blob: 56fe479ffc555606cda77b3e6b6dae446a1472a1 [file] [log] [blame]
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use util::nodemap::{FxHashMap, FxHashSet};
use ty::context::TyCtxt;
use ty::{AdtDef, VariantDef, FieldDef, Ty, TyS};
use ty::{DefId, Substs};
use ty::{AdtKind, Visibility};
use ty::TyKind::*;
pub use self::def_id_forest::DefIdForest;
mod def_id_forest;
// The methods in this module calculate DefIdForests of modules in which a
// AdtDef/VariantDef/FieldDef is visibly uninhabited.
//
// # Example
// ```rust
// enum Void {}
// mod a {
// pub mod b {
// pub struct SecretlyUninhabited {
// _priv: !,
// }
// }
// }
//
// mod c {
// pub struct AlsoSecretlyUninhabited {
// _priv: Void,
// }
// mod d {
// }
// }
//
// struct Foo {
// x: a::b::SecretlyUninhabited,
// y: c::AlsoSecretlyUninhabited,
// }
// ```
// In this code, the type Foo will only be visibly uninhabited inside the
// modules b, c and d. Calling uninhabited_from on Foo or its AdtDef will
// return the forest of modules {b, c->d} (represented in a DefIdForest by the
// set {b, c})
//
// We need this information for pattern-matching on Foo or types that contain
// Foo.
//
// # Example
// ```rust
// let foo_result: Result<T, Foo> = ... ;
// let Ok(t) = foo_result;
// ```
// This code should only compile in modules where the uninhabitedness of Foo is
// visible.
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
/// Checks whether a type is visibly uninhabited from a particular module.
/// # Example
/// ```rust
/// enum Void {}
/// mod a {
/// pub mod b {
/// pub struct SecretlyUninhabited {
/// _priv: !,
/// }
/// }
/// }
///
/// mod c {
/// pub struct AlsoSecretlyUninhabited {
/// _priv: Void,
/// }
/// mod d {
/// }
/// }
///
/// struct Foo {
/// x: a::b::SecretlyUninhabited,
/// y: c::AlsoSecretlyUninhabited,
/// }
/// ```
/// In this code, the type `Foo` will only be visibly uninhabited inside the
/// modules b, c and d. This effects pattern-matching on `Foo` or types that
/// contain `Foo`.
///
/// # Example
/// ```rust
/// let foo_result: Result<T, Foo> = ... ;
/// let Ok(t) = foo_result;
/// ```
/// This code should only compile in modules where the uninhabitedness of Foo is
/// visible.
pub fn is_ty_uninhabited_from(self, module: DefId, ty: Ty<'tcx>) -> bool {
// To check whether this type is uninhabited at all (not just from the
// given node) you could check whether the forest is empty.
// ```
// forest.is_empty()
// ```
self.ty_inhabitedness_forest(ty).contains(self, module)
}
pub fn is_ty_uninhabited_from_all_modules(self, ty: Ty<'tcx>) -> bool {
!self.ty_inhabitedness_forest(ty).is_empty()
}
fn ty_inhabitedness_forest(self, ty: Ty<'tcx>) -> DefIdForest {
ty.uninhabited_from(&mut FxHashMap::default(), self)
}
pub fn is_enum_variant_uninhabited_from(self,
module: DefId,
variant: &'tcx VariantDef,
substs: &'tcx Substs<'tcx>)
-> bool
{
self.variant_inhabitedness_forest(variant, substs).contains(self, module)
}
pub fn is_variant_uninhabited_from_all_modules(self,
variant: &'tcx VariantDef,
substs: &'tcx Substs<'tcx>)
-> bool
{
!self.variant_inhabitedness_forest(variant, substs).is_empty()
}
fn variant_inhabitedness_forest(self, variant: &'tcx VariantDef, substs: &'tcx Substs<'tcx>)
-> DefIdForest {
// Determine the ADT kind:
let adt_def_id = self.adt_def_id_of_variant(variant);
let adt_kind = self.adt_def(adt_def_id).adt_kind();
// Compute inhabitedness forest:
variant.uninhabited_from(&mut FxHashMap::default(), self, substs, adt_kind)
}
}
impl<'a, 'gcx, 'tcx> AdtDef {
/// Calculate the forest of DefIds from which this adt is visibly uninhabited.
fn uninhabited_from(
&self,
visited: &mut FxHashMap<DefId, FxHashSet<&'tcx Substs<'tcx>>>,
tcx: TyCtxt<'a, 'gcx, 'tcx>,
substs: &'tcx Substs<'tcx>) -> DefIdForest
{
DefIdForest::intersection(tcx, self.variants.iter().map(|v| {
v.uninhabited_from(visited, tcx, substs, self.adt_kind())
}))
}
}
impl<'a, 'gcx, 'tcx> VariantDef {
/// Calculate the forest of DefIds from which this variant is visibly uninhabited.
fn uninhabited_from(
&self,
visited: &mut FxHashMap<DefId, FxHashSet<&'tcx Substs<'tcx>>>,
tcx: TyCtxt<'a, 'gcx, 'tcx>,
substs: &'tcx Substs<'tcx>,
adt_kind: AdtKind) -> DefIdForest
{
match adt_kind {
AdtKind::Union => {
DefIdForest::intersection(tcx, self.fields.iter().map(|f| {
f.uninhabited_from(visited, tcx, substs, false)
}))
},
AdtKind::Struct => {
DefIdForest::union(tcx, self.fields.iter().map(|f| {
f.uninhabited_from(visited, tcx, substs, false)
}))
},
AdtKind::Enum => {
DefIdForest::union(tcx, self.fields.iter().map(|f| {
f.uninhabited_from(visited, tcx, substs, true)
}))
},
}
}
}
impl<'a, 'gcx, 'tcx> FieldDef {
/// Calculate the forest of DefIds from which this field is visibly uninhabited.
fn uninhabited_from(
&self,
visited: &mut FxHashMap<DefId, FxHashSet<&'tcx Substs<'tcx>>>,
tcx: TyCtxt<'a, 'gcx, 'tcx>,
substs: &'tcx Substs<'tcx>,
is_enum: bool) -> DefIdForest
{
let mut data_uninhabitedness = move || {
self.ty(tcx, substs).uninhabited_from(visited, tcx)
};
// FIXME(canndrew): Currently enum fields are (incorrectly) stored with
// Visibility::Invisible so we need to override self.vis if we're
// dealing with an enum.
if is_enum {
data_uninhabitedness()
} else {
match self.vis {
Visibility::Invisible => DefIdForest::empty(),
Visibility::Restricted(from) => {
let forest = DefIdForest::from_id(from);
let iter = Some(forest).into_iter().chain(Some(data_uninhabitedness()));
DefIdForest::intersection(tcx, iter)
},
Visibility::Public => data_uninhabitedness(),
}
}
}
}
impl<'a, 'gcx, 'tcx> TyS<'tcx> {
/// Calculate the forest of DefIds from which this type is visibly uninhabited.
fn uninhabited_from(
&self,
visited: &mut FxHashMap<DefId, FxHashSet<&'tcx Substs<'tcx>>>,
tcx: TyCtxt<'a, 'gcx, 'tcx>) -> DefIdForest
{
match self.sty {
Adt(def, substs) => {
{
let substs_set = visited.entry(def.did).or_default();
if !substs_set.insert(substs) {
// We are already calculating the inhabitedness of this type.
// The type must contain a reference to itself. Break the
// infinite loop.
return DefIdForest::empty();
}
if substs_set.len() >= tcx.sess.recursion_limit.get() / 4 {
// We have gone very deep, reinstantiating this ADT inside
// itself with different type arguments. We are probably
// hitting an infinite loop. For example, it's possible to write:
// a type Foo<T>
// which contains a Foo<(T, T)>
// which contains a Foo<((T, T), (T, T))>
// which contains a Foo<(((T, T), (T, T)), ((T, T), (T, T)))>
// etc.
let error = format!("reached recursion limit while checking \
inhabitedness of `{}`", self);
tcx.sess.fatal(&error);
}
}
let ret = def.uninhabited_from(visited, tcx, substs);
let substs_set = visited.get_mut(&def.did).unwrap();
substs_set.remove(substs);
ret
},
Never => DefIdForest::full(tcx),
Tuple(ref tys) => {
DefIdForest::union(tcx, tys.iter().map(|ty| {
ty.uninhabited_from(visited, tcx)
}))
},
Array(ty, len) => {
match len.assert_usize(tcx) {
// If the array is definitely non-empty, it's uninhabited if
// the type of its elements is uninhabited.
Some(n) if n != 0 => ty.uninhabited_from(visited, tcx),
_ => DefIdForest::empty()
}
}
Ref(_, ty, _) => {
ty.uninhabited_from(visited, tcx)
}
_ => DefIdForest::empty(),
}
}
}