| //! Integer and floating-point number formatting |
| |
| use crate::mem::MaybeUninit; |
| use crate::num::fmt as numfmt; |
| use crate::ops::{Div, Rem, Sub}; |
| use crate::{fmt, ptr, slice, str}; |
| |
| #[doc(hidden)] |
| trait DisplayInt: |
| PartialEq + PartialOrd + Div<Output = Self> + Rem<Output = Self> + Sub<Output = Self> + Copy |
| { |
| fn zero() -> Self; |
| fn from_u8(u: u8) -> Self; |
| fn to_u8(&self) -> u8; |
| #[cfg(not(any(target_pointer_width = "64", target_arch = "wasm32")))] |
| fn to_u32(&self) -> u32; |
| fn to_u64(&self) -> u64; |
| fn to_u128(&self) -> u128; |
| } |
| |
| macro_rules! impl_int { |
| ($($t:ident)*) => ( |
| $(impl DisplayInt for $t { |
| fn zero() -> Self { 0 } |
| fn from_u8(u: u8) -> Self { u as Self } |
| fn to_u8(&self) -> u8 { *self as u8 } |
| #[cfg(not(any(target_pointer_width = "64", target_arch = "wasm32")))] |
| fn to_u32(&self) -> u32 { *self as u32 } |
| fn to_u64(&self) -> u64 { *self as u64 } |
| fn to_u128(&self) -> u128 { *self as u128 } |
| })* |
| ) |
| } |
| |
| impl_int! { |
| i8 i16 i32 i64 i128 isize |
| u8 u16 u32 u64 u128 usize |
| } |
| |
| /// A type that represents a specific radix |
| /// |
| /// # Safety |
| /// |
| /// `digit` must return an ASCII character. |
| #[doc(hidden)] |
| unsafe trait GenericRadix: Sized { |
| /// The number of digits. |
| const BASE: u8; |
| |
| /// A radix-specific prefix string. |
| const PREFIX: &'static str; |
| |
| /// Converts an integer to corresponding radix digit. |
| fn digit(x: u8) -> u8; |
| |
| /// Format an integer using the radix using a formatter. |
| fn fmt_int<T: DisplayInt>(&self, mut x: T, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| // The radix can be as low as 2, so we need a buffer of at least 128 |
| // characters for a base 2 number. |
| let zero = T::zero(); |
| let is_nonnegative = x >= zero; |
| let mut buf = [MaybeUninit::<u8>::uninit(); 128]; |
| let mut curr = buf.len(); |
| let base = T::from_u8(Self::BASE); |
| if is_nonnegative { |
| // Accumulate each digit of the number from the least significant |
| // to the most significant figure. |
| for byte in buf.iter_mut().rev() { |
| let n = x % base; // Get the current place value. |
| x = x / base; // Deaccumulate the number. |
| byte.write(Self::digit(n.to_u8())); // Store the digit in the buffer. |
| curr -= 1; |
| if x == zero { |
| // No more digits left to accumulate. |
| break; |
| }; |
| } |
| } else { |
| // Do the same as above, but accounting for two's complement. |
| for byte in buf.iter_mut().rev() { |
| let n = zero - (x % base); // Get the current place value. |
| x = x / base; // Deaccumulate the number. |
| byte.write(Self::digit(n.to_u8())); // Store the digit in the buffer. |
| curr -= 1; |
| if x == zero { |
| // No more digits left to accumulate. |
| break; |
| }; |
| } |
| } |
| let buf = &buf[curr..]; |
| // SAFETY: The only chars in `buf` are created by `Self::digit` which are assumed to be |
| // valid UTF-8 |
| let buf = unsafe { |
| str::from_utf8_unchecked(slice::from_raw_parts( |
| MaybeUninit::slice_as_ptr(buf), |
| buf.len(), |
| )) |
| }; |
| f.pad_integral(is_nonnegative, Self::PREFIX, buf) |
| } |
| } |
| |
| /// A binary (base 2) radix |
| #[derive(Clone, PartialEq)] |
| struct Binary; |
| |
| /// An octal (base 8) radix |
| #[derive(Clone, PartialEq)] |
| struct Octal; |
| |
| /// A hexadecimal (base 16) radix, formatted with lower-case characters |
| #[derive(Clone, PartialEq)] |
| struct LowerHex; |
| |
| /// A hexadecimal (base 16) radix, formatted with upper-case characters |
| #[derive(Clone, PartialEq)] |
| struct UpperHex; |
| |
| macro_rules! radix { |
| ($T:ident, $base:expr, $prefix:expr, $($x:pat => $conv:expr),+) => { |
| unsafe impl GenericRadix for $T { |
| const BASE: u8 = $base; |
| const PREFIX: &'static str = $prefix; |
| fn digit(x: u8) -> u8 { |
| match x { |
| $($x => $conv,)+ |
| x => panic!("number not in the range 0..={}: {}", Self::BASE - 1, x), |
| } |
| } |
| } |
| } |
| } |
| |
| radix! { Binary, 2, "0b", x @ 0 ..= 1 => b'0' + x } |
| radix! { Octal, 8, "0o", x @ 0 ..= 7 => b'0' + x } |
| radix! { LowerHex, 16, "0x", x @ 0 ..= 9 => b'0' + x, x @ 10 ..= 15 => b'a' + (x - 10) } |
| radix! { UpperHex, 16, "0x", x @ 0 ..= 9 => b'0' + x, x @ 10 ..= 15 => b'A' + (x - 10) } |
| |
| macro_rules! int_base { |
| (fmt::$Trait:ident for $T:ident as $U:ident -> $Radix:ident) => { |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl fmt::$Trait for $T { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| $Radix.fmt_int(*self as $U, f) |
| } |
| } |
| }; |
| } |
| |
| macro_rules! integer { |
| ($Int:ident, $Uint:ident) => { |
| int_base! { fmt::Binary for $Int as $Uint -> Binary } |
| int_base! { fmt::Octal for $Int as $Uint -> Octal } |
| int_base! { fmt::LowerHex for $Int as $Uint -> LowerHex } |
| int_base! { fmt::UpperHex for $Int as $Uint -> UpperHex } |
| |
| int_base! { fmt::Binary for $Uint as $Uint -> Binary } |
| int_base! { fmt::Octal for $Uint as $Uint -> Octal } |
| int_base! { fmt::LowerHex for $Uint as $Uint -> LowerHex } |
| int_base! { fmt::UpperHex for $Uint as $Uint -> UpperHex } |
| }; |
| } |
| integer! { isize, usize } |
| integer! { i8, u8 } |
| integer! { i16, u16 } |
| integer! { i32, u32 } |
| integer! { i64, u64 } |
| integer! { i128, u128 } |
| |
| macro_rules! impl_Debug { |
| ($($T:ident)*) => { |
| $( |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl fmt::Debug for $T { |
| #[inline] |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| if f.debug_lower_hex() { |
| fmt::LowerHex::fmt(self, f) |
| } else if f.debug_upper_hex() { |
| fmt::UpperHex::fmt(self, f) |
| } else { |
| fmt::Display::fmt(self, f) |
| } |
| } |
| } |
| )* |
| }; |
| } |
| |
| // 2 digit decimal look up table |
| static DEC_DIGITS_LUT: &[u8; 200] = b"0001020304050607080910111213141516171819\ |
| 2021222324252627282930313233343536373839\ |
| 4041424344454647484950515253545556575859\ |
| 6061626364656667686970717273747576777879\ |
| 8081828384858687888990919293949596979899"; |
| |
| macro_rules! impl_Display { |
| ($($t:ident $(as $positive:ident)? named $name:ident,)* ; as $u:ident via $conv_fn:ident named $gen_name:ident) => { |
| |
| $( |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl fmt::Display for $t { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| // If it's a signed integer. |
| $( |
| let is_nonnegative = *self >= 0; |
| |
| #[cfg(not(feature = "optimize_for_size"))] |
| { |
| if !is_nonnegative { |
| // convert the negative num to positive by summing 1 to its 2s complement |
| return (!self as $positive).wrapping_add(1)._fmt(false, f); |
| } |
| } |
| #[cfg(feature = "optimize_for_size")] |
| { |
| if !is_nonnegative { |
| // convert the negative num to positive by summing 1 to its 2s complement |
| return $gen_name((!self.$conv_fn()).wrapping_add(1), false, f); |
| } |
| } |
| )? |
| // If it's a positive integer. |
| #[cfg(not(feature = "optimize_for_size"))] |
| { |
| self._fmt(true, f) |
| } |
| #[cfg(feature = "optimize_for_size")] |
| { |
| $gen_name(self.$conv_fn(), true, f) |
| } |
| } |
| } |
| |
| #[cfg(not(feature = "optimize_for_size"))] |
| impl $t { |
| fn _fmt(mut self: $t, is_nonnegative: bool, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| const SIZE: usize = $t::MAX.ilog(10) as usize + 1; |
| let mut buf = [MaybeUninit::<u8>::uninit(); SIZE]; |
| let mut curr = SIZE; |
| let buf_ptr = MaybeUninit::slice_as_mut_ptr(&mut buf); |
| let lut_ptr = DEC_DIGITS_LUT.as_ptr(); |
| |
| // SAFETY: Since `d1` and `d2` are always less than or equal to `198`, we |
| // can copy from `lut_ptr[d1..d1 + 1]` and `lut_ptr[d2..d2 + 1]`. To show |
| // that it's OK to copy into `buf_ptr`, notice that at the beginning |
| // `curr == buf.len() == 39 > log(n)` since `n < 2^128 < 10^39`, and at |
| // each step this is kept the same as `n` is divided. Since `n` is always |
| // non-negative, this means that `curr > 0` so `buf_ptr[curr..curr + 1]` |
| // is safe to access. |
| unsafe { |
| // need at least 16 bits for the 4-characters-at-a-time to work. |
| #[allow(overflowing_literals)] |
| #[allow(unused_comparisons)] |
| // This block will be removed for smaller types at compile time and in the worst |
| // case, it will prevent to have the `10000` literal to overflow for `i8` and `u8`. |
| if core::mem::size_of::<$t>() >= 2 { |
| // eagerly decode 4 characters at a time |
| while self >= 10000 { |
| let rem = (self % 10000) as usize; |
| self /= 10000; |
| |
| let d1 = (rem / 100) << 1; |
| let d2 = (rem % 100) << 1; |
| curr -= 4; |
| |
| // We are allowed to copy to `buf_ptr[curr..curr + 3]` here since |
| // otherwise `curr < 0`. But then `n` was originally at least `10000^10` |
| // which is `10^40 > 2^128 > n`. |
| ptr::copy_nonoverlapping(lut_ptr.add(d1 as usize), buf_ptr.add(curr), 2); |
| ptr::copy_nonoverlapping(lut_ptr.add(d2 as usize), buf_ptr.add(curr + 2), 2); |
| } |
| } |
| |
| // if we reach here numbers are <= 9999, so at most 4 chars long |
| let mut n = self as usize; // possibly reduce 64bit math |
| |
| // decode 2 more chars, if > 2 chars |
| if n >= 100 { |
| let d1 = (n % 100) << 1; |
| n /= 100; |
| curr -= 2; |
| ptr::copy_nonoverlapping(lut_ptr.add(d1), buf_ptr.add(curr), 2); |
| } |
| |
| // if we reach here numbers are <= 100, so at most 2 chars long |
| // The biggest it can be is 99, and 99 << 1 == 198, so a `u8` is enough. |
| // decode last 1 or 2 chars |
| if n < 10 { |
| curr -= 1; |
| *buf_ptr.add(curr) = (n as u8) + b'0'; |
| } else { |
| let d1 = n << 1; |
| curr -= 2; |
| ptr::copy_nonoverlapping(lut_ptr.add(d1), buf_ptr.add(curr), 2); |
| } |
| } |
| |
| // SAFETY: `curr` > 0 (since we made `buf` large enough), and all the chars are valid |
| // UTF-8 since `DEC_DIGITS_LUT` is |
| let buf_slice = unsafe { |
| str::from_utf8_unchecked( |
| slice::from_raw_parts(buf_ptr.add(curr), buf.len() - curr)) |
| }; |
| f.pad_integral(is_nonnegative, "", buf_slice) |
| } |
| })* |
| |
| #[cfg(feature = "optimize_for_size")] |
| fn $gen_name(mut n: $u, is_nonnegative: bool, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| // 2^128 is about 3*10^38, so 39 gives an extra byte of space |
| let mut buf = [MaybeUninit::<u8>::uninit(); 39]; |
| let mut curr = buf.len(); |
| let buf_ptr = MaybeUninit::slice_as_mut_ptr(&mut buf); |
| |
| // SAFETY: To show that it's OK to copy into `buf_ptr`, notice that at the beginning |
| // `curr == buf.len() == 39 > log(n)` since `n < 2^128 < 10^39`, and at |
| // each step this is kept the same as `n` is divided. Since `n` is always |
| // non-negative, this means that `curr > 0` so `buf_ptr[curr..curr + 1]` |
| // is safe to access. |
| unsafe { |
| loop { |
| curr -= 1; |
| buf_ptr.add(curr).write((n % 10) as u8 + b'0'); |
| n /= 10; |
| |
| if n == 0 { |
| break; |
| } |
| } |
| } |
| |
| // SAFETY: `curr` > 0 (since we made `buf` large enough), and all the chars are valid UTF-8 |
| let buf_slice = unsafe { |
| str::from_utf8_unchecked( |
| slice::from_raw_parts(buf_ptr.add(curr), buf.len() - curr)) |
| }; |
| f.pad_integral(is_nonnegative, "", buf_slice) |
| } |
| }; |
| } |
| |
| macro_rules! impl_Exp { |
| ($($t:ident),* as $u:ident via $conv_fn:ident named $name:ident) => { |
| fn $name( |
| mut n: $u, |
| is_nonnegative: bool, |
| upper: bool, |
| f: &mut fmt::Formatter<'_> |
| ) -> fmt::Result { |
| let (mut n, mut exponent, trailing_zeros, added_precision) = { |
| let mut exponent = 0; |
| // count and remove trailing decimal zeroes |
| while n % 10 == 0 && n >= 10 { |
| n /= 10; |
| exponent += 1; |
| } |
| let (added_precision, subtracted_precision) = match f.precision() { |
| Some(fmt_prec) => { |
| // number of decimal digits minus 1 |
| let mut tmp = n; |
| let mut prec = 0; |
| while tmp >= 10 { |
| tmp /= 10; |
| prec += 1; |
| } |
| (fmt_prec.saturating_sub(prec), prec.saturating_sub(fmt_prec)) |
| } |
| None => (0, 0) |
| }; |
| for _ in 1..subtracted_precision { |
| n /= 10; |
| exponent += 1; |
| } |
| if subtracted_precision != 0 { |
| let rem = n % 10; |
| n /= 10; |
| exponent += 1; |
| // round up last digit, round to even on a tie |
| if rem > 5 || (rem == 5 && (n % 2 != 0 || subtracted_precision > 1 )) { |
| n += 1; |
| // if the digit is rounded to the next power |
| // instead adjust the exponent |
| if n.ilog10() > (n - 1).ilog10() { |
| n /= 10; |
| exponent += 1; |
| } |
| } |
| } |
| (n, exponent, exponent, added_precision) |
| }; |
| |
| // Since `curr` always decreases by the number of digits copied, this means |
| // that `curr >= 0`. |
| let mut buf = [MaybeUninit::<u8>::uninit(); 40]; |
| let mut curr = buf.len(); //index for buf |
| let buf_ptr = MaybeUninit::slice_as_mut_ptr(&mut buf); |
| let lut_ptr = DEC_DIGITS_LUT.as_ptr(); |
| |
| // decode 2 chars at a time |
| while n >= 100 { |
| let d1 = ((n % 100) as usize) << 1; |
| curr -= 2; |
| // SAFETY: `d1 <= 198`, so we can copy from `lut_ptr[d1..d1 + 2]` since |
| // `DEC_DIGITS_LUT` has a length of 200. |
| unsafe { |
| ptr::copy_nonoverlapping(lut_ptr.add(d1), buf_ptr.add(curr), 2); |
| } |
| n /= 100; |
| exponent += 2; |
| } |
| // n is <= 99, so at most 2 chars long |
| let mut n = n as isize; // possibly reduce 64bit math |
| // decode second-to-last character |
| if n >= 10 { |
| curr -= 1; |
| // SAFETY: Safe since `40 > curr >= 0` (see comment) |
| unsafe { |
| *buf_ptr.add(curr) = (n as u8 % 10_u8) + b'0'; |
| } |
| n /= 10; |
| exponent += 1; |
| } |
| // add decimal point iff >1 mantissa digit will be printed |
| if exponent != trailing_zeros || added_precision != 0 { |
| curr -= 1; |
| // SAFETY: Safe since `40 > curr >= 0` |
| unsafe { |
| *buf_ptr.add(curr) = b'.'; |
| } |
| } |
| |
| // SAFETY: Safe since `40 > curr >= 0` |
| let buf_slice = unsafe { |
| // decode last character |
| curr -= 1; |
| *buf_ptr.add(curr) = (n as u8) + b'0'; |
| |
| let len = buf.len() - curr as usize; |
| slice::from_raw_parts(buf_ptr.add(curr), len) |
| }; |
| |
| // stores 'e' (or 'E') and the up to 2-digit exponent |
| let mut exp_buf = [MaybeUninit::<u8>::uninit(); 3]; |
| let exp_ptr = MaybeUninit::slice_as_mut_ptr(&mut exp_buf); |
| // SAFETY: In either case, `exp_buf` is written within bounds and `exp_ptr[..len]` |
| // is contained within `exp_buf` since `len <= 3`. |
| let exp_slice = unsafe { |
| *exp_ptr.add(0) = if upper { b'E' } else { b'e' }; |
| let len = if exponent < 10 { |
| *exp_ptr.add(1) = (exponent as u8) + b'0'; |
| 2 |
| } else { |
| let off = exponent << 1; |
| ptr::copy_nonoverlapping(lut_ptr.add(off), exp_ptr.add(1), 2); |
| 3 |
| }; |
| slice::from_raw_parts(exp_ptr, len) |
| }; |
| |
| let parts = &[ |
| numfmt::Part::Copy(buf_slice), |
| numfmt::Part::Zero(added_precision), |
| numfmt::Part::Copy(exp_slice), |
| ]; |
| let sign = if !is_nonnegative { |
| "-" |
| } else if f.sign_plus() { |
| "+" |
| } else { |
| "" |
| }; |
| let formatted = numfmt::Formatted { sign, parts }; |
| // SAFETY: `buf_slice` and `exp_slice` contain only ASCII characters. |
| unsafe { f.pad_formatted_parts(&formatted) } |
| } |
| |
| $( |
| #[stable(feature = "integer_exp_format", since = "1.42.0")] |
| impl fmt::LowerExp for $t { |
| #[allow(unused_comparisons)] |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| let is_nonnegative = *self >= 0; |
| let n = if is_nonnegative { |
| self.$conv_fn() |
| } else { |
| // convert the negative num to positive by summing 1 to its 2s complement |
| (!self.$conv_fn()).wrapping_add(1) |
| }; |
| $name(n, is_nonnegative, false, f) |
| } |
| })* |
| $( |
| #[stable(feature = "integer_exp_format", since = "1.42.0")] |
| impl fmt::UpperExp for $t { |
| #[allow(unused_comparisons)] |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| let is_nonnegative = *self >= 0; |
| let n = if is_nonnegative { |
| self.$conv_fn() |
| } else { |
| // convert the negative num to positive by summing 1 to its 2s complement |
| (!self.$conv_fn()).wrapping_add(1) |
| }; |
| $name(n, is_nonnegative, true, f) |
| } |
| })* |
| }; |
| } |
| |
| impl_Debug! { |
| i8 i16 i32 i64 i128 isize |
| u8 u16 u32 u64 u128 usize |
| } |
| |
| // Include wasm32 in here since it doesn't reflect the native pointer size, and |
| // often cares strongly about getting a smaller code size. |
| #[cfg(any(target_pointer_width = "64", target_arch = "wasm32"))] |
| mod imp { |
| use super::*; |
| impl_Display!( |
| i8 as u8 named fmt_i8, |
| u8 named fmt_u8, |
| i16 as u16 named fmt_i16, |
| u16 named fmt_u16, |
| i32 as u32 named fmt_i32, |
| u32 named fmt_u32, |
| i64 as u64 named fmt_i64, |
| u64 named fmt_u64, |
| isize as usize named fmt_isize, |
| usize named fmt_usize, |
| ; as u64 via to_u64 named fmt_u64 |
| ); |
| impl_Exp!( |
| i8, u8, i16, u16, i32, u32, i64, u64, usize, isize |
| as u64 via to_u64 named exp_u64 |
| ); |
| } |
| |
| #[cfg(not(any(target_pointer_width = "64", target_arch = "wasm32")))] |
| mod imp { |
| use super::*; |
| impl_Display!( |
| i8 as u8 named fmt_i8, |
| u8 named fmt_u8, |
| i16 as u16 named fmt_i16, |
| u16 named fmt_u16, |
| i32 as u32 named fmt_i32, |
| u32 named fmt_u32, |
| isize as usize named fmt_isize, |
| usize named fmt_usize, |
| ; as u32 via to_u32 named fmt_u32); |
| impl_Display!( |
| i64 as u64 named fmt_i64, |
| u64 named fmt_u64, |
| ; as u64 via to_u64 named fmt_u64); |
| |
| impl_Exp!(i8, u8, i16, u16, i32, u32, isize, usize as u32 via to_u32 named exp_u32); |
| impl_Exp!(i64, u64 as u64 via to_u64 named exp_u64); |
| } |
| impl_Exp!(i128, u128 as u128 via to_u128 named exp_u128); |
| |
| /// Helper function for writing a u64 into `buf` going from last to first, with `curr`. |
| fn parse_u64_into<const N: usize>(mut n: u64, buf: &mut [MaybeUninit<u8>; N], curr: &mut usize) { |
| let buf_ptr = MaybeUninit::slice_as_mut_ptr(buf); |
| let lut_ptr = DEC_DIGITS_LUT.as_ptr(); |
| assert!(*curr > 19); |
| |
| // SAFETY: |
| // Writes at most 19 characters into the buffer. Guaranteed that any ptr into LUT is at most |
| // 198, so will never OOB. There is a check above that there are at least 19 characters |
| // remaining. |
| unsafe { |
| if n >= 1e16 as u64 { |
| let to_parse = n % 1e16 as u64; |
| n /= 1e16 as u64; |
| |
| // Some of these are nops but it looks more elegant this way. |
| let d1 = ((to_parse / 1e14 as u64) % 100) << 1; |
| let d2 = ((to_parse / 1e12 as u64) % 100) << 1; |
| let d3 = ((to_parse / 1e10 as u64) % 100) << 1; |
| let d4 = ((to_parse / 1e8 as u64) % 100) << 1; |
| let d5 = ((to_parse / 1e6 as u64) % 100) << 1; |
| let d6 = ((to_parse / 1e4 as u64) % 100) << 1; |
| let d7 = ((to_parse / 1e2 as u64) % 100) << 1; |
| let d8 = ((to_parse / 1e0 as u64) % 100) << 1; |
| |
| *curr -= 16; |
| |
| ptr::copy_nonoverlapping(lut_ptr.add(d1 as usize), buf_ptr.add(*curr + 0), 2); |
| ptr::copy_nonoverlapping(lut_ptr.add(d2 as usize), buf_ptr.add(*curr + 2), 2); |
| ptr::copy_nonoverlapping(lut_ptr.add(d3 as usize), buf_ptr.add(*curr + 4), 2); |
| ptr::copy_nonoverlapping(lut_ptr.add(d4 as usize), buf_ptr.add(*curr + 6), 2); |
| ptr::copy_nonoverlapping(lut_ptr.add(d5 as usize), buf_ptr.add(*curr + 8), 2); |
| ptr::copy_nonoverlapping(lut_ptr.add(d6 as usize), buf_ptr.add(*curr + 10), 2); |
| ptr::copy_nonoverlapping(lut_ptr.add(d7 as usize), buf_ptr.add(*curr + 12), 2); |
| ptr::copy_nonoverlapping(lut_ptr.add(d8 as usize), buf_ptr.add(*curr + 14), 2); |
| } |
| if n >= 1e8 as u64 { |
| let to_parse = n % 1e8 as u64; |
| n /= 1e8 as u64; |
| |
| // Some of these are nops but it looks more elegant this way. |
| let d1 = ((to_parse / 1e6 as u64) % 100) << 1; |
| let d2 = ((to_parse / 1e4 as u64) % 100) << 1; |
| let d3 = ((to_parse / 1e2 as u64) % 100) << 1; |
| let d4 = ((to_parse / 1e0 as u64) % 100) << 1; |
| *curr -= 8; |
| |
| ptr::copy_nonoverlapping(lut_ptr.add(d1 as usize), buf_ptr.add(*curr + 0), 2); |
| ptr::copy_nonoverlapping(lut_ptr.add(d2 as usize), buf_ptr.add(*curr + 2), 2); |
| ptr::copy_nonoverlapping(lut_ptr.add(d3 as usize), buf_ptr.add(*curr + 4), 2); |
| ptr::copy_nonoverlapping(lut_ptr.add(d4 as usize), buf_ptr.add(*curr + 6), 2); |
| } |
| // `n` < 1e8 < (1 << 32) |
| let mut n = n as u32; |
| if n >= 1e4 as u32 { |
| let to_parse = n % 1e4 as u32; |
| n /= 1e4 as u32; |
| |
| let d1 = (to_parse / 100) << 1; |
| let d2 = (to_parse % 100) << 1; |
| *curr -= 4; |
| |
| ptr::copy_nonoverlapping(lut_ptr.add(d1 as usize), buf_ptr.add(*curr + 0), 2); |
| ptr::copy_nonoverlapping(lut_ptr.add(d2 as usize), buf_ptr.add(*curr + 2), 2); |
| } |
| |
| // `n` < 1e4 < (1 << 16) |
| let mut n = n as u16; |
| if n >= 100 { |
| let d1 = (n % 100) << 1; |
| n /= 100; |
| *curr -= 2; |
| ptr::copy_nonoverlapping(lut_ptr.add(d1 as usize), buf_ptr.add(*curr), 2); |
| } |
| |
| // decode last 1 or 2 chars |
| if n < 10 { |
| *curr -= 1; |
| *buf_ptr.add(*curr) = (n as u8) + b'0'; |
| } else { |
| let d1 = n << 1; |
| *curr -= 2; |
| ptr::copy_nonoverlapping(lut_ptr.add(d1 as usize), buf_ptr.add(*curr), 2); |
| } |
| } |
| } |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl fmt::Display for u128 { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| fmt_u128(*self, true, f) |
| } |
| } |
| |
| #[stable(feature = "rust1", since = "1.0.0")] |
| impl fmt::Display for i128 { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| let is_nonnegative = *self >= 0; |
| let n = if is_nonnegative { |
| self.to_u128() |
| } else { |
| // convert the negative num to positive by summing 1 to its 2s complement |
| (!self.to_u128()).wrapping_add(1) |
| }; |
| fmt_u128(n, is_nonnegative, f) |
| } |
| } |
| |
| /// Specialized optimization for u128. Instead of taking two items at a time, it splits |
| /// into at most 2 u64s, and then chunks by 10e16, 10e8, 10e4, 10e2, and then 10e1. |
| /// It also has to handle 1 last item, as 10^40 > 2^128 > 10^39, whereas |
| /// 10^20 > 2^64 > 10^19. |
| fn fmt_u128(n: u128, is_nonnegative: bool, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| // 2^128 is about 3*10^38, so 39 gives an extra byte of space |
| let mut buf = [MaybeUninit::<u8>::uninit(); 39]; |
| let mut curr = buf.len(); |
| |
| let (n, rem) = udiv_1e19(n); |
| parse_u64_into(rem, &mut buf, &mut curr); |
| |
| if n != 0 { |
| // 0 pad up to point |
| let target = buf.len() - 19; |
| // SAFETY: Guaranteed that we wrote at most 19 bytes, and there must be space |
| // remaining since it has length 39 |
| unsafe { |
| ptr::write_bytes( |
| MaybeUninit::slice_as_mut_ptr(&mut buf).add(target), |
| b'0', |
| curr - target, |
| ); |
| } |
| curr = target; |
| |
| let (n, rem) = udiv_1e19(n); |
| parse_u64_into(rem, &mut buf, &mut curr); |
| // Should this following branch be annotated with unlikely? |
| if n != 0 { |
| let target = buf.len() - 38; |
| // The raw `buf_ptr` pointer is only valid until `buf` is used the next time, |
| // buf `buf` is not used in this scope so we are good. |
| let buf_ptr = MaybeUninit::slice_as_mut_ptr(&mut buf); |
| // SAFETY: At this point we wrote at most 38 bytes, pad up to that point, |
| // There can only be at most 1 digit remaining. |
| unsafe { |
| ptr::write_bytes(buf_ptr.add(target), b'0', curr - target); |
| curr = target - 1; |
| *buf_ptr.add(curr) = (n as u8) + b'0'; |
| } |
| } |
| } |
| |
| // SAFETY: `curr` > 0 (since we made `buf` large enough), and all the chars are valid |
| // UTF-8 since `DEC_DIGITS_LUT` is |
| let buf_slice = unsafe { |
| str::from_utf8_unchecked(slice::from_raw_parts( |
| MaybeUninit::slice_as_mut_ptr(&mut buf).add(curr), |
| buf.len() - curr, |
| )) |
| }; |
| f.pad_integral(is_nonnegative, "", buf_slice) |
| } |
| |
| /// Partition of `n` into n > 1e19 and rem <= 1e19 |
| /// |
| /// Integer division algorithm is based on the following paper: |
| /// |
| /// T. Granlund and P. Montgomery, “Division by Invariant Integers Using Multiplication” |
| /// in Proc. of the SIGPLAN94 Conference on Programming Language Design and |
| /// Implementation, 1994, pp. 61–72 |
| /// |
| fn udiv_1e19(n: u128) -> (u128, u64) { |
| const DIV: u64 = 1e19 as u64; |
| const FACTOR: u128 = 156927543384667019095894735580191660403; |
| |
| let quot = if n < 1 << 83 { |
| ((n >> 19) as u64 / (DIV >> 19)) as u128 |
| } else { |
| u128_mulhi(n, FACTOR) >> 62 |
| }; |
| |
| let rem = (n - quot * DIV as u128) as u64; |
| (quot, rem) |
| } |
| |
| /// Multiply unsigned 128 bit integers, return upper 128 bits of the result |
| #[inline] |
| fn u128_mulhi(x: u128, y: u128) -> u128 { |
| let x_lo = x as u64; |
| let x_hi = (x >> 64) as u64; |
| let y_lo = y as u64; |
| let y_hi = (y >> 64) as u64; |
| |
| // handle possibility of overflow |
| let carry = (x_lo as u128 * y_lo as u128) >> 64; |
| let m = x_lo as u128 * y_hi as u128 + carry; |
| let high1 = m >> 64; |
| |
| let m_lo = m as u64; |
| let high2 = (x_hi as u128 * y_lo as u128 + m_lo as u128) >> 64; |
| |
| x_hi as u128 * y_hi as u128 + high1 + high2 |
| } |