blob: 0b81f4693712ff6d925ff2991a5a7f3d31ab32ec [file] [log] [blame]
use rustc_data_structures::fx::{FxIndexMap, FxIndexSet};
use rustc_hir as hir;
use rustc_infer::traits::util;
use rustc_middle::ty::fold::shift_vars;
use rustc_middle::ty::{
self, GenericArgs, Ty, TyCtxt, TypeFoldable, TypeFolder, TypeSuperFoldable, TypeVisitableExt,
};
use rustc_middle::{bug, span_bug};
use rustc_span::Span;
use rustc_span::def_id::{DefId, LocalDefId};
use rustc_type_ir::Upcast;
use tracing::{debug, instrument};
use super::ItemCtxt;
use super::predicates_of::assert_only_contains_predicates_from;
use crate::bounds::Bounds;
use crate::hir_ty_lowering::{HirTyLowerer, PredicateFilter};
/// For associated types we include both bounds written on the type
/// (`type X: Trait`) and predicates from the trait: `where Self::X: Trait`.
///
/// Note that this filtering is done with the items identity args to
/// simplify checking that these bounds are met in impls. This means that
/// a bound such as `for<'b> <Self as X<'b>>::U: Clone` can't be used, as in
/// `hr-associated-type-bound-1.rs`.
fn associated_type_bounds<'tcx>(
tcx: TyCtxt<'tcx>,
assoc_item_def_id: LocalDefId,
hir_bounds: &'tcx [hir::GenericBound<'tcx>],
span: Span,
filter: PredicateFilter,
) -> &'tcx [(ty::Clause<'tcx>, Span)] {
let item_ty = Ty::new_projection_from_args(
tcx,
assoc_item_def_id.to_def_id(),
GenericArgs::identity_for_item(tcx, assoc_item_def_id),
);
let icx = ItemCtxt::new(tcx, assoc_item_def_id);
let mut bounds = Bounds::default();
icx.lowerer().lower_bounds(item_ty, hir_bounds, &mut bounds, ty::List::empty(), filter);
// Associated types are implicitly sized unless a `?Sized` bound is found
match filter {
PredicateFilter::All
| PredicateFilter::SelfOnly
| PredicateFilter::SelfTraitThatDefines(_)
| PredicateFilter::SelfAndAssociatedTypeBounds => {
icx.lowerer().add_sized_bound(&mut bounds, item_ty, hir_bounds, None, span);
}
// `ConstIfConst` is only interested in `~const` bounds.
PredicateFilter::ConstIfConst | PredicateFilter::SelfConstIfConst => {}
}
let trait_def_id = tcx.local_parent(assoc_item_def_id);
let trait_predicates = tcx.trait_explicit_predicates_and_bounds(trait_def_id);
let item_trait_ref = ty::TraitRef::identity(tcx, tcx.parent(assoc_item_def_id.to_def_id()));
let bounds_from_parent =
trait_predicates.predicates.iter().copied().filter_map(|(clause, span)| {
remap_gat_vars_and_recurse_into_nested_projections(
tcx,
filter,
item_trait_ref,
assoc_item_def_id,
span,
clause,
)
});
let all_bounds = tcx.arena.alloc_from_iter(bounds.clauses().chain(bounds_from_parent));
debug!(
"associated_type_bounds({}) = {:?}",
tcx.def_path_str(assoc_item_def_id.to_def_id()),
all_bounds
);
assert_only_contains_predicates_from(filter, all_bounds, item_ty);
all_bounds
}
/// The code below is quite involved, so let me explain.
///
/// We loop here, because we also want to collect vars for nested associated items as
/// well. For example, given a clause like `Self::A::B`, we want to add that to the
/// item bounds for `A`, so that we may use that bound in the case that `Self::A::B` is
/// rigid.
///
/// Secondly, regarding bound vars, when we see a where clause that mentions a GAT
/// like `for<'a, ...> Self::Assoc<'a, ...>: Bound<'b, ...>`, we want to turn that into
/// an item bound on the GAT, where all of the GAT args are substituted with the GAT's
/// param regions, and then keep all of the other late-bound vars in the bound around.
/// We need to "compress" the binder so that it doesn't mention any of those vars that
/// were mapped to params.
fn remap_gat_vars_and_recurse_into_nested_projections<'tcx>(
tcx: TyCtxt<'tcx>,
filter: PredicateFilter,
item_trait_ref: ty::TraitRef<'tcx>,
assoc_item_def_id: LocalDefId,
span: Span,
clause: ty::Clause<'tcx>,
) -> Option<(ty::Clause<'tcx>, Span)> {
let mut clause_ty = match clause.kind().skip_binder() {
ty::ClauseKind::Trait(tr) => tr.self_ty(),
ty::ClauseKind::Projection(proj) => proj.projection_term.self_ty(),
ty::ClauseKind::TypeOutlives(outlives) => outlives.0,
_ => return None,
};
let gat_vars = loop {
if let ty::Alias(ty::Projection, alias_ty) = *clause_ty.kind() {
if alias_ty.trait_ref(tcx) == item_trait_ref
&& alias_ty.def_id == assoc_item_def_id.to_def_id()
{
// We have found the GAT in question...
// Return the vars, since we may need to remap them.
break &alias_ty.args[item_trait_ref.args.len()..];
} else {
// Only collect *self* type bounds if the filter is for self.
match filter {
PredicateFilter::All => {}
PredicateFilter::SelfOnly => {
return None;
}
PredicateFilter::SelfTraitThatDefines(_)
| PredicateFilter::SelfConstIfConst
| PredicateFilter::SelfAndAssociatedTypeBounds
| PredicateFilter::ConstIfConst => {
unreachable!(
"invalid predicate filter for \
`remap_gat_vars_and_recurse_into_nested_projections`"
)
}
}
clause_ty = alias_ty.self_ty();
continue;
}
}
return None;
};
// Special-case: No GAT vars, no mapping needed.
if gat_vars.is_empty() {
return Some((clause, span));
}
// First, check that all of the GAT args are substituted with a unique late-bound arg.
// If we find a duplicate, then it can't be mapped to the definition's params.
let mut mapping = FxIndexMap::default();
let generics = tcx.generics_of(assoc_item_def_id);
for (param, var) in std::iter::zip(&generics.own_params, gat_vars) {
let existing = match var.unpack() {
ty::GenericArgKind::Lifetime(re) => {
if let ty::RegionKind::ReBound(ty::INNERMOST, bv) = re.kind() {
mapping.insert(bv.var, tcx.mk_param_from_def(param))
} else {
return None;
}
}
ty::GenericArgKind::Type(ty) => {
if let ty::Bound(ty::INNERMOST, bv) = *ty.kind() {
mapping.insert(bv.var, tcx.mk_param_from_def(param))
} else {
return None;
}
}
ty::GenericArgKind::Const(ct) => {
if let ty::ConstKind::Bound(ty::INNERMOST, bv) = ct.kind() {
mapping.insert(bv, tcx.mk_param_from_def(param))
} else {
return None;
}
}
};
if existing.is_some() {
return None;
}
}
// Finally, map all of the args in the GAT to the params we expect, and compress
// the remaining late-bound vars so that they count up from var 0.
let mut folder =
MapAndCompressBoundVars { tcx, binder: ty::INNERMOST, still_bound_vars: vec![], mapping };
let pred = clause.kind().skip_binder().fold_with(&mut folder);
Some((
ty::Binder::bind_with_vars(pred, tcx.mk_bound_variable_kinds(&folder.still_bound_vars))
.upcast(tcx),
span,
))
}
/// Given some where clause like `for<'b, 'c> <Self as Trait<'a_identity>>::Gat<'b>: Bound<'c>`,
/// the mapping will map `'b` back to the GAT's `'b_identity`. Then we need to compress the
/// remaining bound var `'c` to index 0.
///
/// This folder gives us: `for<'c> <Self as Trait<'a_identity>>::Gat<'b_identity>: Bound<'c>`,
/// which is sufficient for an item bound for `Gat`, since all of the GAT's args are identity.
struct MapAndCompressBoundVars<'tcx> {
tcx: TyCtxt<'tcx>,
/// How deep are we? Makes sure we don't touch the vars of nested binders.
binder: ty::DebruijnIndex,
/// List of bound vars that remain unsubstituted because they were not
/// mentioned in the GAT's args.
still_bound_vars: Vec<ty::BoundVariableKind>,
/// Subtle invariant: If the `GenericArg` is bound, then it should be
/// stored with the debruijn index of `INNERMOST` so it can be shifted
/// correctly during substitution.
mapping: FxIndexMap<ty::BoundVar, ty::GenericArg<'tcx>>,
}
impl<'tcx> TypeFolder<TyCtxt<'tcx>> for MapAndCompressBoundVars<'tcx> {
fn cx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn fold_binder<T>(&mut self, t: ty::Binder<'tcx, T>) -> ty::Binder<'tcx, T>
where
ty::Binder<'tcx, T>: TypeSuperFoldable<TyCtxt<'tcx>>,
{
self.binder.shift_in(1);
let out = t.super_fold_with(self);
self.binder.shift_out(1);
out
}
fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
if !ty.has_bound_vars() {
return ty;
}
if let ty::Bound(binder, old_bound) = *ty.kind()
&& self.binder == binder
{
let mapped = if let Some(mapped) = self.mapping.get(&old_bound.var) {
mapped.expect_ty()
} else {
// If we didn't find a mapped generic, then make a new one.
// Allocate a new var idx, and insert a new bound ty.
let var = ty::BoundVar::from_usize(self.still_bound_vars.len());
self.still_bound_vars.push(ty::BoundVariableKind::Ty(old_bound.kind));
let mapped = Ty::new_bound(self.tcx, ty::INNERMOST, ty::BoundTy {
var,
kind: old_bound.kind,
});
self.mapping.insert(old_bound.var, mapped.into());
mapped
};
shift_vars(self.tcx, mapped, self.binder.as_u32())
} else {
ty.super_fold_with(self)
}
}
fn fold_region(&mut self, re: ty::Region<'tcx>) -> ty::Region<'tcx> {
if let ty::ReBound(binder, old_bound) = re.kind()
&& self.binder == binder
{
let mapped = if let Some(mapped) = self.mapping.get(&old_bound.var) {
mapped.expect_region()
} else {
let var = ty::BoundVar::from_usize(self.still_bound_vars.len());
self.still_bound_vars.push(ty::BoundVariableKind::Region(old_bound.kind));
let mapped = ty::Region::new_bound(self.tcx, ty::INNERMOST, ty::BoundRegion {
var,
kind: old_bound.kind,
});
self.mapping.insert(old_bound.var, mapped.into());
mapped
};
shift_vars(self.tcx, mapped, self.binder.as_u32())
} else {
re
}
}
fn fold_const(&mut self, ct: ty::Const<'tcx>) -> ty::Const<'tcx> {
if !ct.has_bound_vars() {
return ct;
}
if let ty::ConstKind::Bound(binder, old_var) = ct.kind()
&& self.binder == binder
{
let mapped = if let Some(mapped) = self.mapping.get(&old_var) {
mapped.expect_const()
} else {
let var = ty::BoundVar::from_usize(self.still_bound_vars.len());
self.still_bound_vars.push(ty::BoundVariableKind::Const);
let mapped = ty::Const::new_bound(self.tcx, ty::INNERMOST, var);
self.mapping.insert(old_var, mapped.into());
mapped
};
shift_vars(self.tcx, mapped, self.binder.as_u32())
} else {
ct.super_fold_with(self)
}
}
fn fold_predicate(&mut self, p: ty::Predicate<'tcx>) -> ty::Predicate<'tcx> {
if !p.has_bound_vars() { p } else { p.super_fold_with(self) }
}
}
/// Opaque types don't inherit bounds from their parent: for return position
/// impl trait it isn't possible to write a suitable predicate on the
/// containing function and for type-alias impl trait we don't have a backwards
/// compatibility issue.
#[instrument(level = "trace", skip(tcx, item_ty))]
fn opaque_type_bounds<'tcx>(
tcx: TyCtxt<'tcx>,
opaque_def_id: LocalDefId,
hir_bounds: &'tcx [hir::GenericBound<'tcx>],
item_ty: Ty<'tcx>,
span: Span,
filter: PredicateFilter,
) -> &'tcx [(ty::Clause<'tcx>, Span)] {
ty::print::with_reduced_queries!({
let icx = ItemCtxt::new(tcx, opaque_def_id);
let mut bounds = Bounds::default();
icx.lowerer().lower_bounds(item_ty, hir_bounds, &mut bounds, ty::List::empty(), filter);
// Opaque types are implicitly sized unless a `?Sized` bound is found
match filter {
PredicateFilter::All
| PredicateFilter::SelfOnly
| PredicateFilter::SelfTraitThatDefines(_)
| PredicateFilter::SelfAndAssociatedTypeBounds => {
// Associated types are implicitly sized unless a `?Sized` bound is found
icx.lowerer().add_sized_bound(&mut bounds, item_ty, hir_bounds, None, span);
}
//`ConstIfConst` is only interested in `~const` bounds.
PredicateFilter::ConstIfConst | PredicateFilter::SelfConstIfConst => {}
}
debug!(?bounds);
tcx.arena.alloc_from_iter(bounds.clauses())
})
}
pub(super) fn explicit_item_bounds(
tcx: TyCtxt<'_>,
def_id: LocalDefId,
) -> ty::EarlyBinder<'_, &'_ [(ty::Clause<'_>, Span)]> {
explicit_item_bounds_with_filter(tcx, def_id, PredicateFilter::All)
}
pub(super) fn explicit_item_super_predicates(
tcx: TyCtxt<'_>,
def_id: LocalDefId,
) -> ty::EarlyBinder<'_, &'_ [(ty::Clause<'_>, Span)]> {
explicit_item_bounds_with_filter(tcx, def_id, PredicateFilter::SelfOnly)
}
pub(super) fn explicit_item_bounds_with_filter(
tcx: TyCtxt<'_>,
def_id: LocalDefId,
filter: PredicateFilter,
) -> ty::EarlyBinder<'_, &'_ [(ty::Clause<'_>, Span)]> {
match tcx.opt_rpitit_info(def_id.to_def_id()) {
// RPITIT's bounds are the same as opaque type bounds, but with
// a projection self type.
Some(ty::ImplTraitInTraitData::Trait { opaque_def_id, .. }) => {
let opaque_ty = tcx.hir_node_by_def_id(opaque_def_id.expect_local()).expect_opaque_ty();
let bounds =
associated_type_bounds(tcx, def_id, opaque_ty.bounds, opaque_ty.span, filter);
return ty::EarlyBinder::bind(bounds);
}
Some(ty::ImplTraitInTraitData::Impl { .. }) => span_bug!(
tcx.def_span(def_id),
"item bounds for RPITIT in impl to be fed on def-id creation"
),
None => {}
}
let bounds = match tcx.hir_node_by_def_id(def_id) {
hir::Node::TraitItem(hir::TraitItem {
kind: hir::TraitItemKind::Type(bounds, _),
span,
..
}) => associated_type_bounds(tcx, def_id, bounds, *span, filter),
hir::Node::OpaqueTy(hir::OpaqueTy { bounds, origin, span, .. }) => match origin {
// Since RPITITs are lowered as projections in `<dyn HirTyLowerer>::lower_ty`,
// when we're asking for the item bounds of the *opaques* in a trait's default
// method signature, we need to map these projections back to opaques.
rustc_hir::OpaqueTyOrigin::FnReturn {
parent,
in_trait_or_impl: Some(hir::RpitContext::Trait),
}
| rustc_hir::OpaqueTyOrigin::AsyncFn {
parent,
in_trait_or_impl: Some(hir::RpitContext::Trait),
} => {
let args = GenericArgs::identity_for_item(tcx, def_id);
let item_ty = Ty::new_opaque(tcx, def_id.to_def_id(), args);
let bounds = &*tcx.arena.alloc_slice(
&opaque_type_bounds(tcx, def_id, bounds, item_ty, *span, filter)
.to_vec()
.fold_with(&mut AssocTyToOpaque { tcx, fn_def_id: parent.to_def_id() }),
);
assert_only_contains_predicates_from(filter, bounds, item_ty);
bounds
}
rustc_hir::OpaqueTyOrigin::FnReturn {
parent: _,
in_trait_or_impl: None | Some(hir::RpitContext::TraitImpl),
}
| rustc_hir::OpaqueTyOrigin::AsyncFn {
parent: _,
in_trait_or_impl: None | Some(hir::RpitContext::TraitImpl),
}
| rustc_hir::OpaqueTyOrigin::TyAlias { parent: _, .. } => {
let args = GenericArgs::identity_for_item(tcx, def_id);
let item_ty = Ty::new_opaque(tcx, def_id.to_def_id(), args);
let bounds = opaque_type_bounds(tcx, def_id, bounds, item_ty, *span, filter);
assert_only_contains_predicates_from(filter, bounds, item_ty);
bounds
}
},
hir::Node::Item(hir::Item { kind: hir::ItemKind::TyAlias(..), .. }) => &[],
node => bug!("item_bounds called on {def_id:?} => {node:?}"),
};
ty::EarlyBinder::bind(bounds)
}
pub(super) fn item_bounds(tcx: TyCtxt<'_>, def_id: DefId) -> ty::EarlyBinder<'_, ty::Clauses<'_>> {
tcx.explicit_item_bounds(def_id).map_bound(|bounds| {
tcx.mk_clauses_from_iter(util::elaborate(tcx, bounds.iter().map(|&(bound, _span)| bound)))
})
}
pub(super) fn item_super_predicates(
tcx: TyCtxt<'_>,
def_id: DefId,
) -> ty::EarlyBinder<'_, ty::Clauses<'_>> {
tcx.explicit_item_super_predicates(def_id).map_bound(|bounds| {
tcx.mk_clauses_from_iter(
util::elaborate(tcx, bounds.iter().map(|&(bound, _span)| bound)).filter_only_self(),
)
})
}
/// This exists as an optimization to compute only the item bounds of the item
/// that are not `Self` bounds.
pub(super) fn item_non_self_assumptions(
tcx: TyCtxt<'_>,
def_id: DefId,
) -> ty::EarlyBinder<'_, ty::Clauses<'_>> {
let all_bounds: FxIndexSet<_> = tcx.item_bounds(def_id).skip_binder().iter().collect();
let own_bounds: FxIndexSet<_> =
tcx.item_super_predicates(def_id).skip_binder().iter().collect();
if all_bounds.len() == own_bounds.len() {
ty::EarlyBinder::bind(ty::ListWithCachedTypeInfo::empty())
} else {
ty::EarlyBinder::bind(tcx.mk_clauses_from_iter(all_bounds.difference(&own_bounds).copied()))
}
}
/// This exists as an optimization to compute only the supertraits of this impl's
/// trait that are outlives bounds.
pub(super) fn impl_super_outlives(
tcx: TyCtxt<'_>,
def_id: DefId,
) -> ty::EarlyBinder<'_, ty::Clauses<'_>> {
tcx.impl_trait_header(def_id).expect("expected an impl of trait").trait_ref.map_bound(
|trait_ref| {
let clause: ty::Clause<'_> = trait_ref.upcast(tcx);
tcx.mk_clauses_from_iter(util::elaborate(tcx, [clause]).filter(|clause| {
matches!(
clause.kind().skip_binder(),
ty::ClauseKind::TypeOutlives(_) | ty::ClauseKind::RegionOutlives(_)
)
}))
},
)
}
struct AssocTyToOpaque<'tcx> {
tcx: TyCtxt<'tcx>,
fn_def_id: DefId,
}
impl<'tcx> TypeFolder<TyCtxt<'tcx>> for AssocTyToOpaque<'tcx> {
fn cx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
if let ty::Alias(ty::Projection, projection_ty) = ty.kind()
&& let Some(ty::ImplTraitInTraitData::Trait { fn_def_id, .. }) =
self.tcx.opt_rpitit_info(projection_ty.def_id)
&& fn_def_id == self.fn_def_id
{
self.tcx.type_of(projection_ty.def_id).instantiate(self.tcx, projection_ty.args)
} else {
ty.super_fold_with(self)
}
}
}