| //! Custom arbitrary-precision number (bignum) implementation. |
| //! |
| //! This is designed to avoid the heap allocation at expense of stack memory. |
| //! The most used bignum type, `Big32x40`, is limited by 32 × 40 = 1,280 bits |
| //! and will take at most 160 bytes of stack memory. This is more than enough |
| //! for round-tripping all possible finite `f64` values. |
| //! |
| //! In principle it is possible to have multiple bignum types for different |
| //! inputs, but we don't do so to avoid the code bloat. Each bignum is still |
| //! tracked for the actual usages, so it normally doesn't matter. |
| |
| // This module is only for dec2flt and flt2dec, and only public because of coretests. |
| // It is not intended to ever be stabilized. |
| #![doc(hidden)] |
| #![unstable( |
| feature = "core_private_bignum", |
| reason = "internal routines only exposed for testing", |
| issue = "none" |
| )] |
| #![macro_use] |
| |
| /// Arithmetic operations required by bignums. |
| pub trait FullOps: Sized { |
| /// Returns `(carry', v')` such that `carry' * 2^W + v' = self * other + other2 + carry`, |
| /// where `W` is the number of bits in `Self`. |
| fn full_mul_add(self, other: Self, other2: Self, carry: Self) -> (Self /* carry */, Self); |
| |
| /// Returns `(quo, rem)` such that `borrow * 2^W + self = quo * other + rem` |
| /// and `0 <= rem < other`, where `W` is the number of bits in `Self`. |
| fn full_div_rem(self, other: Self, borrow: Self) |
| -> (Self /* quotient */, Self /* remainder */); |
| } |
| |
| macro_rules! impl_full_ops { |
| ($($ty:ty: add($addfn:path), mul/div($bigty:ident);)*) => ( |
| $( |
| impl FullOps for $ty { |
| fn full_mul_add(self, other: $ty, other2: $ty, carry: $ty) -> ($ty, $ty) { |
| // This cannot overflow; |
| // the output is between `0` and `2^nbits * (2^nbits - 1)`. |
| let v = (self as $bigty) * (other as $bigty) + (other2 as $bigty) + |
| (carry as $bigty); |
| ((v >> <$ty>::BITS) as $ty, v as $ty) |
| } |
| |
| fn full_div_rem(self, other: $ty, borrow: $ty) -> ($ty, $ty) { |
| debug_assert!(borrow < other); |
| // This cannot overflow; the output is between `0` and `other * (2^nbits - 1)`. |
| let lhs = ((borrow as $bigty) << <$ty>::BITS) | (self as $bigty); |
| let rhs = other as $bigty; |
| ((lhs / rhs) as $ty, (lhs % rhs) as $ty) |
| } |
| } |
| )* |
| ) |
| } |
| |
| impl_full_ops! { |
| u8: add(intrinsics::u8_add_with_overflow), mul/div(u16); |
| u16: add(intrinsics::u16_add_with_overflow), mul/div(u32); |
| u32: add(intrinsics::u32_add_with_overflow), mul/div(u64); |
| // See RFC #521 for enabling this. |
| // u64: add(intrinsics::u64_add_with_overflow), mul/div(u128); |
| } |
| |
| /// Table of powers of 5 representable in digits. Specifically, the largest {u8, u16, u32} value |
| /// that's a power of five, plus the corresponding exponent. Used in `mul_pow5`. |
| const SMALL_POW5: [(u64, usize); 3] = [(125, 3), (15625, 6), (1_220_703_125, 13)]; |
| |
| macro_rules! define_bignum { |
| ($name:ident: type=$ty:ty, n=$n:expr) => { |
| /// Stack-allocated arbitrary-precision (up to certain limit) integer. |
| /// |
| /// This is backed by a fixed-size array of given type ("digit"). |
| /// While the array is not very large (normally some hundred bytes), |
| /// copying it recklessly may result in the performance hit. |
| /// Thus this is intentionally not `Copy`. |
| /// |
| /// All operations available to bignums panic in the case of overflows. |
| /// The caller is responsible to use large enough bignum types. |
| pub struct $name { |
| /// One plus the offset to the maximum "digit" in use. |
| /// This does not decrease, so be aware of the computation order. |
| /// `base[size..]` should be zero. |
| size: usize, |
| /// Digits. `[a, b, c, ...]` represents `a + b*2^W + c*2^(2W) + ...` |
| /// where `W` is the number of bits in the digit type. |
| base: [$ty; $n], |
| } |
| |
| impl $name { |
| /// Makes a bignum from one digit. |
| pub fn from_small(v: $ty) -> $name { |
| let mut base = [0; $n]; |
| base[0] = v; |
| $name { size: 1, base } |
| } |
| |
| /// Makes a bignum from `u64` value. |
| pub fn from_u64(mut v: u64) -> $name { |
| let mut base = [0; $n]; |
| let mut sz = 0; |
| while v > 0 { |
| base[sz] = v as $ty; |
| v >>= <$ty>::BITS; |
| sz += 1; |
| } |
| $name { size: sz, base } |
| } |
| |
| /// Returns the internal digits as a slice `[a, b, c, ...]` such that the numeric |
| /// value is `a + b * 2^W + c * 2^(2W) + ...` where `W` is the number of bits in |
| /// the digit type. |
| pub fn digits(&self) -> &[$ty] { |
| &self.base[..self.size] |
| } |
| |
| /// Returns the `i`-th bit where bit 0 is the least significant one. |
| /// In other words, the bit with weight `2^i`. |
| pub fn get_bit(&self, i: usize) -> u8 { |
| let digitbits = <$ty>::BITS as usize; |
| let d = i / digitbits; |
| let b = i % digitbits; |
| ((self.base[d] >> b) & 1) as u8 |
| } |
| |
| /// Returns `true` if the bignum is zero. |
| pub fn is_zero(&self) -> bool { |
| self.digits().iter().all(|&v| v == 0) |
| } |
| |
| /// Returns the number of bits necessary to represent this value. Note that zero |
| /// is considered to need 0 bits. |
| pub fn bit_length(&self) -> usize { |
| let digitbits = <$ty>::BITS as usize; |
| let digits = self.digits(); |
| // Find the most significant non-zero digit. |
| let msd = digits.iter().rposition(|&x| x != 0); |
| match msd { |
| Some(msd) => msd * digitbits + digits[msd].ilog2() as usize + 1, |
| // There are no non-zero digits, i.e., the number is zero. |
| _ => 0, |
| } |
| } |
| |
| /// Adds `other` to itself and returns its own mutable reference. |
| pub fn add<'a>(&'a mut self, other: &$name) -> &'a mut $name { |
| use crate::{cmp, iter}; |
| |
| let mut sz = cmp::max(self.size, other.size); |
| let mut carry = false; |
| for (a, b) in iter::zip(&mut self.base[..sz], &other.base[..sz]) { |
| let (v, c) = (*a).carrying_add(*b, carry); |
| *a = v; |
| carry = c; |
| } |
| if carry { |
| self.base[sz] = 1; |
| sz += 1; |
| } |
| self.size = sz; |
| self |
| } |
| |
| pub fn add_small(&mut self, other: $ty) -> &mut $name { |
| let (v, mut carry) = self.base[0].carrying_add(other, false); |
| self.base[0] = v; |
| let mut i = 1; |
| while carry { |
| let (v, c) = self.base[i].carrying_add(0, carry); |
| self.base[i] = v; |
| carry = c; |
| i += 1; |
| } |
| if i > self.size { |
| self.size = i; |
| } |
| self |
| } |
| |
| /// Subtracts `other` from itself and returns its own mutable reference. |
| pub fn sub<'a>(&'a mut self, other: &$name) -> &'a mut $name { |
| use crate::{cmp, iter}; |
| |
| let sz = cmp::max(self.size, other.size); |
| let mut noborrow = true; |
| for (a, b) in iter::zip(&mut self.base[..sz], &other.base[..sz]) { |
| let (v, c) = (*a).carrying_add(!*b, noborrow); |
| *a = v; |
| noborrow = c; |
| } |
| assert!(noborrow); |
| self.size = sz; |
| self |
| } |
| |
| /// Multiplies itself by a digit-sized `other` and returns its own |
| /// mutable reference. |
| pub fn mul_small(&mut self, other: $ty) -> &mut $name { |
| let mut sz = self.size; |
| let mut carry = 0; |
| for a in &mut self.base[..sz] { |
| let (v, c) = (*a).carrying_mul(other, carry); |
| *a = v; |
| carry = c; |
| } |
| if carry > 0 { |
| self.base[sz] = carry; |
| sz += 1; |
| } |
| self.size = sz; |
| self |
| } |
| |
| /// Multiplies itself by `2^bits` and returns its own mutable reference. |
| pub fn mul_pow2(&mut self, bits: usize) -> &mut $name { |
| let digitbits = <$ty>::BITS as usize; |
| let digits = bits / digitbits; |
| let bits = bits % digitbits; |
| |
| assert!(digits < $n); |
| debug_assert!(self.base[$n - digits..].iter().all(|&v| v == 0)); |
| debug_assert!(bits == 0 || (self.base[$n - digits - 1] >> (digitbits - bits)) == 0); |
| |
| // shift by `digits * digitbits` bits |
| for i in (0..self.size).rev() { |
| self.base[i + digits] = self.base[i]; |
| } |
| for i in 0..digits { |
| self.base[i] = 0; |
| } |
| |
| // shift by `bits` bits |
| let mut sz = self.size + digits; |
| if bits > 0 { |
| let last = sz; |
| let overflow = self.base[last - 1] >> (digitbits - bits); |
| if overflow > 0 { |
| self.base[last] = overflow; |
| sz += 1; |
| } |
| for i in (digits + 1..last).rev() { |
| self.base[i] = |
| (self.base[i] << bits) | (self.base[i - 1] >> (digitbits - bits)); |
| } |
| self.base[digits] <<= bits; |
| // self.base[..digits] is zero, no need to shift |
| } |
| |
| self.size = sz; |
| self |
| } |
| |
| /// Multiplies itself by `5^e` and returns its own mutable reference. |
| pub fn mul_pow5(&mut self, mut e: usize) -> &mut $name { |
| use crate::mem; |
| use crate::num::bignum::SMALL_POW5; |
| |
| // There are exactly n trailing zeros on 2^n, and the only relevant digit sizes |
| // are consecutive powers of two, so this is well suited index for the table. |
| let table_index = mem::size_of::<$ty>().trailing_zeros() as usize; |
| let (small_power, small_e) = SMALL_POW5[table_index]; |
| let small_power = small_power as $ty; |
| |
| // Multiply with the largest single-digit power as long as possible ... |
| while e >= small_e { |
| self.mul_small(small_power); |
| e -= small_e; |
| } |
| |
| // ... then finish off the remainder. |
| let mut rest_power = 1; |
| for _ in 0..e { |
| rest_power *= 5; |
| } |
| self.mul_small(rest_power); |
| |
| self |
| } |
| |
| /// Multiplies itself by a number described by `other[0] + other[1] * 2^W + |
| /// other[2] * 2^(2W) + ...` (where `W` is the number of bits in the digit type) |
| /// and returns its own mutable reference. |
| pub fn mul_digits<'a>(&'a mut self, other: &[$ty]) -> &'a mut $name { |
| // the internal routine. works best when aa.len() <= bb.len(). |
| fn mul_inner(ret: &mut [$ty; $n], aa: &[$ty], bb: &[$ty]) -> usize { |
| use crate::num::bignum::FullOps; |
| |
| let mut retsz = 0; |
| for (i, &a) in aa.iter().enumerate() { |
| if a == 0 { |
| continue; |
| } |
| let mut sz = bb.len(); |
| let mut carry = 0; |
| for (j, &b) in bb.iter().enumerate() { |
| let (c, v) = a.full_mul_add(b, ret[i + j], carry); |
| ret[i + j] = v; |
| carry = c; |
| } |
| if carry > 0 { |
| ret[i + sz] = carry; |
| sz += 1; |
| } |
| if retsz < i + sz { |
| retsz = i + sz; |
| } |
| } |
| retsz |
| } |
| |
| let mut ret = [0; $n]; |
| let retsz = if self.size < other.len() { |
| mul_inner(&mut ret, &self.digits(), other) |
| } else { |
| mul_inner(&mut ret, other, &self.digits()) |
| }; |
| self.base = ret; |
| self.size = retsz; |
| self |
| } |
| |
| /// Divides itself by a digit-sized `other` and returns its own |
| /// mutable reference *and* the remainder. |
| pub fn div_rem_small(&mut self, other: $ty) -> (&mut $name, $ty) { |
| use crate::num::bignum::FullOps; |
| |
| assert!(other > 0); |
| |
| let sz = self.size; |
| let mut borrow = 0; |
| for a in self.base[..sz].iter_mut().rev() { |
| let (q, r) = (*a).full_div_rem(other, borrow); |
| *a = q; |
| borrow = r; |
| } |
| (self, borrow) |
| } |
| |
| /// Divide self by another bignum, overwriting `q` with the quotient and `r` with the |
| /// remainder. |
| pub fn div_rem(&self, d: &$name, q: &mut $name, r: &mut $name) { |
| // Stupid slow base-2 long division taken from |
| // https://en.wikipedia.org/wiki/Division_algorithm |
| // FIXME use a greater base ($ty) for the long division. |
| assert!(!d.is_zero()); |
| let digitbits = <$ty>::BITS as usize; |
| for digit in &mut q.base[..] { |
| *digit = 0; |
| } |
| for digit in &mut r.base[..] { |
| *digit = 0; |
| } |
| r.size = d.size; |
| q.size = 1; |
| let mut q_is_zero = true; |
| let end = self.bit_length(); |
| for i in (0..end).rev() { |
| r.mul_pow2(1); |
| r.base[0] |= self.get_bit(i) as $ty; |
| if &*r >= d { |
| r.sub(d); |
| // Set bit `i` of q to 1. |
| let digit_idx = i / digitbits; |
| let bit_idx = i % digitbits; |
| if q_is_zero { |
| q.size = digit_idx + 1; |
| q_is_zero = false; |
| } |
| q.base[digit_idx] |= 1 << bit_idx; |
| } |
| } |
| debug_assert!(q.base[q.size..].iter().all(|&d| d == 0)); |
| debug_assert!(r.base[r.size..].iter().all(|&d| d == 0)); |
| } |
| } |
| |
| impl crate::cmp::PartialEq for $name { |
| fn eq(&self, other: &$name) -> bool { |
| self.base[..] == other.base[..] |
| } |
| } |
| |
| impl crate::cmp::Eq for $name {} |
| |
| impl crate::cmp::PartialOrd for $name { |
| fn partial_cmp(&self, other: &$name) -> crate::option::Option<crate::cmp::Ordering> { |
| crate::option::Option::Some(self.cmp(other)) |
| } |
| } |
| |
| impl crate::cmp::Ord for $name { |
| fn cmp(&self, other: &$name) -> crate::cmp::Ordering { |
| use crate::cmp::max; |
| let sz = max(self.size, other.size); |
| let lhs = self.base[..sz].iter().cloned().rev(); |
| let rhs = other.base[..sz].iter().cloned().rev(); |
| lhs.cmp(rhs) |
| } |
| } |
| |
| impl crate::clone::Clone for $name { |
| fn clone(&self) -> Self { |
| Self { size: self.size, base: self.base } |
| } |
| } |
| |
| impl crate::fmt::Debug for $name { |
| fn fmt(&self, f: &mut crate::fmt::Formatter<'_>) -> crate::fmt::Result { |
| let sz = if self.size < 1 { 1 } else { self.size }; |
| let digitlen = <$ty>::BITS as usize / 4; |
| |
| write!(f, "{:#x}", self.base[sz - 1])?; |
| for &v in self.base[..sz - 1].iter().rev() { |
| write!(f, "_{:01$x}", v, digitlen)?; |
| } |
| crate::result::Result::Ok(()) |
| } |
| } |
| }; |
| } |
| |
| /// The digit type for `Big32x40`. |
| pub type Digit32 = u32; |
| |
| define_bignum!(Big32x40: type=Digit32, n=40); |
| |
| // this one is used for testing only. |
| #[doc(hidden)] |
| pub mod tests { |
| define_bignum!(Big8x3: type=u8, n=3); |
| } |