blob: bd47d12ef9ff787e994c7dafdfe2f2dc36394952 [file] [log] [blame]
use std::assert_matches::assert_matches;
use super::super::*;
// Test target self-consistency and JSON encoding/decoding roundtrip.
pub(super) fn test_target(mut target: Target) {
let recycled_target = Target::from_json(target.to_json()).map(|(j, _)| j);
target.update_to_cli();
target.check_consistency();
assert_eq!(recycled_target, Ok(target));
}
impl Target {
fn check_consistency(&self) {
assert_eq!(self.is_like_osx, self.vendor == "apple");
assert_eq!(self.is_like_solaris, self.os == "solaris" || self.os == "illumos");
assert_eq!(self.is_like_windows, self.os == "windows" || self.os == "uefi");
assert_eq!(self.is_like_wasm, self.arch == "wasm32" || self.arch == "wasm64");
if self.is_like_msvc {
assert!(self.is_like_windows);
}
// Check that default linker flavor is compatible with some other key properties.
assert_eq!(self.is_like_osx, matches!(self.linker_flavor, LinkerFlavor::Darwin(..)));
assert_eq!(self.is_like_msvc, matches!(self.linker_flavor, LinkerFlavor::Msvc(..)));
assert_eq!(
self.is_like_wasm && self.os != "emscripten",
matches!(self.linker_flavor, LinkerFlavor::WasmLld(..))
);
assert_eq!(self.os == "emscripten", matches!(self.linker_flavor, LinkerFlavor::EmCc));
assert_eq!(self.arch == "bpf", matches!(self.linker_flavor, LinkerFlavor::Bpf));
assert_eq!(self.arch == "nvptx64", matches!(self.linker_flavor, LinkerFlavor::Ptx));
for args in [
&self.pre_link_args,
&self.late_link_args,
&self.late_link_args_dynamic,
&self.late_link_args_static,
&self.post_link_args,
] {
for (&flavor, flavor_args) in args {
assert!(!flavor_args.is_empty());
// Check that flavors mentioned in link args are compatible with the default flavor.
match self.linker_flavor {
LinkerFlavor::Gnu(..) => {
assert_matches!(flavor, LinkerFlavor::Gnu(..));
}
LinkerFlavor::Darwin(..) => {
assert_matches!(flavor, LinkerFlavor::Darwin(..))
}
LinkerFlavor::WasmLld(..) => {
assert_matches!(flavor, LinkerFlavor::WasmLld(..))
}
LinkerFlavor::Unix(..) => {
assert_matches!(flavor, LinkerFlavor::Unix(..));
}
LinkerFlavor::Msvc(..) => {
assert_matches!(flavor, LinkerFlavor::Msvc(..))
}
LinkerFlavor::EmCc
| LinkerFlavor::Bpf
| LinkerFlavor::Ptx
| LinkerFlavor::Llbc => {
assert_eq!(flavor, self.linker_flavor)
}
}
// Check that link args for cc and non-cc versions of flavors are consistent.
let check_noncc = |noncc_flavor| {
if let Some(noncc_args) = args.get(&noncc_flavor) {
for arg in flavor_args {
if let Some(suffix) = arg.strip_prefix("-Wl,") {
assert!(noncc_args.iter().any(|a| a == suffix));
}
}
}
};
match self.linker_flavor {
LinkerFlavor::Gnu(Cc::Yes, lld) => check_noncc(LinkerFlavor::Gnu(Cc::No, lld)),
LinkerFlavor::WasmLld(Cc::Yes) => check_noncc(LinkerFlavor::WasmLld(Cc::No)),
LinkerFlavor::Unix(Cc::Yes) => check_noncc(LinkerFlavor::Unix(Cc::No)),
_ => {}
}
}
// Check that link args for lld and non-lld versions of flavors are consistent.
for cc in [Cc::No, Cc::Yes] {
assert_eq!(
args.get(&LinkerFlavor::Gnu(cc, Lld::No)),
args.get(&LinkerFlavor::Gnu(cc, Lld::Yes)),
);
assert_eq!(
args.get(&LinkerFlavor::Darwin(cc, Lld::No)),
args.get(&LinkerFlavor::Darwin(cc, Lld::Yes)),
);
}
assert_eq!(
args.get(&LinkerFlavor::Msvc(Lld::No)),
args.get(&LinkerFlavor::Msvc(Lld::Yes)),
);
}
if self.link_self_contained.is_disabled() {
assert!(
self.pre_link_objects_self_contained.is_empty()
&& self.post_link_objects_self_contained.is_empty()
);
}
// If your target really needs to deviate from the rules below,
// except it and document the reasons.
// Keep the default "unknown" vendor instead.
assert_ne!(self.vendor, "");
assert_ne!(self.os, "");
if !self.can_use_os_unknown() {
// Keep the default "none" for bare metal targets instead.
assert_ne!(self.os, "unknown");
}
// Check dynamic linking stuff
// BPF: when targeting user space vms (like rbpf), those can load dynamic libraries.
// hexagon: when targeting QuRT, that OS can load dynamic libraries.
// wasm{32,64}: dynamic linking is inherent in the definition of the VM.
if self.os == "none"
&& (self.arch != "bpf"
&& self.arch != "hexagon"
&& self.arch != "wasm32"
&& self.arch != "wasm64")
{
assert!(!self.dynamic_linking);
}
if self.only_cdylib
|| self.crt_static_allows_dylibs
|| !self.late_link_args_dynamic.is_empty()
{
assert!(self.dynamic_linking);
}
// Apparently PIC was slow on wasm at some point, see comments in wasm_base.rs
if self.dynamic_linking && !(self.is_like_wasm && self.os != "emscripten") {
assert_eq!(self.relocation_model, RelocModel::Pic);
}
if self.position_independent_executables {
assert_eq!(self.relocation_model, RelocModel::Pic);
}
// The UEFI targets do not support dynamic linking but still require PIC (#101377).
if self.relocation_model == RelocModel::Pic && self.os != "uefi" {
assert!(self.dynamic_linking || self.position_independent_executables);
}
if self.static_position_independent_executables {
assert!(self.position_independent_executables);
}
if self.position_independent_executables {
assert!(self.executables);
}
// Check crt static stuff
if self.crt_static_default || self.crt_static_allows_dylibs {
assert!(self.crt_static_respected);
}
// Check that RISC-V targets always specify which ABI they use.
match &*self.arch {
"riscv32" => {
assert_matches!(&*self.llvm_abiname, "ilp32" | "ilp32f" | "ilp32d" | "ilp32e")
}
"riscv64" => {
// Note that the `lp64e` is still unstable as it's not (yet) part of the ELF psABI.
assert_matches!(&*self.llvm_abiname, "lp64" | "lp64f" | "lp64d" | "lp64q" | "lp64e")
}
_ => {}
}
}
// Add your target to the whitelist if it has `std` library
// and you certainly want "unknown" for the OS name.
fn can_use_os_unknown(&self) -> bool {
self.llvm_target == "wasm32-unknown-unknown"
|| self.llvm_target == "wasm64-unknown-unknown"
|| (self.env == "sgx" && self.vendor == "fortanix")
}
}