be added/removed, so any
// witness of length ≥2 (say, `[false, false, true]`) can be
// turned to a witness from any other length ≥2.
let mut max_prefix_len = 0;
let mut max_suffix_len = 0;
let mut max_fixed_len = 0;
for row in patterns {
match *row.kind {
PatternKind::Constant { value: &ty::Const { val: ConstVal::ByteStr(b), .. } } => {
max_fixed_len = cmp::max(max_fixed_len, b.data.len() as u64);
}
PatternKind::Slice { ref prefix, slice: None, ref suffix } => {
let fixed_len = prefix.len() as u64 + suffix.len() as u64;
max_fixed_len = cmp::max(max_fixed_len, fixed_len);
}
PatternKind::Slice { ref prefix, slice: Some(_), ref suffix } => {
max_prefix_len = cmp::max(max_prefix_len, prefix.len() as u64);
max_suffix_len = cmp::max(max_suffix_len, suffix.len() as u64);
}
_ => {}
}
}
cmp::max(max_fixed_len + 1, max_prefix_len + max_suffix_len)
}
/// Algorithm from http://moscova.inria.fr/~maranget/papers/warn/index.html
/// The algorithm from the paper has been modified to correctly handle empty
/// types. The changes are:
/// (0) We don't exit early if the pattern matrix has zero rows. We just
/// continue to recurse over columns.
/// (1) all_constructors will only return constructors that are statically
/// possible. eg. it will only return Ok for Result<T, !>
///
/// This finds whether a (row) vector `v` of patterns is 'useful' in relation
/// to a set of such vectors `m` - this is defined as there being a set of
/// inputs that will match `v` but not any of the sets in `m`.
///
/// All the patterns at each column of the `matrix ++ v` matrix must
/// have the same type, except that wildcard (PatternKind::Wild) patterns
/// with type TyErr are also allowed, even if the "type of the column"
/// is not TyErr. That is used to represent private fields, as using their
/// real type would assert that they are inhabited.
///
/// This is used both for reachability checking (if a pattern isn't useful in
/// relation to preceding patterns, it is not reachable) and exhaustiveness
/// checking (if a wildcard pattern is useful in relation to a matrix, the
/// matrix isn't exhaustive).
pub fn is_useful<'p, 'a: 'p, 'tcx: 'a>(cx: &mut MatchCheckCtxt<'a, 'tcx>,
matrix: &Matrix<'p, 'tcx>,
v: &[&'p Pattern<'tcx>],
witness: WitnessPreference)
-> Usefulness<'tcx> {
let &Matrix(ref rows) = matrix;
debug!("is_useful({:?}, {:?})", matrix, v);
// The base case. We are pattern-matching on () and the return value is
// based on whether our matrix has a row or not.
// NOTE: This could potentially be optimized by checking rows.is_empty()
// first and then, if v is non-empty, the return value is based on whether
// the type of the tuple we're checking is inhabited or not.
if v.is_empty() {
return if rows.is_empty() {
match witness {
ConstructWitness => UsefulWithWitness(vec![Witness(vec![])]),
LeaveOutWitness => Useful,
}
} else {
NotUseful
}
};
assert!(rows.iter().all(|r| r.len() == v.len()));
let pcx = PatternContext {
// TyErr is used to represent the type of wildcard patterns matching
// against inaccessible (private) fields of structs, so that we won't
// be able to observe whether the types of the struct's fields are
// inhabited.
//
// If the field is truely inaccessible, then all the patterns
// matching against it must be wildcard patterns, so its type
// does not matter.
//
// However, if we are matching against non-wildcard patterns, we
// need to know the real type of the field so we can specialize
// against it. This primarily occurs through constants - they
// can include contents for fields that are inaccessible at the
// location of the match. In that case, the field's type is
// inhabited - by the constant - so we can just use it.
//
// FIXME: this might lead to "unstable" behavior with macro hygiene
// introducing uninhabited patterns for inaccessible fields. We
// need to figure out how to model that.
ty: rows.iter().map(|r| r[0].ty).find(|ty| !ty.references_error())
.unwrap_or(v[0].ty),
max_slice_length: max_slice_length(cx, rows.iter().map(|r| r[0]).chain(Some(v[0])))
};
debug!("is_useful_expand_first_col: pcx={:?}, expanding {:?}", pcx, v[0]);
if let Some(constructors) = pat_constructors(cx, v[0], pcx) {
debug!("is_useful - expanding constructors: {:?}", constructors);
constructors.into_iter().map(|c|
is_useful_specialized(cx, matrix, v, c.clone(), pcx.ty, witness)
).find(|result| result.is_useful()).unwrap_or(NotUseful)
} else {
debug!("is_useful - expanding wildcard");
let used_ctors: Vec<Constructor> = rows.iter().flat_map(|row| {
pat_constructors(cx, row[0], pcx).unwrap_or(vec![])
}).collect();
debug!("used_ctors = {:?}", used_ctors);
let all_ctors = all_constructors(cx, pcx);
debug!("all_ctors = {:?}", all_ctors);
let missing_ctors: Vec<Constructor> = all_ctors.iter().filter(|c| {
!used_ctors.contains(*c)
}).cloned().collect();
// `missing_ctors` is the set of constructors from the same type as the
// first column of `matrix` that are matched only by wildcard patterns
// from the first column.
//
// Therefore, if there is some pattern that is unmatched by `matrix`,
// it will still be unmatched if the first constructor is replaced by
// any of the constructors in `missing_ctors`
//
// However, if our scrutinee is *privately* an empty enum, we
// must treat it as though it had an "unknown" constructor (in
// that case, all other patterns obviously can't be variants)
// to avoid exposing its emptyness. See the `match_privately_empty`
// test for details.
//
// FIXME: currently the only way I know of something can
// be a privately-empty enum is when the never_type
// feature flag is not present, so this is only
// needed for that case.
let is_privately_empty =
all_ctors.is_empty() && !cx.is_uninhabited(pcx.ty);
let is_declared_nonexhaustive =
cx.is_non_exhaustive_enum(pcx.ty) && !cx.is_local(pcx.ty);
debug!("missing_ctors={:?} is_privately_empty={:?} is_declared_nonexhaustive={:?}",
missing_ctors, is_privately_empty, is_declared_nonexhaustive);
// For privately empty and non-exhaustive enums, we work as if there were an "extra"
// `_` constructor for the type, so we can never match over all constructors.
let is_non_exhaustive = is_privately_empty || is_declared_nonexhaustive;
if missing_ctors.is_empty() && !is_non_exhaustive {
all_ctors.into_iter().map(|c| {
is_useful_specialized(cx, matrix, v, c.clone(), pcx.ty, witness)
}).find(|result| result.is_useful()).unwrap_or(NotUseful)
} else {
let matrix = rows.iter().filter_map(|r| {
if r[0].is_wildcard() {
Some(r[1..].to_vec())
} else {
None
}
}).collect();
match is_useful(cx, &matrix, &v[1..], witness) {
UsefulWithWitness(pats) => {
let cx = &*cx;
// In this case, there's at least one "free"
// constructor that is only matched against by
// wildcard patterns.
//
// There are 2 ways we can report a witness here.
// Commonly, we can report all the "free"
// constructors as witnesses, e.g. if we have:
//
// ```
// enum Direction { N, S, E, W }
// let Direction::N = ...;
// ```
//
// we can report 3 witnesses: `S`, `E`, and `W`.
//
// However, there are 2 cases where we don't want
// to do this and instead report a single `_` witness:
//
// 1) If the user is matching against a non-exhaustive
// enum, there is no point in enumerating all possible
// variants, because the user can't actually match
// against them himself, e.g. in an example like:
// ```
// let err: io::ErrorKind = ...;
// match err {
// io::ErrorKind::NotFound => {},
// }
// ```
// we don't want to show every possible IO error,
// but instead have `_` as the witness (this is
// actually *required* if the user specified *all*
// IO errors, but is probably what we want in every
// case).
//
// 2) If the user didn't actually specify a constructor
// in this arm, e.g. in
// ```
// let x: (Direction, Direction, bool) = ...;
// let (_, _, false) = x;
// ```
// we don't want to show all 16 possible witnesses
// `(<direction-1>, <direction-2>, true)` - we are
// satisfied with `(_, _, true)`. In this case,
// `used_ctors` is empty.
let new_witnesses = if is_non_exhaustive || used_ctors.is_empty() {
// All constructors are unused. Add wild patterns
// rather than each individual constructor
pats.into_iter().map(|mut witness| {
witness.0.push(Pattern {
ty: pcx.ty,
span: DUMMY_SP,
kind: box PatternKind::Wild,
});
witness
}).collect()
} else {
pats.into_iter().flat_map(|witness| {
missing_ctors.iter().map(move |ctor| {
witness.clone().push_wild_constructor(cx, ctor, pcx.ty)
})
}).collect()
};
UsefulWithWitness(new_witnesses)
}
result => result
}
}
}
}
fn is_useful_specialized<'p, 'a:'p, 'tcx: 'a>(
cx: &mut MatchCheckCtxt<'a, 'tcx>,
&Matrix(ref m): &Matrix<'p, 'tcx>,
v: &[&'p Pattern<'tcx>],
ctor: Constructor<'tcx>,
lty: Ty<'tcx>,
witness: WitnessPreference) -> Usefulness<'tcx>
{
debug!("is_useful_specialized({:?}, {:?}, {:?})", v, ctor, lty);
let sub_pat_tys = constructor_sub_pattern_tys(cx, &ctor, lty);
let wild_patterns_owned: Vec<_> = sub_pat_tys.iter().map(|ty| {
Pattern {
ty,
span: DUMMY_SP,
kind: box PatternKind::Wild,
}
}).collect();
let wild_patterns: Vec<_> = wild_patterns_owned.iter().collect();
let matrix = Matrix(m.iter().flat_map(|r| {
specialize(cx, &r, &ctor, &wild_patterns)
}).collect());
match specialize(cx, v, &ctor, &wild_patterns) {
Some(v) => match is_useful(cx, &matrix, &v, witness) {
UsefulWithWitness(witnesses) => UsefulWithWitness(
witnesses.into_iter()
.map(|witness| witness.apply_constructor(cx, &ctor, lty))
.collect()
),
result => result
},
None => NotUseful
}
}
/// Determines the constructors that the given pattern can be specialized to.
///
/// In most cases, there's only one constructor that a specific pattern
/// represents, such as a specific enum variant or a specific literal value.
/// Slice patterns, however, can match slices of different lengths. For instance,
/// `[a, b, ..tail]` can match a slice of length 2, 3, 4 and so on.
///
/// Returns None in case of a catch-all, which can't be specialized.
fn pat_constructors<'tcx>(_cx: &mut MatchCheckCtxt,
pat: &Pattern<'tcx>,
pcx: PatternContext)
-> Option<Vec<Constructor<'tcx>>>
{
match *pat.kind {
PatternKind::Binding { .. } | PatternKind::Wild =>
None,
PatternKind::Leaf { .. } | PatternKind::Deref { .. } =>
Some(vec![Single]),
PatternKind::Variant { adt_def, variant_index, .. } =>
Some(vec![Variant(adt_def.variants[variant_index].did)]),
PatternKind::Constant { value } =>
Some(vec![ConstantValue(value)]),
PatternKind::Range { lo, hi, end } =>
Some(vec![ConstantRange(lo, hi, end)]),
PatternKind::Array { .. } => match pcx.ty.sty {
ty::TyArray(_, length) => Some(vec![
Slice(length.val.to_const_int().unwrap().to_u64().unwrap())
]),
_ => span_bug!(pat.span, "bad ty {:?} for array pattern", pcx.ty)
},
PatternKind::Slice { ref prefix, ref slice, ref suffix } => {
let pat_len = prefix.len() as u64 + suffix.len() as u64;
if slice.is_some() {
Some((pat_len..pcx.max_slice_length+1).map(Slice).collect())
} else {
Some(vec![Slice(pat_len)])
}
}
}
}
/// This computes the arity of a constructor. The arity of a constructor
/// is how many subpattern patterns of that constructor should be expanded to.
///
/// For instance, a tuple pattern (_, 42, Some([])) has the arity of 3.
/// A struct pattern's arity is the number of fields it contains, etc.
fn constructor_arity(_cx: &MatchCheckCtxt, ctor: &Constructor, ty: Ty) -> u64 {
debug!("constructor_arity({:?}, {:?})", ctor, ty);
match ty.sty {
ty::TyTuple(ref fs, _) => fs.len() as u64,
ty::TySlice(..) | ty::TyArray(..) => match *ctor {
Slice(length) => length,
ConstantValue(_) => 0,
_ => bug!("bad slice pattern {:?} {:?}", ctor, ty)
},
ty::TyRef(..) => 1,
ty::TyAdt(adt, _) => {
adt.variants[ctor.variant_index_for_adt(adt)].fields.len() as u64
}
_ => 0
}
}
/// This computes the types of the sub patterns that a constructor should be
/// expanded to.
///
/// For instance, a tuple pattern (43u32, 'a') has sub pattern types [u32, char].
fn constructor_sub_pattern_tys<'a, 'tcx: 'a>(cx: &MatchCheckCtxt<'a, 'tcx>,
ctor: &Constructor,
ty: Ty<'tcx>) -> Vec<Ty<'tcx>>
{
debug!("constructor_sub_pattern_tys({:?}, {:?})", ctor, ty);
match ty.sty {
ty::TyTuple(ref fs, _) => fs.into_iter().map(|t| *t).collect(),
ty::TySlice(ty) | ty::TyArray(ty, _) => match *ctor {
Slice(length) => (0..length).map(|_| ty).collect(),
ConstantValue(_) => vec![],
_ => bug!("bad slice pattern {:?} {:?}", ctor, ty)
},
ty::TyRef(_, ref ty_and_mut) => vec![ty_and_mut.ty],
ty::TyAdt(adt, substs) => {
if adt.is_box() {
// Use T as the sub pattern type of Box<T>.
vec![substs[0].as_type().unwrap()]
} else {
adt.variants[ctor.variant_index_for_adt(adt)].fields.iter().map(|field| {
let is_visible = adt.is_enum()
|| field.vis.is_accessible_from(cx.module, cx.tcx);
if is_visible {
field.ty(cx.tcx, substs)
} else {
// Treat all non-visible fields as TyErr. They
// can't appear in any other pattern from
// this match (because they are private),
// so their type does not matter - but
// we don't want to know they are
// uninhabited.
cx.tcx.types.err
}
}).collect()
}
}
_ => vec![],
}
}
fn slice_pat_covered_by_constructor(_tcx: TyCtxt, _span: Span,
ctor: &Constructor,
prefix: &[Pattern],
slice: &Option<Pattern>,
suffix: &[Pattern])
-> Result<bool, ErrorReported> {
let data = match *ctor {
ConstantValue(&ty::Const { val: ConstVal::ByteStr(b), .. }) => b.data,
_ => bug!()
};
let pat_len = prefix.len() + suffix.len();
if data.len() < pat_len || (slice.is_none() && data.len() > pat_len) {
return Ok(false);
}
for (ch, pat) in
data[..prefix.len()].iter().zip(prefix).chain(
data[data.len()-suffix.len()..].iter().zip(suffix))
{
match pat.kind {
box PatternKind::Constant { value } => match value.val {
ConstVal::Integral(ConstInt::U8(u)) => {
if u != *ch {
return Ok(false);
}
},
_ => span_bug!(pat.span, "bad const u8 {:?}", value)
},
_ => {}
}
}
Ok(true)
}
fn constructor_covered_by_range(tcx: TyCtxt, span: Span,
ctor: &Constructor,
from: &ConstVal, to: &ConstVal,
end: RangeEnd)
-> Result<bool, ErrorReported> {
let cmp_from = |c_from| Ok(compare_const_vals(tcx, span, c_from, from)? != Ordering::Less);
let cmp_to = |c_to| compare_const_vals(tcx, span, c_to, to);
match *ctor {
ConstantValue(value) => {
let to = cmp_to(&value.val)?;
let end = (to == Ordering::Less) ||
(end == RangeEnd::Included && to == Ordering::Equal);
Ok(cmp_from(&value.val)? && end)
},
ConstantRange(from, to, RangeEnd::Included) => {
let to = cmp_to(&to.val)?;
let end = (to == Ordering::Less) ||
(end == RangeEnd::Included && to == Ordering::Equal);
Ok(cmp_from(&from.val)? && end)
},
ConstantRange(from, to, RangeEnd::Excluded) => {
let to = cmp_to(&to.val)?;
let end = (to == Ordering::Less) ||
(end == RangeEnd::Excluded && to == Ordering::Equal);
Ok(cmp_from(&from.val)? && end)
}
Single => Ok(true),
_ => bug!(),
}
}
fn patterns_for_variant<'p, 'a: 'p, 'tcx: 'a>(
subpatterns: &'p [FieldPattern<'tcx>],
wild_patterns: &[&'p Pattern<'tcx>])
-> Vec<&'p Pattern<'tcx>>
{
let mut result = wild_patterns.to_owned();
for subpat in subpatterns {
result[subpat.field.index()] = &subpat.pattern;
}
debug!("patterns_for_variant({:?}, {:?}) = {:?}", subpatterns, wild_patterns, result);
result
}
/// This is the main specialization step. It expands the first pattern in the given row
/// into `arity` patterns based on the constructor. For most patterns, the step is trivial,
/// for instance tuple patterns are flattened and box patterns expand into their inner pattern.
///
/// OTOH, slice patterns with a subslice pattern (..tail) can be expanded into multiple
/// different patterns.
/// Structure patterns with a partial wild pattern (Foo { a: 42, .. }) have their missing
/// fields filled with wild patterns.
fn specialize<'p, 'a: 'p, 'tcx: 'a>(
cx: &mut MatchCheckCtxt<'a, 'tcx>,
r: &[&'p Pattern<'tcx>],
constructor: &Constructor,
wild_patterns: &[&'p Pattern<'tcx>])
-> Option<Vec<&'p Pattern<'tcx>>>
{
let pat = &r[0];
let head: Option<Vec<&Pattern>> = match *pat.kind {
PatternKind::Binding { .. } | PatternKind::Wild => {
Some(wild_patterns.to_owned())
},
PatternKind::Variant { adt_def, variant_index, ref subpatterns, .. } => {
let ref variant = adt_def.variants[variant_index];
if *constructor == Variant(variant.did) {
Some(patterns_for_variant(subpatterns, wild_patterns))
} else {
None
}
}
PatternKind::Leaf { ref subpatterns } => {
Some(patterns_for_variant(subpatterns, wild_patterns))
}
PatternKind::Deref { ref subpattern } => {
Some(vec![subpattern])
}
PatternKind::Constant { value } => {
match *constructor {
Slice(..) => match value.val {
ConstVal::ByteStr(b) => {
if wild_patterns.len() == b.data.len() {
Some(cx.lower_byte_str_pattern(pat))
} else {
None
}
}
_ => span_bug!(pat.span,
"unexpected const-val {:?} with ctor {:?}", value, constructor)
},
_ => {
match constructor_covered_by_range(
cx.tcx, pat.span, constructor, &value.val, &value.val, RangeEnd::Included
) {
Ok(true) => Some(vec![]),
Ok(false) => None,
Err(ErrorReported) => None,
}
}
}
}
PatternKind::Range { lo, hi, ref end } => {
match constructor_covered_by_range(
cx.tcx, pat.span, constructor, &lo.val, &hi.val, end.clone()
) {
Ok(true) => Some(vec![]),
Ok(false) => None,
Err(ErrorReported) => None,
}
}
PatternKind::Array { ref prefix, ref slice, ref suffix } |
PatternKind::Slice { ref prefix, ref slice, ref suffix } => {
match *constructor {
Slice(..) => {
let pat_len = prefix.len() + suffix.len();
if let Some(slice_count) = wild_patterns.len().checked_sub(pat_len) {
if slice_count == 0 || slice.is_some() {
Some(
prefix.iter().chain(
wild_patterns.iter().map(|p| *p)
.skip(prefix.len())
.take(slice_count)
.chain(
suffix.iter()
)).collect())
} else {
None
}
} else {
None
}
}
ConstantValue(..) => {
match slice_pat_covered_by_constructor(
cx.tcx, pat.span, constructor, prefix, slice, suffix
) {
Ok(true) => Some(vec![]),
Ok(false) => None,
Err(ErrorReported) => None
}
}
_ => span_bug!(pat.span,
"unexpected ctor {:?} for slice pat", constructor)
}
}
};
debug!("specialize({:?}, {:?}) = {:?}", r[0], wild_patterns, head);
head.map(|mut head| {
head.extend_from_slice(&r[1 ..]);
head
})
}