| #![unstable(feature = "raw_vec_internals", reason = "unstable const warnings", issue = "none")] |
| |
| use core::marker::PhantomData; |
| use core::mem::{ManuallyDrop, MaybeUninit, SizedTypeProperties}; |
| use core::ptr::{self, NonNull, Unique}; |
| use core::{cmp, hint}; |
| |
| #[cfg(not(no_global_oom_handling))] |
| use crate::alloc::handle_alloc_error; |
| use crate::alloc::{Allocator, Global, Layout}; |
| use crate::boxed::Box; |
| use crate::collections::TryReserveError; |
| use crate::collections::TryReserveErrorKind::*; |
| |
| #[cfg(test)] |
| mod tests; |
| |
| // One central function responsible for reporting capacity overflows. This'll |
| // ensure that the code generation related to these panics is minimal as there's |
| // only one location which panics rather than a bunch throughout the module. |
| #[cfg(not(no_global_oom_handling))] |
| #[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))] |
| #[track_caller] |
| fn capacity_overflow() -> ! { |
| panic!("capacity overflow"); |
| } |
| |
| enum AllocInit { |
| /// The contents of the new memory are uninitialized. |
| Uninitialized, |
| #[cfg(not(no_global_oom_handling))] |
| /// The new memory is guaranteed to be zeroed. |
| Zeroed, |
| } |
| |
| #[repr(transparent)] |
| #[cfg_attr(target_pointer_width = "16", rustc_layout_scalar_valid_range_end(0x7fff))] |
| #[cfg_attr(target_pointer_width = "32", rustc_layout_scalar_valid_range_end(0x7fff_ffff))] |
| #[cfg_attr(target_pointer_width = "64", rustc_layout_scalar_valid_range_end(0x7fff_ffff_ffff_ffff))] |
| struct Cap(usize); |
| |
| impl Cap { |
| const ZERO: Cap = unsafe { Cap(0) }; |
| |
| /// `Cap(cap)`, except if `T` is a ZST then `Cap::ZERO`. |
| /// |
| /// # Safety: cap must be <= `isize::MAX`. |
| unsafe fn new<T>(cap: usize) -> Self { |
| if T::IS_ZST { Cap::ZERO } else { unsafe { Self(cap) } } |
| } |
| } |
| |
| /// A low-level utility for more ergonomically allocating, reallocating, and deallocating |
| /// a buffer of memory on the heap without having to worry about all the corner cases |
| /// involved. This type is excellent for building your own data structures like Vec and VecDeque. |
| /// In particular: |
| /// |
| /// * Produces `Unique::dangling()` on zero-sized types. |
| /// * Produces `Unique::dangling()` on zero-length allocations. |
| /// * Avoids freeing `Unique::dangling()`. |
| /// * Catches all overflows in capacity computations (promotes them to "capacity overflow" panics). |
| /// * Guards against 32-bit systems allocating more than `isize::MAX` bytes. |
| /// * Guards against overflowing your length. |
| /// * Calls `handle_alloc_error` for fallible allocations. |
| /// * Contains a `ptr::Unique` and thus endows the user with all related benefits. |
| /// * Uses the excess returned from the allocator to use the largest available capacity. |
| /// |
| /// This type does not in anyway inspect the memory that it manages. When dropped it *will* |
| /// free its memory, but it *won't* try to drop its contents. It is up to the user of `RawVec` |
| /// to handle the actual things *stored* inside of a `RawVec`. |
| /// |
| /// Note that the excess of a zero-sized types is always infinite, so `capacity()` always returns |
| /// `usize::MAX`. This means that you need to be careful when round-tripping this type with a |
| /// `Box<[T]>`, since `capacity()` won't yield the length. |
| #[allow(missing_debug_implementations)] |
| pub(crate) struct RawVec<T, A: Allocator = Global> { |
| inner: RawVecInner<A>, |
| _marker: PhantomData<T>, |
| } |
| |
| /// Like a `RawVec`, but only generic over the allocator, not the type. |
| /// |
| /// As such, all the methods need the layout passed-in as a parameter. |
| /// |
| /// Having this separation reduces the amount of code we need to monomorphize, |
| /// as most operations don't need the actual type, just its layout. |
| #[allow(missing_debug_implementations)] |
| struct RawVecInner<A: Allocator = Global> { |
| ptr: Unique<u8>, |
| /// Never used for ZSTs; it's `capacity()`'s responsibility to return usize::MAX in that case. |
| /// |
| /// # Safety |
| /// |
| /// `cap` must be in the `0..=isize::MAX` range. |
| cap: Cap, |
| alloc: A, |
| } |
| |
| impl<T> RawVec<T, Global> { |
| /// Creates the biggest possible `RawVec` (on the system heap) |
| /// without allocating. If `T` has positive size, then this makes a |
| /// `RawVec` with capacity `0`. If `T` is zero-sized, then it makes a |
| /// `RawVec` with capacity `usize::MAX`. Useful for implementing |
| /// delayed allocation. |
| #[must_use] |
| #[cfg_attr(bootstrap, rustc_const_stable(feature = "raw_vec_internals_const", since = "1.81"))] |
| pub const fn new() -> Self { |
| Self::new_in(Global) |
| } |
| |
| /// Creates a `RawVec` (on the system heap) with exactly the |
| /// capacity and alignment requirements for a `[T; capacity]`. This is |
| /// equivalent to calling `RawVec::new` when `capacity` is `0` or `T` is |
| /// zero-sized. Note that if `T` is zero-sized this means you will |
| /// *not* get a `RawVec` with the requested capacity. |
| /// |
| /// Non-fallible version of `try_with_capacity` |
| /// |
| /// # Panics |
| /// |
| /// Panics if the requested capacity exceeds `isize::MAX` bytes. |
| /// |
| /// # Aborts |
| /// |
| /// Aborts on OOM. |
| #[cfg(not(any(no_global_oom_handling, test)))] |
| #[must_use] |
| #[inline] |
| #[track_caller] |
| pub fn with_capacity(capacity: usize) -> Self { |
| Self { inner: RawVecInner::with_capacity(capacity, T::LAYOUT), _marker: PhantomData } |
| } |
| |
| /// Like `with_capacity`, but guarantees the buffer is zeroed. |
| #[cfg(not(any(no_global_oom_handling, test)))] |
| #[must_use] |
| #[inline] |
| #[track_caller] |
| pub fn with_capacity_zeroed(capacity: usize) -> Self { |
| Self { |
| inner: RawVecInner::with_capacity_zeroed_in(capacity, Global, T::LAYOUT), |
| _marker: PhantomData, |
| } |
| } |
| } |
| |
| impl RawVecInner<Global> { |
| #[cfg(not(any(no_global_oom_handling, test)))] |
| #[must_use] |
| #[inline] |
| #[track_caller] |
| fn with_capacity(capacity: usize, elem_layout: Layout) -> Self { |
| match Self::try_allocate_in(capacity, AllocInit::Uninitialized, Global, elem_layout) { |
| Ok(res) => res, |
| Err(err) => handle_error(err), |
| } |
| } |
| } |
| |
| // Tiny Vecs are dumb. Skip to: |
| // - 8 if the element size is 1, because any heap allocators is likely |
| // to round up a request of less than 8 bytes to at least 8 bytes. |
| // - 4 if elements are moderate-sized (<= 1 KiB). |
| // - 1 otherwise, to avoid wasting too much space for very short Vecs. |
| const fn min_non_zero_cap(size: usize) -> usize { |
| if size == 1 { |
| 8 |
| } else if size <= 1024 { |
| 4 |
| } else { |
| 1 |
| } |
| } |
| |
| impl<T, A: Allocator> RawVec<T, A> { |
| #[cfg(not(no_global_oom_handling))] |
| pub(crate) const MIN_NON_ZERO_CAP: usize = min_non_zero_cap(size_of::<T>()); |
| |
| /// Like `new`, but parameterized over the choice of allocator for |
| /// the returned `RawVec`. |
| #[inline] |
| #[cfg_attr(bootstrap, rustc_const_stable(feature = "raw_vec_internals_const", since = "1.81"))] |
| pub const fn new_in(alloc: A) -> Self { |
| Self { inner: RawVecInner::new_in(alloc, align_of::<T>()), _marker: PhantomData } |
| } |
| |
| /// Like `with_capacity`, but parameterized over the choice of |
| /// allocator for the returned `RawVec`. |
| #[cfg(not(no_global_oom_handling))] |
| #[inline] |
| #[track_caller] |
| pub fn with_capacity_in(capacity: usize, alloc: A) -> Self { |
| Self { |
| inner: RawVecInner::with_capacity_in(capacity, alloc, T::LAYOUT), |
| _marker: PhantomData, |
| } |
| } |
| |
| /// Like `try_with_capacity`, but parameterized over the choice of |
| /// allocator for the returned `RawVec`. |
| #[inline] |
| pub fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError> { |
| match RawVecInner::try_with_capacity_in(capacity, alloc, T::LAYOUT) { |
| Ok(inner) => Ok(Self { inner, _marker: PhantomData }), |
| Err(e) => Err(e), |
| } |
| } |
| |
| /// Like `with_capacity_zeroed`, but parameterized over the choice |
| /// of allocator for the returned `RawVec`. |
| #[cfg(not(no_global_oom_handling))] |
| #[inline] |
| #[track_caller] |
| pub fn with_capacity_zeroed_in(capacity: usize, alloc: A) -> Self { |
| Self { |
| inner: RawVecInner::with_capacity_zeroed_in(capacity, alloc, T::LAYOUT), |
| _marker: PhantomData, |
| } |
| } |
| |
| /// Converts the entire buffer into `Box<[MaybeUninit<T>]>` with the specified `len`. |
| /// |
| /// Note that this will correctly reconstitute any `cap` changes |
| /// that may have been performed. (See description of type for details.) |
| /// |
| /// # Safety |
| /// |
| /// * `len` must be greater than or equal to the most recently requested capacity, and |
| /// * `len` must be less than or equal to `self.capacity()`. |
| /// |
| /// Note, that the requested capacity and `self.capacity()` could differ, as |
| /// an allocator could overallocate and return a greater memory block than requested. |
| pub unsafe fn into_box(self, len: usize) -> Box<[MaybeUninit<T>], A> { |
| // Sanity-check one half of the safety requirement (we cannot check the other half). |
| debug_assert!( |
| len <= self.capacity(), |
| "`len` must be smaller than or equal to `self.capacity()`" |
| ); |
| |
| let me = ManuallyDrop::new(self); |
| unsafe { |
| let slice = ptr::slice_from_raw_parts_mut(me.ptr() as *mut MaybeUninit<T>, len); |
| Box::from_raw_in(slice, ptr::read(&me.inner.alloc)) |
| } |
| } |
| |
| /// Reconstitutes a `RawVec` from a pointer, capacity, and allocator. |
| /// |
| /// # Safety |
| /// |
| /// The `ptr` must be allocated (via the given allocator `alloc`), and with the given |
| /// `capacity`. |
| /// The `capacity` cannot exceed `isize::MAX` for sized types. (only a concern on 32-bit |
| /// systems). For ZSTs capacity is ignored. |
| /// If the `ptr` and `capacity` come from a `RawVec` created via `alloc`, then this is |
| /// guaranteed. |
| #[inline] |
| pub unsafe fn from_raw_parts_in(ptr: *mut T, capacity: usize, alloc: A) -> Self { |
| // SAFETY: Precondition passed to the caller |
| unsafe { |
| let ptr = ptr.cast(); |
| let capacity = Cap::new::<T>(capacity); |
| Self { |
| inner: RawVecInner::from_raw_parts_in(ptr, capacity, alloc), |
| _marker: PhantomData, |
| } |
| } |
| } |
| |
| /// A convenience method for hoisting the non-null precondition out of [`RawVec::from_raw_parts_in`]. |
| /// |
| /// # Safety |
| /// |
| /// See [`RawVec::from_raw_parts_in`]. |
| #[inline] |
| pub unsafe fn from_nonnull_in(ptr: NonNull<T>, capacity: usize, alloc: A) -> Self { |
| // SAFETY: Precondition passed to the caller |
| unsafe { |
| let ptr = ptr.cast(); |
| let capacity = Cap::new::<T>(capacity); |
| Self { inner: RawVecInner::from_nonnull_in(ptr, capacity, alloc), _marker: PhantomData } |
| } |
| } |
| |
| /// Gets a raw pointer to the start of the allocation. Note that this is |
| /// `Unique::dangling()` if `capacity == 0` or `T` is zero-sized. In the former case, you must |
| /// be careful. |
| #[inline] |
| pub const fn ptr(&self) -> *mut T { |
| self.inner.ptr() |
| } |
| |
| #[inline] |
| pub fn non_null(&self) -> NonNull<T> { |
| self.inner.non_null() |
| } |
| |
| /// Gets the capacity of the allocation. |
| /// |
| /// This will always be `usize::MAX` if `T` is zero-sized. |
| #[inline] |
| pub const fn capacity(&self) -> usize { |
| self.inner.capacity(size_of::<T>()) |
| } |
| |
| /// Returns a shared reference to the allocator backing this `RawVec`. |
| #[inline] |
| pub fn allocator(&self) -> &A { |
| self.inner.allocator() |
| } |
| |
| /// Ensures that the buffer contains at least enough space to hold `len + |
| /// additional` elements. If it doesn't already have enough capacity, will |
| /// reallocate enough space plus comfortable slack space to get amortized |
| /// *O*(1) behavior. Will limit this behavior if it would needlessly cause |
| /// itself to panic. |
| /// |
| /// If `len` exceeds `self.capacity()`, this may fail to actually allocate |
| /// the requested space. This is not really unsafe, but the unsafe |
| /// code *you* write that relies on the behavior of this function may break. |
| /// |
| /// This is ideal for implementing a bulk-push operation like `extend`. |
| /// |
| /// # Panics |
| /// |
| /// Panics if the new capacity exceeds `isize::MAX` _bytes_. |
| /// |
| /// # Aborts |
| /// |
| /// Aborts on OOM. |
| #[cfg(not(no_global_oom_handling))] |
| #[inline] |
| #[track_caller] |
| pub fn reserve(&mut self, len: usize, additional: usize) { |
| self.inner.reserve(len, additional, T::LAYOUT) |
| } |
| |
| /// A specialized version of `self.reserve(len, 1)` which requires the |
| /// caller to ensure `len == self.capacity()`. |
| #[cfg(not(no_global_oom_handling))] |
| #[inline(never)] |
| #[track_caller] |
| pub fn grow_one(&mut self) { |
| self.inner.grow_one(T::LAYOUT) |
| } |
| |
| /// The same as `reserve`, but returns on errors instead of panicking or aborting. |
| pub fn try_reserve(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> { |
| self.inner.try_reserve(len, additional, T::LAYOUT) |
| } |
| |
| /// Ensures that the buffer contains at least enough space to hold `len + |
| /// additional` elements. If it doesn't already, will reallocate the |
| /// minimum possible amount of memory necessary. Generally this will be |
| /// exactly the amount of memory necessary, but in principle the allocator |
| /// is free to give back more than we asked for. |
| /// |
| /// If `len` exceeds `self.capacity()`, this may fail to actually allocate |
| /// the requested space. This is not really unsafe, but the unsafe code |
| /// *you* write that relies on the behavior of this function may break. |
| /// |
| /// # Panics |
| /// |
| /// Panics if the new capacity exceeds `isize::MAX` _bytes_. |
| /// |
| /// # Aborts |
| /// |
| /// Aborts on OOM. |
| #[cfg(not(no_global_oom_handling))] |
| #[track_caller] |
| pub fn reserve_exact(&mut self, len: usize, additional: usize) { |
| self.inner.reserve_exact(len, additional, T::LAYOUT) |
| } |
| |
| /// The same as `reserve_exact`, but returns on errors instead of panicking or aborting. |
| pub fn try_reserve_exact( |
| &mut self, |
| len: usize, |
| additional: usize, |
| ) -> Result<(), TryReserveError> { |
| self.inner.try_reserve_exact(len, additional, T::LAYOUT) |
| } |
| |
| /// Shrinks the buffer down to the specified capacity. If the given amount |
| /// is 0, actually completely deallocates. |
| /// |
| /// # Panics |
| /// |
| /// Panics if the given amount is *larger* than the current capacity. |
| /// |
| /// # Aborts |
| /// |
| /// Aborts on OOM. |
| #[cfg(not(no_global_oom_handling))] |
| #[track_caller] |
| #[inline] |
| pub fn shrink_to_fit(&mut self, cap: usize) { |
| self.inner.shrink_to_fit(cap, T::LAYOUT) |
| } |
| } |
| |
| unsafe impl<#[may_dangle] T, A: Allocator> Drop for RawVec<T, A> { |
| /// Frees the memory owned by the `RawVec` *without* trying to drop its contents. |
| fn drop(&mut self) { |
| // SAFETY: We are in a Drop impl, self.inner will not be used again. |
| unsafe { self.inner.deallocate(T::LAYOUT) } |
| } |
| } |
| |
| impl<A: Allocator> RawVecInner<A> { |
| #[inline] |
| #[cfg_attr(bootstrap, rustc_const_stable(feature = "raw_vec_internals_const", since = "1.81"))] |
| const fn new_in(alloc: A, align: usize) -> Self { |
| let ptr = unsafe { core::mem::transmute(align) }; |
| // `cap: 0` means "unallocated". zero-sized types are ignored. |
| Self { ptr, cap: Cap::ZERO, alloc } |
| } |
| |
| #[cfg(not(no_global_oom_handling))] |
| #[inline] |
| #[track_caller] |
| fn with_capacity_in(capacity: usize, alloc: A, elem_layout: Layout) -> Self { |
| match Self::try_allocate_in(capacity, AllocInit::Uninitialized, alloc, elem_layout) { |
| Ok(this) => { |
| unsafe { |
| // Make it more obvious that a subsquent Vec::reserve(capacity) will not allocate. |
| hint::assert_unchecked(!this.needs_to_grow(0, capacity, elem_layout)); |
| } |
| this |
| } |
| Err(err) => handle_error(err), |
| } |
| } |
| |
| #[inline] |
| fn try_with_capacity_in( |
| capacity: usize, |
| alloc: A, |
| elem_layout: Layout, |
| ) -> Result<Self, TryReserveError> { |
| Self::try_allocate_in(capacity, AllocInit::Uninitialized, alloc, elem_layout) |
| } |
| |
| #[cfg(not(no_global_oom_handling))] |
| #[inline] |
| #[track_caller] |
| fn with_capacity_zeroed_in(capacity: usize, alloc: A, elem_layout: Layout) -> Self { |
| match Self::try_allocate_in(capacity, AllocInit::Zeroed, alloc, elem_layout) { |
| Ok(res) => res, |
| Err(err) => handle_error(err), |
| } |
| } |
| |
| fn try_allocate_in( |
| capacity: usize, |
| init: AllocInit, |
| alloc: A, |
| elem_layout: Layout, |
| ) -> Result<Self, TryReserveError> { |
| // We avoid `unwrap_or_else` here because it bloats the amount of |
| // LLVM IR generated. |
| let layout = match layout_array(capacity, elem_layout) { |
| Ok(layout) => layout, |
| Err(_) => return Err(CapacityOverflow.into()), |
| }; |
| |
| // Don't allocate here because `Drop` will not deallocate when `capacity` is 0. |
| if layout.size() == 0 { |
| return Ok(Self::new_in(alloc, elem_layout.align())); |
| } |
| |
| if let Err(err) = alloc_guard(layout.size()) { |
| return Err(err); |
| } |
| |
| let result = match init { |
| AllocInit::Uninitialized => alloc.allocate(layout), |
| #[cfg(not(no_global_oom_handling))] |
| AllocInit::Zeroed => alloc.allocate_zeroed(layout), |
| }; |
| let ptr = match result { |
| Ok(ptr) => ptr, |
| Err(_) => return Err(AllocError { layout, non_exhaustive: () }.into()), |
| }; |
| |
| // Allocators currently return a `NonNull<[u8]>` whose length |
| // matches the size requested. If that ever changes, the capacity |
| // here should change to `ptr.len() / mem::size_of::<T>()`. |
| Ok(Self { ptr: Unique::from(ptr.cast()), cap: unsafe { Cap(capacity) }, alloc }) |
| } |
| |
| #[inline] |
| unsafe fn from_raw_parts_in(ptr: *mut u8, cap: Cap, alloc: A) -> Self { |
| Self { ptr: unsafe { Unique::new_unchecked(ptr) }, cap, alloc } |
| } |
| |
| #[inline] |
| unsafe fn from_nonnull_in(ptr: NonNull<u8>, cap: Cap, alloc: A) -> Self { |
| Self { ptr: Unique::from(ptr), cap, alloc } |
| } |
| |
| #[inline] |
| const fn ptr<T>(&self) -> *mut T { |
| self.non_null::<T>().as_ptr() |
| } |
| |
| #[inline] |
| const fn non_null<T>(&self) -> NonNull<T> { |
| self.ptr.cast().as_non_null_ptr() |
| } |
| |
| #[inline] |
| const fn capacity(&self, elem_size: usize) -> usize { |
| if elem_size == 0 { usize::MAX } else { self.cap.0 } |
| } |
| |
| #[inline] |
| fn allocator(&self) -> &A { |
| &self.alloc |
| } |
| |
| #[inline] |
| fn current_memory(&self, elem_layout: Layout) -> Option<(NonNull<u8>, Layout)> { |
| if elem_layout.size() == 0 || self.cap.0 == 0 { |
| None |
| } else { |
| // We could use Layout::array here which ensures the absence of isize and usize overflows |
| // and could hypothetically handle differences between stride and size, but this memory |
| // has already been allocated so we know it can't overflow and currently Rust does not |
| // support such types. So we can do better by skipping some checks and avoid an unwrap. |
| unsafe { |
| let alloc_size = elem_layout.size().unchecked_mul(self.cap.0); |
| let layout = Layout::from_size_align_unchecked(alloc_size, elem_layout.align()); |
| Some((self.ptr.into(), layout)) |
| } |
| } |
| } |
| |
| #[cfg(not(no_global_oom_handling))] |
| #[inline] |
| #[track_caller] |
| fn reserve(&mut self, len: usize, additional: usize, elem_layout: Layout) { |
| // Callers expect this function to be very cheap when there is already sufficient capacity. |
| // Therefore, we move all the resizing and error-handling logic from grow_amortized and |
| // handle_reserve behind a call, while making sure that this function is likely to be |
| // inlined as just a comparison and a call if the comparison fails. |
| #[cold] |
| fn do_reserve_and_handle<A: Allocator>( |
| slf: &mut RawVecInner<A>, |
| len: usize, |
| additional: usize, |
| elem_layout: Layout, |
| ) { |
| if let Err(err) = slf.grow_amortized(len, additional, elem_layout) { |
| handle_error(err); |
| } |
| } |
| |
| if self.needs_to_grow(len, additional, elem_layout) { |
| do_reserve_and_handle(self, len, additional, elem_layout); |
| } |
| } |
| |
| #[cfg(not(no_global_oom_handling))] |
| #[inline] |
| #[track_caller] |
| fn grow_one(&mut self, elem_layout: Layout) { |
| if let Err(err) = self.grow_amortized(self.cap.0, 1, elem_layout) { |
| handle_error(err); |
| } |
| } |
| |
| fn try_reserve( |
| &mut self, |
| len: usize, |
| additional: usize, |
| elem_layout: Layout, |
| ) -> Result<(), TryReserveError> { |
| if self.needs_to_grow(len, additional, elem_layout) { |
| self.grow_amortized(len, additional, elem_layout)?; |
| } |
| unsafe { |
| // Inform the optimizer that the reservation has succeeded or wasn't needed |
| hint::assert_unchecked(!self.needs_to_grow(len, additional, elem_layout)); |
| } |
| Ok(()) |
| } |
| |
| #[cfg(not(no_global_oom_handling))] |
| #[track_caller] |
| fn reserve_exact(&mut self, len: usize, additional: usize, elem_layout: Layout) { |
| if let Err(err) = self.try_reserve_exact(len, additional, elem_layout) { |
| handle_error(err); |
| } |
| } |
| |
| fn try_reserve_exact( |
| &mut self, |
| len: usize, |
| additional: usize, |
| elem_layout: Layout, |
| ) -> Result<(), TryReserveError> { |
| if self.needs_to_grow(len, additional, elem_layout) { |
| self.grow_exact(len, additional, elem_layout)?; |
| } |
| unsafe { |
| // Inform the optimizer that the reservation has succeeded or wasn't needed |
| hint::assert_unchecked(!self.needs_to_grow(len, additional, elem_layout)); |
| } |
| Ok(()) |
| } |
| |
| #[cfg(not(no_global_oom_handling))] |
| #[inline] |
| #[track_caller] |
| fn shrink_to_fit(&mut self, cap: usize, elem_layout: Layout) { |
| if let Err(err) = self.shrink(cap, elem_layout) { |
| handle_error(err); |
| } |
| } |
| |
| #[inline] |
| fn needs_to_grow(&self, len: usize, additional: usize, elem_layout: Layout) -> bool { |
| additional > self.capacity(elem_layout.size()).wrapping_sub(len) |
| } |
| |
| #[inline] |
| unsafe fn set_ptr_and_cap(&mut self, ptr: NonNull<[u8]>, cap: usize) { |
| // Allocators currently return a `NonNull<[u8]>` whose length matches |
| // the size requested. If that ever changes, the capacity here should |
| // change to `ptr.len() / mem::size_of::<T>()`. |
| self.ptr = Unique::from(ptr.cast()); |
| self.cap = unsafe { Cap(cap) }; |
| } |
| |
| fn grow_amortized( |
| &mut self, |
| len: usize, |
| additional: usize, |
| elem_layout: Layout, |
| ) -> Result<(), TryReserveError> { |
| // This is ensured by the calling contexts. |
| debug_assert!(additional > 0); |
| |
| if elem_layout.size() == 0 { |
| // Since we return a capacity of `usize::MAX` when `elem_size` is |
| // 0, getting to here necessarily means the `RawVec` is overfull. |
| return Err(CapacityOverflow.into()); |
| } |
| |
| // Nothing we can really do about these checks, sadly. |
| let required_cap = len.checked_add(additional).ok_or(CapacityOverflow)?; |
| |
| // This guarantees exponential growth. The doubling cannot overflow |
| // because `cap <= isize::MAX` and the type of `cap` is `usize`. |
| let cap = cmp::max(self.cap.0 * 2, required_cap); |
| let cap = cmp::max(min_non_zero_cap(elem_layout.size()), cap); |
| |
| let new_layout = layout_array(cap, elem_layout)?; |
| |
| let ptr = finish_grow(new_layout, self.current_memory(elem_layout), &mut self.alloc)?; |
| // SAFETY: finish_grow would have resulted in a capacity overflow if we tried to allocate more than `isize::MAX` items |
| |
| unsafe { self.set_ptr_and_cap(ptr, cap) }; |
| Ok(()) |
| } |
| |
| fn grow_exact( |
| &mut self, |
| len: usize, |
| additional: usize, |
| elem_layout: Layout, |
| ) -> Result<(), TryReserveError> { |
| if elem_layout.size() == 0 { |
| // Since we return a capacity of `usize::MAX` when the type size is |
| // 0, getting to here necessarily means the `RawVec` is overfull. |
| return Err(CapacityOverflow.into()); |
| } |
| |
| let cap = len.checked_add(additional).ok_or(CapacityOverflow)?; |
| let new_layout = layout_array(cap, elem_layout)?; |
| |
| let ptr = finish_grow(new_layout, self.current_memory(elem_layout), &mut self.alloc)?; |
| // SAFETY: finish_grow would have resulted in a capacity overflow if we tried to allocate more than `isize::MAX` items |
| unsafe { |
| self.set_ptr_and_cap(ptr, cap); |
| } |
| Ok(()) |
| } |
| |
| #[cfg(not(no_global_oom_handling))] |
| #[inline] |
| fn shrink(&mut self, cap: usize, elem_layout: Layout) -> Result<(), TryReserveError> { |
| assert!(cap <= self.capacity(elem_layout.size()), "Tried to shrink to a larger capacity"); |
| // SAFETY: Just checked this isn't trying to grow |
| unsafe { self.shrink_unchecked(cap, elem_layout) } |
| } |
| |
| /// `shrink`, but without the capacity check. |
| /// |
| /// This is split out so that `shrink` can inline the check, since it |
| /// optimizes out in things like `shrink_to_fit`, without needing to |
| /// also inline all this code, as doing that ends up failing the |
| /// `vec-shrink-panic` codegen test when `shrink_to_fit` ends up being too |
| /// big for LLVM to be willing to inline. |
| /// |
| /// # Safety |
| /// `cap <= self.capacity()` |
| #[cfg(not(no_global_oom_handling))] |
| unsafe fn shrink_unchecked( |
| &mut self, |
| cap: usize, |
| elem_layout: Layout, |
| ) -> Result<(), TryReserveError> { |
| let (ptr, layout) = |
| if let Some(mem) = self.current_memory(elem_layout) { mem } else { return Ok(()) }; |
| |
| // If shrinking to 0, deallocate the buffer. We don't reach this point |
| // for the T::IS_ZST case since current_memory() will have returned |
| // None. |
| if cap == 0 { |
| unsafe { self.alloc.deallocate(ptr, layout) }; |
| self.ptr = |
| unsafe { Unique::new_unchecked(ptr::without_provenance_mut(elem_layout.align())) }; |
| self.cap = Cap::ZERO; |
| } else { |
| let ptr = unsafe { |
| // Layout cannot overflow here because it would have |
| // overflowed earlier when capacity was larger. |
| let new_size = elem_layout.size().unchecked_mul(cap); |
| let new_layout = Layout::from_size_align_unchecked(new_size, layout.align()); |
| self.alloc |
| .shrink(ptr, layout, new_layout) |
| .map_err(|_| AllocError { layout: new_layout, non_exhaustive: () })? |
| }; |
| // SAFETY: if the allocation is valid, then the capacity is too |
| unsafe { |
| self.set_ptr_and_cap(ptr, cap); |
| } |
| } |
| Ok(()) |
| } |
| |
| /// # Safety |
| /// |
| /// This function deallocates the owned allocation, but does not update `ptr` or `cap` to |
| /// prevent double-free or use-after-free. Essentially, do not do anything with the caller |
| /// after this function returns. |
| /// Ideally this function would take `self` by move, but it cannot because it exists to be |
| /// called from a `Drop` impl. |
| unsafe fn deallocate(&mut self, elem_layout: Layout) { |
| if let Some((ptr, layout)) = self.current_memory(elem_layout) { |
| unsafe { |
| self.alloc.deallocate(ptr, layout); |
| } |
| } |
| } |
| } |
| |
| #[inline(never)] |
| fn finish_grow<A>( |
| new_layout: Layout, |
| current_memory: Option<(NonNull<u8>, Layout)>, |
| alloc: &mut A, |
| ) -> Result<NonNull<[u8]>, TryReserveError> |
| where |
| A: Allocator, |
| { |
| alloc_guard(new_layout.size())?; |
| |
| let memory = if let Some((ptr, old_layout)) = current_memory { |
| debug_assert_eq!(old_layout.align(), new_layout.align()); |
| unsafe { |
| // The allocator checks for alignment equality |
| hint::assert_unchecked(old_layout.align() == new_layout.align()); |
| alloc.grow(ptr, old_layout, new_layout) |
| } |
| } else { |
| alloc.allocate(new_layout) |
| }; |
| |
| memory.map_err(|_| AllocError { layout: new_layout, non_exhaustive: () }.into()) |
| } |
| |
| // Central function for reserve error handling. |
| #[cfg(not(no_global_oom_handling))] |
| #[cold] |
| #[optimize(size)] |
| #[track_caller] |
| fn handle_error(e: TryReserveError) -> ! { |
| match e.kind() { |
| CapacityOverflow => capacity_overflow(), |
| AllocError { layout, .. } => handle_alloc_error(layout), |
| } |
| } |
| |
| // We need to guarantee the following: |
| // * We don't ever allocate `> isize::MAX` byte-size objects. |
| // * We don't overflow `usize::MAX` and actually allocate too little. |
| // |
| // On 64-bit we just need to check for overflow since trying to allocate |
| // `> isize::MAX` bytes will surely fail. On 32-bit and 16-bit we need to add |
| // an extra guard for this in case we're running on a platform which can use |
| // all 4GB in user-space, e.g., PAE or x32. |
| #[inline] |
| fn alloc_guard(alloc_size: usize) -> Result<(), TryReserveError> { |
| if usize::BITS < 64 && alloc_size > isize::MAX as usize { |
| Err(CapacityOverflow.into()) |
| } else { |
| Ok(()) |
| } |
| } |
| |
| #[inline] |
| fn layout_array(cap: usize, elem_layout: Layout) -> Result<Layout, TryReserveError> { |
| elem_layout.repeat(cap).map(|(layout, _pad)| layout).map_err(|_| CapacityOverflow.into()) |
| } |