| //! String manipulation. | 
 | //! | 
 | //! For more details, see the [`std::str`] module. | 
 | //! | 
 | //! [`std::str`]: ../../std/str/index.html | 
 |  | 
 | #![stable(feature = "rust1", since = "1.0.0")] | 
 |  | 
 | mod converts; | 
 | mod count; | 
 | mod error; | 
 | mod iter; | 
 | mod traits; | 
 | mod validations; | 
 |  | 
 | use self::pattern::{DoubleEndedSearcher, Pattern, ReverseSearcher, Searcher}; | 
 | use crate::char::{self, EscapeDebugExtArgs}; | 
 | use crate::ops::Range; | 
 | use crate::slice::{self, SliceIndex}; | 
 | use crate::ub_checks::assert_unsafe_precondition; | 
 | use crate::{ascii, mem}; | 
 |  | 
 | pub mod pattern; | 
 |  | 
 | mod lossy; | 
 | #[unstable(feature = "str_from_raw_parts", issue = "119206")] | 
 | pub use converts::{from_raw_parts, from_raw_parts_mut}; | 
 | #[stable(feature = "rust1", since = "1.0.0")] | 
 | pub use converts::{from_utf8, from_utf8_unchecked}; | 
 | #[stable(feature = "str_mut_extras", since = "1.20.0")] | 
 | pub use converts::{from_utf8_mut, from_utf8_unchecked_mut}; | 
 | #[stable(feature = "rust1", since = "1.0.0")] | 
 | pub use error::{ParseBoolError, Utf8Error}; | 
 | #[stable(feature = "encode_utf16", since = "1.8.0")] | 
 | pub use iter::EncodeUtf16; | 
 | #[stable(feature = "rust1", since = "1.0.0")] | 
 | #[allow(deprecated)] | 
 | pub use iter::LinesAny; | 
 | #[stable(feature = "split_ascii_whitespace", since = "1.34.0")] | 
 | pub use iter::SplitAsciiWhitespace; | 
 | #[stable(feature = "split_inclusive", since = "1.51.0")] | 
 | pub use iter::SplitInclusive; | 
 | #[stable(feature = "rust1", since = "1.0.0")] | 
 | pub use iter::{Bytes, CharIndices, Chars, Lines, SplitWhitespace}; | 
 | #[stable(feature = "str_escape", since = "1.34.0")] | 
 | pub use iter::{EscapeDebug, EscapeDefault, EscapeUnicode}; | 
 | #[stable(feature = "str_match_indices", since = "1.5.0")] | 
 | pub use iter::{MatchIndices, RMatchIndices}; | 
 | use iter::{MatchIndicesInternal, MatchesInternal, SplitInternal, SplitNInternal}; | 
 | #[stable(feature = "str_matches", since = "1.2.0")] | 
 | pub use iter::{Matches, RMatches}; | 
 | #[stable(feature = "rust1", since = "1.0.0")] | 
 | pub use iter::{RSplit, RSplitTerminator, Split, SplitTerminator}; | 
 | #[stable(feature = "rust1", since = "1.0.0")] | 
 | pub use iter::{RSplitN, SplitN}; | 
 | #[stable(feature = "utf8_chunks", since = "1.79.0")] | 
 | pub use lossy::{Utf8Chunk, Utf8Chunks}; | 
 | #[stable(feature = "rust1", since = "1.0.0")] | 
 | pub use traits::FromStr; | 
 | #[unstable(feature = "str_internals", issue = "none")] | 
 | pub use validations::{next_code_point, utf8_char_width}; | 
 |  | 
 | #[inline(never)] | 
 | #[cold] | 
 | #[track_caller] | 
 | #[rustc_allow_const_fn_unstable(const_eval_select)] | 
 | #[cfg(not(feature = "panic_immediate_abort"))] | 
 | const fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! { | 
 |     crate::intrinsics::const_eval_select((s, begin, end), slice_error_fail_ct, slice_error_fail_rt) | 
 | } | 
 |  | 
 | #[cfg(feature = "panic_immediate_abort")] | 
 | const fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! { | 
 |     slice_error_fail_ct(s, begin, end) | 
 | } | 
 |  | 
 | #[track_caller] | 
 | const fn slice_error_fail_ct(_: &str, _: usize, _: usize) -> ! { | 
 |     panic!("failed to slice string"); | 
 | } | 
 |  | 
 | #[track_caller] | 
 | fn slice_error_fail_rt(s: &str, begin: usize, end: usize) -> ! { | 
 |     const MAX_DISPLAY_LENGTH: usize = 256; | 
 |     let trunc_len = s.floor_char_boundary(MAX_DISPLAY_LENGTH); | 
 |     let s_trunc = &s[..trunc_len]; | 
 |     let ellipsis = if trunc_len < s.len() { "[...]" } else { "" }; | 
 |  | 
 |     // 1. out of bounds | 
 |     if begin > s.len() || end > s.len() { | 
 |         let oob_index = if begin > s.len() { begin } else { end }; | 
 |         panic!("byte index {oob_index} is out of bounds of `{s_trunc}`{ellipsis}"); | 
 |     } | 
 |  | 
 |     // 2. begin <= end | 
 |     assert!( | 
 |         begin <= end, | 
 |         "begin <= end ({} <= {}) when slicing `{}`{}", | 
 |         begin, | 
 |         end, | 
 |         s_trunc, | 
 |         ellipsis | 
 |     ); | 
 |  | 
 |     // 3. character boundary | 
 |     let index = if !s.is_char_boundary(begin) { begin } else { end }; | 
 |     // find the character | 
 |     let char_start = s.floor_char_boundary(index); | 
 |     // `char_start` must be less than len and a char boundary | 
 |     let ch = s[char_start..].chars().next().unwrap(); | 
 |     let char_range = char_start..char_start + ch.len_utf8(); | 
 |     panic!( | 
 |         "byte index {} is not a char boundary; it is inside {:?} (bytes {:?}) of `{}`{}", | 
 |         index, ch, char_range, s_trunc, ellipsis | 
 |     ); | 
 | } | 
 |  | 
 | impl str { | 
 |     /// Returns the length of `self`. | 
 |     /// | 
 |     /// This length is in bytes, not [`char`]s or graphemes. In other words, | 
 |     /// it might not be what a human considers the length of the string. | 
 |     /// | 
 |     /// [`char`]: prim@char | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// ``` | 
 |     /// let len = "foo".len(); | 
 |     /// assert_eq!(3, len); | 
 |     /// | 
 |     /// assert_eq!("ƒoo".len(), 4); // fancy f! | 
 |     /// assert_eq!("ƒoo".chars().count(), 3); | 
 |     /// ``` | 
 |     #[stable(feature = "rust1", since = "1.0.0")] | 
 |     #[rustc_const_stable(feature = "const_str_len", since = "1.39.0")] | 
 |     #[rustc_diagnostic_item = "str_len"] | 
 |     #[rustc_no_implicit_autorefs] | 
 |     #[must_use] | 
 |     #[inline] | 
 |     pub const fn len(&self) -> usize { | 
 |         self.as_bytes().len() | 
 |     } | 
 |  | 
 |     /// Returns `true` if `self` has a length of zero bytes. | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// ``` | 
 |     /// let s = ""; | 
 |     /// assert!(s.is_empty()); | 
 |     /// | 
 |     /// let s = "not empty"; | 
 |     /// assert!(!s.is_empty()); | 
 |     /// ``` | 
 |     #[stable(feature = "rust1", since = "1.0.0")] | 
 |     #[rustc_const_stable(feature = "const_str_is_empty", since = "1.39.0")] | 
 |     #[rustc_no_implicit_autorefs] | 
 |     #[must_use] | 
 |     #[inline] | 
 |     pub const fn is_empty(&self) -> bool { | 
 |         self.len() == 0 | 
 |     } | 
 |  | 
 |     /// Converts a slice of bytes to a string slice. | 
 |     /// | 
 |     /// A string slice ([`&str`]) is made of bytes ([`u8`]), and a byte slice | 
 |     /// ([`&[u8]`][byteslice]) is made of bytes, so this function converts between | 
 |     /// the two. Not all byte slices are valid string slices, however: [`&str`] requires | 
 |     /// that it is valid UTF-8. `from_utf8()` checks to ensure that the bytes are valid | 
 |     /// UTF-8, and then does the conversion. | 
 |     /// | 
 |     /// [`&str`]: str | 
 |     /// [byteslice]: prim@slice | 
 |     /// | 
 |     /// If you are sure that the byte slice is valid UTF-8, and you don't want to | 
 |     /// incur the overhead of the validity check, there is an unsafe version of | 
 |     /// this function, [`from_utf8_unchecked`], which has the same | 
 |     /// behavior but skips the check. | 
 |     /// | 
 |     /// If you need a `String` instead of a `&str`, consider | 
 |     /// [`String::from_utf8`][string]. | 
 |     /// | 
 |     /// [string]: ../std/string/struct.String.html#method.from_utf8 | 
 |     /// | 
 |     /// Because you can stack-allocate a `[u8; N]`, and you can take a | 
 |     /// [`&[u8]`][byteslice] of it, this function is one way to have a | 
 |     /// stack-allocated string. There is an example of this in the | 
 |     /// examples section below. | 
 |     /// | 
 |     /// [byteslice]: slice | 
 |     /// | 
 |     /// # Errors | 
 |     /// | 
 |     /// Returns `Err` if the slice is not UTF-8 with a description as to why the | 
 |     /// provided slice is not UTF-8. | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// Basic usage: | 
 |     /// | 
 |     /// ``` | 
 |     /// // some bytes, in a vector | 
 |     /// let sparkle_heart = vec![240, 159, 146, 150]; | 
 |     /// | 
 |     /// // We can use the ? (try) operator to check if the bytes are valid | 
 |     /// let sparkle_heart = str::from_utf8(&sparkle_heart)?; | 
 |     /// | 
 |     /// assert_eq!("💖", sparkle_heart); | 
 |     /// # Ok::<_, std::str::Utf8Error>(()) | 
 |     /// ``` | 
 |     /// | 
 |     /// Incorrect bytes: | 
 |     /// | 
 |     /// ``` | 
 |     /// // some invalid bytes, in a vector | 
 |     /// let sparkle_heart = vec![0, 159, 146, 150]; | 
 |     /// | 
 |     /// assert!(str::from_utf8(&sparkle_heart).is_err()); | 
 |     /// ``` | 
 |     /// | 
 |     /// See the docs for [`Utf8Error`] for more details on the kinds of | 
 |     /// errors that can be returned. | 
 |     /// | 
 |     /// A "stack allocated string": | 
 |     /// | 
 |     /// ``` | 
 |     /// // some bytes, in a stack-allocated array | 
 |     /// let sparkle_heart = [240, 159, 146, 150]; | 
 |     /// | 
 |     /// // We know these bytes are valid, so just use `unwrap()`. | 
 |     /// let sparkle_heart: &str = str::from_utf8(&sparkle_heart).unwrap(); | 
 |     /// | 
 |     /// assert_eq!("💖", sparkle_heart); | 
 |     /// ``` | 
 |     #[stable(feature = "inherent_str_constructors", since = "1.87.0")] | 
 |     #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")] | 
 |     #[rustc_diagnostic_item = "str_inherent_from_utf8"] | 
 |     pub const fn from_utf8(v: &[u8]) -> Result<&str, Utf8Error> { | 
 |         converts::from_utf8(v) | 
 |     } | 
 |  | 
 |     /// Converts a mutable slice of bytes to a mutable string slice. | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// Basic usage: | 
 |     /// | 
 |     /// ``` | 
 |     /// // "Hello, Rust!" as a mutable vector | 
 |     /// let mut hellorust = vec![72, 101, 108, 108, 111, 44, 32, 82, 117, 115, 116, 33]; | 
 |     /// | 
 |     /// // As we know these bytes are valid, we can use `unwrap()` | 
 |     /// let outstr = str::from_utf8_mut(&mut hellorust).unwrap(); | 
 |     /// | 
 |     /// assert_eq!("Hello, Rust!", outstr); | 
 |     /// ``` | 
 |     /// | 
 |     /// Incorrect bytes: | 
 |     /// | 
 |     /// ``` | 
 |     /// // Some invalid bytes in a mutable vector | 
 |     /// let mut invalid = vec![128, 223]; | 
 |     /// | 
 |     /// assert!(str::from_utf8_mut(&mut invalid).is_err()); | 
 |     /// ``` | 
 |     /// See the docs for [`Utf8Error`] for more details on the kinds of | 
 |     /// errors that can be returned. | 
 |     #[stable(feature = "inherent_str_constructors", since = "1.87.0")] | 
 |     #[rustc_const_stable(feature = "const_str_from_utf8", since = "1.87.0")] | 
 |     #[rustc_diagnostic_item = "str_inherent_from_utf8_mut"] | 
 |     pub const fn from_utf8_mut(v: &mut [u8]) -> Result<&mut str, Utf8Error> { | 
 |         converts::from_utf8_mut(v) | 
 |     } | 
 |  | 
 |     /// Converts a slice of bytes to a string slice without checking | 
 |     /// that the string contains valid UTF-8. | 
 |     /// | 
 |     /// See the safe version, [`from_utf8`], for more information. | 
 |     /// | 
 |     /// # Safety | 
 |     /// | 
 |     /// The bytes passed in must be valid UTF-8. | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// Basic usage: | 
 |     /// | 
 |     /// ``` | 
 |     /// // some bytes, in a vector | 
 |     /// let sparkle_heart = vec![240, 159, 146, 150]; | 
 |     /// | 
 |     /// let sparkle_heart = unsafe { | 
 |     ///     str::from_utf8_unchecked(&sparkle_heart) | 
 |     /// }; | 
 |     /// | 
 |     /// assert_eq!("💖", sparkle_heart); | 
 |     /// ``` | 
 |     #[inline] | 
 |     #[must_use] | 
 |     #[stable(feature = "inherent_str_constructors", since = "1.87.0")] | 
 |     #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")] | 
 |     #[rustc_diagnostic_item = "str_inherent_from_utf8_unchecked"] | 
 |     pub const unsafe fn from_utf8_unchecked(v: &[u8]) -> &str { | 
 |         // SAFETY: converts::from_utf8_unchecked has the same safety requirements as this function. | 
 |         unsafe { converts::from_utf8_unchecked(v) } | 
 |     } | 
 |  | 
 |     /// Converts a slice of bytes to a string slice without checking | 
 |     /// that the string contains valid UTF-8; mutable version. | 
 |     /// | 
 |     /// See the immutable version, [`from_utf8_unchecked()`] for documentation and safety requirements. | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// Basic usage: | 
 |     /// | 
 |     /// ``` | 
 |     /// let mut heart = vec![240, 159, 146, 150]; | 
 |     /// let heart = unsafe { str::from_utf8_unchecked_mut(&mut heart) }; | 
 |     /// | 
 |     /// assert_eq!("💖", heart); | 
 |     /// ``` | 
 |     #[inline] | 
 |     #[must_use] | 
 |     #[stable(feature = "inherent_str_constructors", since = "1.87.0")] | 
 |     #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")] | 
 |     #[rustc_diagnostic_item = "str_inherent_from_utf8_unchecked_mut"] | 
 |     pub const unsafe fn from_utf8_unchecked_mut(v: &mut [u8]) -> &mut str { | 
 |         // SAFETY: converts::from_utf8_unchecked_mut has the same safety requirements as this function. | 
 |         unsafe { converts::from_utf8_unchecked_mut(v) } | 
 |     } | 
 |  | 
 |     /// Checks that `index`-th byte is the first byte in a UTF-8 code point | 
 |     /// sequence or the end of the string. | 
 |     /// | 
 |     /// The start and end of the string (when `index == self.len()`) are | 
 |     /// considered to be boundaries. | 
 |     /// | 
 |     /// Returns `false` if `index` is greater than `self.len()`. | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// ``` | 
 |     /// let s = "Löwe 老虎 Léopard"; | 
 |     /// assert!(s.is_char_boundary(0)); | 
 |     /// // start of `老` | 
 |     /// assert!(s.is_char_boundary(6)); | 
 |     /// assert!(s.is_char_boundary(s.len())); | 
 |     /// | 
 |     /// // second byte of `ö` | 
 |     /// assert!(!s.is_char_boundary(2)); | 
 |     /// | 
 |     /// // third byte of `老` | 
 |     /// assert!(!s.is_char_boundary(8)); | 
 |     /// ``` | 
 |     #[must_use] | 
 |     #[stable(feature = "is_char_boundary", since = "1.9.0")] | 
 |     #[rustc_const_stable(feature = "const_is_char_boundary", since = "1.86.0")] | 
 |     #[inline] | 
 |     pub const fn is_char_boundary(&self, index: usize) -> bool { | 
 |         // 0 is always ok. | 
 |         // Test for 0 explicitly so that it can optimize out the check | 
 |         // easily and skip reading string data for that case. | 
 |         // Note that optimizing `self.get(..index)` relies on this. | 
 |         if index == 0 { | 
 |             return true; | 
 |         } | 
 |  | 
 |         if index >= self.len() { | 
 |             // For `true` we have two options: | 
 |             // | 
 |             // - index == self.len() | 
 |             //   Empty strings are valid, so return true | 
 |             // - index > self.len() | 
 |             //   In this case return false | 
 |             // | 
 |             // The check is placed exactly here, because it improves generated | 
 |             // code on higher opt-levels. See PR #84751 for more details. | 
 |             index == self.len() | 
 |         } else { | 
 |             self.as_bytes()[index].is_utf8_char_boundary() | 
 |         } | 
 |     } | 
 |  | 
 |     /// Finds the closest `x` not exceeding `index` where [`is_char_boundary(x)`] is `true`. | 
 |     /// | 
 |     /// This method can help you truncate a string so that it's still valid UTF-8, but doesn't | 
 |     /// exceed a given number of bytes. Note that this is done purely at the character level | 
 |     /// and can still visually split graphemes, even though the underlying characters aren't | 
 |     /// split. For example, the emoji 🧑🔬 (scientist) could be split so that the string only | 
 |     /// includes 🧑 (person) instead. | 
 |     /// | 
 |     /// [`is_char_boundary(x)`]: Self::is_char_boundary | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// ``` | 
 |     /// #![feature(round_char_boundary)] | 
 |     /// let s = "❤️🧡💛💚💙💜"; | 
 |     /// assert_eq!(s.len(), 26); | 
 |     /// assert!(!s.is_char_boundary(13)); | 
 |     /// | 
 |     /// let closest = s.floor_char_boundary(13); | 
 |     /// assert_eq!(closest, 10); | 
 |     /// assert_eq!(&s[..closest], "❤️🧡"); | 
 |     /// ``` | 
 |     #[unstable(feature = "round_char_boundary", issue = "93743")] | 
 |     #[inline] | 
 |     pub fn floor_char_boundary(&self, index: usize) -> usize { | 
 |         if index >= self.len() { | 
 |             self.len() | 
 |         } else { | 
 |             let lower_bound = index.saturating_sub(3); | 
 |             let new_index = self.as_bytes()[lower_bound..=index] | 
 |                 .iter() | 
 |                 .rposition(|b| b.is_utf8_char_boundary()); | 
 |  | 
 |             // SAFETY: we know that the character boundary will be within four bytes | 
 |             unsafe { lower_bound + new_index.unwrap_unchecked() } | 
 |         } | 
 |     } | 
 |  | 
 |     /// Finds the closest `x` not below `index` where [`is_char_boundary(x)`] is `true`. | 
 |     /// | 
 |     /// If `index` is greater than the length of the string, this returns the length of the string. | 
 |     /// | 
 |     /// This method is the natural complement to [`floor_char_boundary`]. See that method | 
 |     /// for more details. | 
 |     /// | 
 |     /// [`floor_char_boundary`]: str::floor_char_boundary | 
 |     /// [`is_char_boundary(x)`]: Self::is_char_boundary | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// ``` | 
 |     /// #![feature(round_char_boundary)] | 
 |     /// let s = "❤️🧡💛💚💙💜"; | 
 |     /// assert_eq!(s.len(), 26); | 
 |     /// assert!(!s.is_char_boundary(13)); | 
 |     /// | 
 |     /// let closest = s.ceil_char_boundary(13); | 
 |     /// assert_eq!(closest, 14); | 
 |     /// assert_eq!(&s[..closest], "❤️🧡💛"); | 
 |     /// ``` | 
 |     #[unstable(feature = "round_char_boundary", issue = "93743")] | 
 |     #[inline] | 
 |     pub fn ceil_char_boundary(&self, index: usize) -> usize { | 
 |         if index >= self.len() { | 
 |             self.len() | 
 |         } else { | 
 |             let upper_bound = Ord::min(index + 4, self.len()); | 
 |             self.as_bytes()[index..upper_bound] | 
 |                 .iter() | 
 |                 .position(|b| b.is_utf8_char_boundary()) | 
 |                 .map_or(upper_bound, |pos| pos + index) | 
 |         } | 
 |     } | 
 |  | 
 |     /// Converts a string slice to a byte slice. To convert the byte slice back | 
 |     /// into a string slice, use the [`from_utf8`] function. | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// ``` | 
 |     /// let bytes = "bors".as_bytes(); | 
 |     /// assert_eq!(b"bors", bytes); | 
 |     /// ``` | 
 |     #[stable(feature = "rust1", since = "1.0.0")] | 
 |     #[rustc_const_stable(feature = "str_as_bytes", since = "1.39.0")] | 
 |     #[must_use] | 
 |     #[inline(always)] | 
 |     #[allow(unused_attributes)] | 
 |     pub const fn as_bytes(&self) -> &[u8] { | 
 |         // SAFETY: const sound because we transmute two types with the same layout | 
 |         unsafe { mem::transmute(self) } | 
 |     } | 
 |  | 
 |     /// Converts a mutable string slice to a mutable byte slice. | 
 |     /// | 
 |     /// # Safety | 
 |     /// | 
 |     /// The caller must ensure that the content of the slice is valid UTF-8 | 
 |     /// before the borrow ends and the underlying `str` is used. | 
 |     /// | 
 |     /// Use of a `str` whose contents are not valid UTF-8 is undefined behavior. | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// Basic usage: | 
 |     /// | 
 |     /// ``` | 
 |     /// let mut s = String::from("Hello"); | 
 |     /// let bytes = unsafe { s.as_bytes_mut() }; | 
 |     /// | 
 |     /// assert_eq!(b"Hello", bytes); | 
 |     /// ``` | 
 |     /// | 
 |     /// Mutability: | 
 |     /// | 
 |     /// ``` | 
 |     /// let mut s = String::from("🗻∈🌏"); | 
 |     /// | 
 |     /// unsafe { | 
 |     ///     let bytes = s.as_bytes_mut(); | 
 |     /// | 
 |     ///     bytes[0] = 0xF0; | 
 |     ///     bytes[1] = 0x9F; | 
 |     ///     bytes[2] = 0x8D; | 
 |     ///     bytes[3] = 0x94; | 
 |     /// } | 
 |     /// | 
 |     /// assert_eq!("🍔∈🌏", s); | 
 |     /// ``` | 
 |     #[stable(feature = "str_mut_extras", since = "1.20.0")] | 
 |     #[rustc_const_stable(feature = "const_str_as_mut", since = "1.83.0")] | 
 |     #[must_use] | 
 |     #[inline(always)] | 
 |     pub const unsafe fn as_bytes_mut(&mut self) -> &mut [u8] { | 
 |         // SAFETY: the cast from `&str` to `&[u8]` is safe since `str` | 
 |         // has the same layout as `&[u8]` (only std can make this guarantee). | 
 |         // The pointer dereference is safe since it comes from a mutable reference which | 
 |         // is guaranteed to be valid for writes. | 
 |         unsafe { &mut *(self as *mut str as *mut [u8]) } | 
 |     } | 
 |  | 
 |     /// Converts a string slice to a raw pointer. | 
 |     /// | 
 |     /// As string slices are a slice of bytes, the raw pointer points to a | 
 |     /// [`u8`]. This pointer will be pointing to the first byte of the string | 
 |     /// slice. | 
 |     /// | 
 |     /// The caller must ensure that the returned pointer is never written to. | 
 |     /// If you need to mutate the contents of the string slice, use [`as_mut_ptr`]. | 
 |     /// | 
 |     /// [`as_mut_ptr`]: str::as_mut_ptr | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// ``` | 
 |     /// let s = "Hello"; | 
 |     /// let ptr = s.as_ptr(); | 
 |     /// ``` | 
 |     #[stable(feature = "rust1", since = "1.0.0")] | 
 |     #[rustc_const_stable(feature = "rustc_str_as_ptr", since = "1.32.0")] | 
 |     #[rustc_never_returns_null_ptr] | 
 |     #[rustc_as_ptr] | 
 |     #[must_use] | 
 |     #[inline(always)] | 
 |     pub const fn as_ptr(&self) -> *const u8 { | 
 |         self as *const str as *const u8 | 
 |     } | 
 |  | 
 |     /// Converts a mutable string slice to a raw pointer. | 
 |     /// | 
 |     /// As string slices are a slice of bytes, the raw pointer points to a | 
 |     /// [`u8`]. This pointer will be pointing to the first byte of the string | 
 |     /// slice. | 
 |     /// | 
 |     /// It is your responsibility to make sure that the string slice only gets | 
 |     /// modified in a way that it remains valid UTF-8. | 
 |     #[stable(feature = "str_as_mut_ptr", since = "1.36.0")] | 
 |     #[rustc_const_stable(feature = "const_str_as_mut", since = "1.83.0")] | 
 |     #[rustc_never_returns_null_ptr] | 
 |     #[rustc_as_ptr] | 
 |     #[must_use] | 
 |     #[inline(always)] | 
 |     pub const fn as_mut_ptr(&mut self) -> *mut u8 { | 
 |         self as *mut str as *mut u8 | 
 |     } | 
 |  | 
 |     /// Returns a subslice of `str`. | 
 |     /// | 
 |     /// This is the non-panicking alternative to indexing the `str`. Returns | 
 |     /// [`None`] whenever equivalent indexing operation would panic. | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// ``` | 
 |     /// let v = String::from("🗻∈🌏"); | 
 |     /// | 
 |     /// assert_eq!(Some("🗻"), v.get(0..4)); | 
 |     /// | 
 |     /// // indices not on UTF-8 sequence boundaries | 
 |     /// assert!(v.get(1..).is_none()); | 
 |     /// assert!(v.get(..8).is_none()); | 
 |     /// | 
 |     /// // out of bounds | 
 |     /// assert!(v.get(..42).is_none()); | 
 |     /// ``` | 
 |     #[stable(feature = "str_checked_slicing", since = "1.20.0")] | 
 |     #[rustc_const_unstable(feature = "const_index", issue = "143775")] | 
 |     #[inline] | 
 |     pub const fn get<I: ~const SliceIndex<str>>(&self, i: I) -> Option<&I::Output> { | 
 |         i.get(self) | 
 |     } | 
 |  | 
 |     /// Returns a mutable subslice of `str`. | 
 |     /// | 
 |     /// This is the non-panicking alternative to indexing the `str`. Returns | 
 |     /// [`None`] whenever equivalent indexing operation would panic. | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// ``` | 
 |     /// let mut v = String::from("hello"); | 
 |     /// // correct length | 
 |     /// assert!(v.get_mut(0..5).is_some()); | 
 |     /// // out of bounds | 
 |     /// assert!(v.get_mut(..42).is_none()); | 
 |     /// assert_eq!(Some("he"), v.get_mut(0..2).map(|v| &*v)); | 
 |     /// | 
 |     /// assert_eq!("hello", v); | 
 |     /// { | 
 |     ///     let s = v.get_mut(0..2); | 
 |     ///     let s = s.map(|s| { | 
 |     ///         s.make_ascii_uppercase(); | 
 |     ///         &*s | 
 |     ///     }); | 
 |     ///     assert_eq!(Some("HE"), s); | 
 |     /// } | 
 |     /// assert_eq!("HEllo", v); | 
 |     /// ``` | 
 |     #[stable(feature = "str_checked_slicing", since = "1.20.0")] | 
 |     #[rustc_const_unstable(feature = "const_index", issue = "143775")] | 
 |     #[inline] | 
 |     pub const fn get_mut<I: ~const SliceIndex<str>>(&mut self, i: I) -> Option<&mut I::Output> { | 
 |         i.get_mut(self) | 
 |     } | 
 |  | 
 |     /// Returns an unchecked subslice of `str`. | 
 |     /// | 
 |     /// This is the unchecked alternative to indexing the `str`. | 
 |     /// | 
 |     /// # Safety | 
 |     /// | 
 |     /// Callers of this function are responsible that these preconditions are | 
 |     /// satisfied: | 
 |     /// | 
 |     /// * The starting index must not exceed the ending index; | 
 |     /// * Indexes must be within bounds of the original slice; | 
 |     /// * Indexes must lie on UTF-8 sequence boundaries. | 
 |     /// | 
 |     /// Failing that, the returned string slice may reference invalid memory or | 
 |     /// violate the invariants communicated by the `str` type. | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// ``` | 
 |     /// let v = "🗻∈🌏"; | 
 |     /// unsafe { | 
 |     ///     assert_eq!("🗻", v.get_unchecked(0..4)); | 
 |     ///     assert_eq!("∈", v.get_unchecked(4..7)); | 
 |     ///     assert_eq!("🌏", v.get_unchecked(7..11)); | 
 |     /// } | 
 |     /// ``` | 
 |     #[stable(feature = "str_checked_slicing", since = "1.20.0")] | 
 |     #[inline] | 
 |     pub unsafe fn get_unchecked<I: SliceIndex<str>>(&self, i: I) -> &I::Output { | 
 |         // SAFETY: the caller must uphold the safety contract for `get_unchecked`; | 
 |         // the slice is dereferenceable because `self` is a safe reference. | 
 |         // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is. | 
 |         unsafe { &*i.get_unchecked(self) } | 
 |     } | 
 |  | 
 |     /// Returns a mutable, unchecked subslice of `str`. | 
 |     /// | 
 |     /// This is the unchecked alternative to indexing the `str`. | 
 |     /// | 
 |     /// # Safety | 
 |     /// | 
 |     /// Callers of this function are responsible that these preconditions are | 
 |     /// satisfied: | 
 |     /// | 
 |     /// * The starting index must not exceed the ending index; | 
 |     /// * Indexes must be within bounds of the original slice; | 
 |     /// * Indexes must lie on UTF-8 sequence boundaries. | 
 |     /// | 
 |     /// Failing that, the returned string slice may reference invalid memory or | 
 |     /// violate the invariants communicated by the `str` type. | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// ``` | 
 |     /// let mut v = String::from("🗻∈🌏"); | 
 |     /// unsafe { | 
 |     ///     assert_eq!("🗻", v.get_unchecked_mut(0..4)); | 
 |     ///     assert_eq!("∈", v.get_unchecked_mut(4..7)); | 
 |     ///     assert_eq!("🌏", v.get_unchecked_mut(7..11)); | 
 |     /// } | 
 |     /// ``` | 
 |     #[stable(feature = "str_checked_slicing", since = "1.20.0")] | 
 |     #[inline] | 
 |     pub unsafe fn get_unchecked_mut<I: SliceIndex<str>>(&mut self, i: I) -> &mut I::Output { | 
 |         // SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`; | 
 |         // the slice is dereferenceable because `self` is a safe reference. | 
 |         // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is. | 
 |         unsafe { &mut *i.get_unchecked_mut(self) } | 
 |     } | 
 |  | 
 |     /// Creates a string slice from another string slice, bypassing safety | 
 |     /// checks. | 
 |     /// | 
 |     /// This is generally not recommended, use with caution! For a safe | 
 |     /// alternative see [`str`] and [`Index`]. | 
 |     /// | 
 |     /// [`Index`]: crate::ops::Index | 
 |     /// | 
 |     /// This new slice goes from `begin` to `end`, including `begin` but | 
 |     /// excluding `end`. | 
 |     /// | 
 |     /// To get a mutable string slice instead, see the | 
 |     /// [`slice_mut_unchecked`] method. | 
 |     /// | 
 |     /// [`slice_mut_unchecked`]: str::slice_mut_unchecked | 
 |     /// | 
 |     /// # Safety | 
 |     /// | 
 |     /// Callers of this function are responsible that three preconditions are | 
 |     /// satisfied: | 
 |     /// | 
 |     /// * `begin` must not exceed `end`. | 
 |     /// * `begin` and `end` must be byte positions within the string slice. | 
 |     /// * `begin` and `end` must lie on UTF-8 sequence boundaries. | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// ``` | 
 |     /// let s = "Löwe 老虎 Léopard"; | 
 |     /// | 
 |     /// unsafe { | 
 |     ///     assert_eq!("Löwe 老虎 Léopard", s.slice_unchecked(0, 21)); | 
 |     /// } | 
 |     /// | 
 |     /// let s = "Hello, world!"; | 
 |     /// | 
 |     /// unsafe { | 
 |     ///     assert_eq!("world", s.slice_unchecked(7, 12)); | 
 |     /// } | 
 |     /// ``` | 
 |     #[stable(feature = "rust1", since = "1.0.0")] | 
 |     #[deprecated(since = "1.29.0", note = "use `get_unchecked(begin..end)` instead")] | 
 |     #[must_use] | 
 |     #[inline] | 
 |     pub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str { | 
 |         // SAFETY: the caller must uphold the safety contract for `get_unchecked`; | 
 |         // the slice is dereferenceable because `self` is a safe reference. | 
 |         // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is. | 
 |         unsafe { &*(begin..end).get_unchecked(self) } | 
 |     } | 
 |  | 
 |     /// Creates a string slice from another string slice, bypassing safety | 
 |     /// checks. | 
 |     /// | 
 |     /// This is generally not recommended, use with caution! For a safe | 
 |     /// alternative see [`str`] and [`IndexMut`]. | 
 |     /// | 
 |     /// [`IndexMut`]: crate::ops::IndexMut | 
 |     /// | 
 |     /// This new slice goes from `begin` to `end`, including `begin` but | 
 |     /// excluding `end`. | 
 |     /// | 
 |     /// To get an immutable string slice instead, see the | 
 |     /// [`slice_unchecked`] method. | 
 |     /// | 
 |     /// [`slice_unchecked`]: str::slice_unchecked | 
 |     /// | 
 |     /// # Safety | 
 |     /// | 
 |     /// Callers of this function are responsible that three preconditions are | 
 |     /// satisfied: | 
 |     /// | 
 |     /// * `begin` must not exceed `end`. | 
 |     /// * `begin` and `end` must be byte positions within the string slice. | 
 |     /// * `begin` and `end` must lie on UTF-8 sequence boundaries. | 
 |     #[stable(feature = "str_slice_mut", since = "1.5.0")] | 
 |     #[deprecated(since = "1.29.0", note = "use `get_unchecked_mut(begin..end)` instead")] | 
 |     #[inline] | 
 |     pub unsafe fn slice_mut_unchecked(&mut self, begin: usize, end: usize) -> &mut str { | 
 |         // SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`; | 
 |         // the slice is dereferenceable because `self` is a safe reference. | 
 |         // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is. | 
 |         unsafe { &mut *(begin..end).get_unchecked_mut(self) } | 
 |     } | 
 |  | 
 |     /// Divides one string slice into two at an index. | 
 |     /// | 
 |     /// The argument, `mid`, should be a byte offset from the start of the | 
 |     /// string. It must also be on the boundary of a UTF-8 code point. | 
 |     /// | 
 |     /// The two slices returned go from the start of the string slice to `mid`, | 
 |     /// and from `mid` to the end of the string slice. | 
 |     /// | 
 |     /// To get mutable string slices instead, see the [`split_at_mut`] | 
 |     /// method. | 
 |     /// | 
 |     /// [`split_at_mut`]: str::split_at_mut | 
 |     /// | 
 |     /// # Panics | 
 |     /// | 
 |     /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is past | 
 |     /// the end of the last code point of the string slice.  For a non-panicking | 
 |     /// alternative see [`split_at_checked`](str::split_at_checked). | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// ``` | 
 |     /// let s = "Per Martin-Löf"; | 
 |     /// | 
 |     /// let (first, last) = s.split_at(3); | 
 |     /// | 
 |     /// assert_eq!("Per", first); | 
 |     /// assert_eq!(" Martin-Löf", last); | 
 |     /// ``` | 
 |     #[inline] | 
 |     #[must_use] | 
 |     #[stable(feature = "str_split_at", since = "1.4.0")] | 
 |     #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")] | 
 |     pub const fn split_at(&self, mid: usize) -> (&str, &str) { | 
 |         match self.split_at_checked(mid) { | 
 |             None => slice_error_fail(self, 0, mid), | 
 |             Some(pair) => pair, | 
 |         } | 
 |     } | 
 |  | 
 |     /// Divides one mutable string slice into two at an index. | 
 |     /// | 
 |     /// The argument, `mid`, should be a byte offset from the start of the | 
 |     /// string. It must also be on the boundary of a UTF-8 code point. | 
 |     /// | 
 |     /// The two slices returned go from the start of the string slice to `mid`, | 
 |     /// and from `mid` to the end of the string slice. | 
 |     /// | 
 |     /// To get immutable string slices instead, see the [`split_at`] method. | 
 |     /// | 
 |     /// [`split_at`]: str::split_at | 
 |     /// | 
 |     /// # Panics | 
 |     /// | 
 |     /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is past | 
 |     /// the end of the last code point of the string slice.  For a non-panicking | 
 |     /// alternative see [`split_at_mut_checked`](str::split_at_mut_checked). | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// ``` | 
 |     /// let mut s = "Per Martin-Löf".to_string(); | 
 |     /// { | 
 |     ///     let (first, last) = s.split_at_mut(3); | 
 |     ///     first.make_ascii_uppercase(); | 
 |     ///     assert_eq!("PER", first); | 
 |     ///     assert_eq!(" Martin-Löf", last); | 
 |     /// } | 
 |     /// assert_eq!("PER Martin-Löf", s); | 
 |     /// ``` | 
 |     #[inline] | 
 |     #[must_use] | 
 |     #[stable(feature = "str_split_at", since = "1.4.0")] | 
 |     #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")] | 
 |     pub const fn split_at_mut(&mut self, mid: usize) -> (&mut str, &mut str) { | 
 |         // is_char_boundary checks that the index is in [0, .len()] | 
 |         if self.is_char_boundary(mid) { | 
 |             // SAFETY: just checked that `mid` is on a char boundary. | 
 |             unsafe { self.split_at_mut_unchecked(mid) } | 
 |         } else { | 
 |             slice_error_fail(self, 0, mid) | 
 |         } | 
 |     } | 
 |  | 
 |     /// Divides one string slice into two at an index. | 
 |     /// | 
 |     /// The argument, `mid`, should be a valid byte offset from the start of the | 
 |     /// string. It must also be on the boundary of a UTF-8 code point. The | 
 |     /// method returns `None` if that’s not the case. | 
 |     /// | 
 |     /// The two slices returned go from the start of the string slice to `mid`, | 
 |     /// and from `mid` to the end of the string slice. | 
 |     /// | 
 |     /// To get mutable string slices instead, see the [`split_at_mut_checked`] | 
 |     /// method. | 
 |     /// | 
 |     /// [`split_at_mut_checked`]: str::split_at_mut_checked | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// ``` | 
 |     /// let s = "Per Martin-Löf"; | 
 |     /// | 
 |     /// let (first, last) = s.split_at_checked(3).unwrap(); | 
 |     /// assert_eq!("Per", first); | 
 |     /// assert_eq!(" Martin-Löf", last); | 
 |     /// | 
 |     /// assert_eq!(None, s.split_at_checked(13));  // Inside “ö” | 
 |     /// assert_eq!(None, s.split_at_checked(16));  // Beyond the string length | 
 |     /// ``` | 
 |     #[inline] | 
 |     #[must_use] | 
 |     #[stable(feature = "split_at_checked", since = "1.80.0")] | 
 |     #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")] | 
 |     pub const fn split_at_checked(&self, mid: usize) -> Option<(&str, &str)> { | 
 |         // is_char_boundary checks that the index is in [0, .len()] | 
 |         if self.is_char_boundary(mid) { | 
 |             // SAFETY: just checked that `mid` is on a char boundary. | 
 |             Some(unsafe { self.split_at_unchecked(mid) }) | 
 |         } else { | 
 |             None | 
 |         } | 
 |     } | 
 |  | 
 |     /// Divides one mutable string slice into two at an index. | 
 |     /// | 
 |     /// The argument, `mid`, should be a valid byte offset from the start of the | 
 |     /// string. It must also be on the boundary of a UTF-8 code point. The | 
 |     /// method returns `None` if that’s not the case. | 
 |     /// | 
 |     /// The two slices returned go from the start of the string slice to `mid`, | 
 |     /// and from `mid` to the end of the string slice. | 
 |     /// | 
 |     /// To get immutable string slices instead, see the [`split_at_checked`] method. | 
 |     /// | 
 |     /// [`split_at_checked`]: str::split_at_checked | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// ``` | 
 |     /// let mut s = "Per Martin-Löf".to_string(); | 
 |     /// if let Some((first, last)) = s.split_at_mut_checked(3) { | 
 |     ///     first.make_ascii_uppercase(); | 
 |     ///     assert_eq!("PER", first); | 
 |     ///     assert_eq!(" Martin-Löf", last); | 
 |     /// } | 
 |     /// assert_eq!("PER Martin-Löf", s); | 
 |     /// | 
 |     /// assert_eq!(None, s.split_at_mut_checked(13));  // Inside “ö” | 
 |     /// assert_eq!(None, s.split_at_mut_checked(16));  // Beyond the string length | 
 |     /// ``` | 
 |     #[inline] | 
 |     #[must_use] | 
 |     #[stable(feature = "split_at_checked", since = "1.80.0")] | 
 |     #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")] | 
 |     pub const fn split_at_mut_checked(&mut self, mid: usize) -> Option<(&mut str, &mut str)> { | 
 |         // is_char_boundary checks that the index is in [0, .len()] | 
 |         if self.is_char_boundary(mid) { | 
 |             // SAFETY: just checked that `mid` is on a char boundary. | 
 |             Some(unsafe { self.split_at_mut_unchecked(mid) }) | 
 |         } else { | 
 |             None | 
 |         } | 
 |     } | 
 |  | 
 |     /// Divides one string slice into two at an index. | 
 |     /// | 
 |     /// # Safety | 
 |     /// | 
 |     /// The caller must ensure that `mid` is a valid byte offset from the start | 
 |     /// of the string and falls on the boundary of a UTF-8 code point. | 
 |     #[inline] | 
 |     const unsafe fn split_at_unchecked(&self, mid: usize) -> (&str, &str) { | 
 |         let len = self.len(); | 
 |         let ptr = self.as_ptr(); | 
 |         // SAFETY: caller guarantees `mid` is on a char boundary. | 
 |         unsafe { | 
 |             ( | 
 |                 from_utf8_unchecked(slice::from_raw_parts(ptr, mid)), | 
 |                 from_utf8_unchecked(slice::from_raw_parts(ptr.add(mid), len - mid)), | 
 |             ) | 
 |         } | 
 |     } | 
 |  | 
 |     /// Divides one string slice into two at an index. | 
 |     /// | 
 |     /// # Safety | 
 |     /// | 
 |     /// The caller must ensure that `mid` is a valid byte offset from the start | 
 |     /// of the string and falls on the boundary of a UTF-8 code point. | 
 |     const unsafe fn split_at_mut_unchecked(&mut self, mid: usize) -> (&mut str, &mut str) { | 
 |         let len = self.len(); | 
 |         let ptr = self.as_mut_ptr(); | 
 |         // SAFETY: caller guarantees `mid` is on a char boundary. | 
 |         unsafe { | 
 |             ( | 
 |                 from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr, mid)), | 
 |                 from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr.add(mid), len - mid)), | 
 |             ) | 
 |         } | 
 |     } | 
 |  | 
 |     /// Returns an iterator over the [`char`]s of a string slice. | 
 |     /// | 
 |     /// As a string slice consists of valid UTF-8, we can iterate through a | 
 |     /// string slice by [`char`]. This method returns such an iterator. | 
 |     /// | 
 |     /// It's important to remember that [`char`] represents a Unicode Scalar | 
 |     /// Value, and might not match your idea of what a 'character' is. Iteration | 
 |     /// over grapheme clusters may be what you actually want. This functionality | 
 |     /// is not provided by Rust's standard library, check crates.io instead. | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// Basic usage: | 
 |     /// | 
 |     /// ``` | 
 |     /// let word = "goodbye"; | 
 |     /// | 
 |     /// let count = word.chars().count(); | 
 |     /// assert_eq!(7, count); | 
 |     /// | 
 |     /// let mut chars = word.chars(); | 
 |     /// | 
 |     /// assert_eq!(Some('g'), chars.next()); | 
 |     /// assert_eq!(Some('o'), chars.next()); | 
 |     /// assert_eq!(Some('o'), chars.next()); | 
 |     /// assert_eq!(Some('d'), chars.next()); | 
 |     /// assert_eq!(Some('b'), chars.next()); | 
 |     /// assert_eq!(Some('y'), chars.next()); | 
 |     /// assert_eq!(Some('e'), chars.next()); | 
 |     /// | 
 |     /// assert_eq!(None, chars.next()); | 
 |     /// ``` | 
 |     /// | 
 |     /// Remember, [`char`]s might not match your intuition about characters: | 
 |     /// | 
 |     /// [`char`]: prim@char | 
 |     /// | 
 |     /// ``` | 
 |     /// let y = "y̆"; | 
 |     /// | 
 |     /// let mut chars = y.chars(); | 
 |     /// | 
 |     /// assert_eq!(Some('y'), chars.next()); // not 'y̆' | 
 |     /// assert_eq!(Some('\u{0306}'), chars.next()); | 
 |     /// | 
 |     /// assert_eq!(None, chars.next()); | 
 |     /// ``` | 
 |     #[stable(feature = "rust1", since = "1.0.0")] | 
 |     #[inline] | 
 |     #[rustc_diagnostic_item = "str_chars"] | 
 |     pub fn chars(&self) -> Chars<'_> { | 
 |         Chars { iter: self.as_bytes().iter() } | 
 |     } | 
 |  | 
 |     /// Returns an iterator over the [`char`]s of a string slice, and their | 
 |     /// positions. | 
 |     /// | 
 |     /// As a string slice consists of valid UTF-8, we can iterate through a | 
 |     /// string slice by [`char`]. This method returns an iterator of both | 
 |     /// these [`char`]s, as well as their byte positions. | 
 |     /// | 
 |     /// The iterator yields tuples. The position is first, the [`char`] is | 
 |     /// second. | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// Basic usage: | 
 |     /// | 
 |     /// ``` | 
 |     /// let word = "goodbye"; | 
 |     /// | 
 |     /// let count = word.char_indices().count(); | 
 |     /// assert_eq!(7, count); | 
 |     /// | 
 |     /// let mut char_indices = word.char_indices(); | 
 |     /// | 
 |     /// assert_eq!(Some((0, 'g')), char_indices.next()); | 
 |     /// assert_eq!(Some((1, 'o')), char_indices.next()); | 
 |     /// assert_eq!(Some((2, 'o')), char_indices.next()); | 
 |     /// assert_eq!(Some((3, 'd')), char_indices.next()); | 
 |     /// assert_eq!(Some((4, 'b')), char_indices.next()); | 
 |     /// assert_eq!(Some((5, 'y')), char_indices.next()); | 
 |     /// assert_eq!(Some((6, 'e')), char_indices.next()); | 
 |     /// | 
 |     /// assert_eq!(None, char_indices.next()); | 
 |     /// ``` | 
 |     /// | 
 |     /// Remember, [`char`]s might not match your intuition about characters: | 
 |     /// | 
 |     /// [`char`]: prim@char | 
 |     /// | 
 |     /// ``` | 
 |     /// let yes = "y̆es"; | 
 |     /// | 
 |     /// let mut char_indices = yes.char_indices(); | 
 |     /// | 
 |     /// assert_eq!(Some((0, 'y')), char_indices.next()); // not (0, 'y̆') | 
 |     /// assert_eq!(Some((1, '\u{0306}')), char_indices.next()); | 
 |     /// | 
 |     /// // note the 3 here - the previous character took up two bytes | 
 |     /// assert_eq!(Some((3, 'e')), char_indices.next()); | 
 |     /// assert_eq!(Some((4, 's')), char_indices.next()); | 
 |     /// | 
 |     /// assert_eq!(None, char_indices.next()); | 
 |     /// ``` | 
 |     #[stable(feature = "rust1", since = "1.0.0")] | 
 |     #[inline] | 
 |     pub fn char_indices(&self) -> CharIndices<'_> { | 
 |         CharIndices { front_offset: 0, iter: self.chars() } | 
 |     } | 
 |  | 
 |     /// Returns an iterator over the bytes of a string slice. | 
 |     /// | 
 |     /// As a string slice consists of a sequence of bytes, we can iterate | 
 |     /// through a string slice by byte. This method returns such an iterator. | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// ``` | 
 |     /// let mut bytes = "bors".bytes(); | 
 |     /// | 
 |     /// assert_eq!(Some(b'b'), bytes.next()); | 
 |     /// assert_eq!(Some(b'o'), bytes.next()); | 
 |     /// assert_eq!(Some(b'r'), bytes.next()); | 
 |     /// assert_eq!(Some(b's'), bytes.next()); | 
 |     /// | 
 |     /// assert_eq!(None, bytes.next()); | 
 |     /// ``` | 
 |     #[stable(feature = "rust1", since = "1.0.0")] | 
 |     #[inline] | 
 |     pub fn bytes(&self) -> Bytes<'_> { | 
 |         Bytes(self.as_bytes().iter().copied()) | 
 |     } | 
 |  | 
 |     /// Splits a string slice by whitespace. | 
 |     /// | 
 |     /// The iterator returned will return string slices that are sub-slices of | 
 |     /// the original string slice, separated by any amount of whitespace. | 
 |     /// | 
 |     /// 'Whitespace' is defined according to the terms of the Unicode Derived | 
 |     /// Core Property `White_Space`. If you only want to split on ASCII whitespace | 
 |     /// instead, use [`split_ascii_whitespace`]. | 
 |     /// | 
 |     /// [`split_ascii_whitespace`]: str::split_ascii_whitespace | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// Basic usage: | 
 |     /// | 
 |     /// ``` | 
 |     /// let mut iter = "A few words".split_whitespace(); | 
 |     /// | 
 |     /// assert_eq!(Some("A"), iter.next()); | 
 |     /// assert_eq!(Some("few"), iter.next()); | 
 |     /// assert_eq!(Some("words"), iter.next()); | 
 |     /// | 
 |     /// assert_eq!(None, iter.next()); | 
 |     /// ``` | 
 |     /// | 
 |     /// All kinds of whitespace are considered: | 
 |     /// | 
 |     /// ``` | 
 |     /// let mut iter = " Mary   had\ta\u{2009}little  \n\t lamb".split_whitespace(); | 
 |     /// assert_eq!(Some("Mary"), iter.next()); | 
 |     /// assert_eq!(Some("had"), iter.next()); | 
 |     /// assert_eq!(Some("a"), iter.next()); | 
 |     /// assert_eq!(Some("little"), iter.next()); | 
 |     /// assert_eq!(Some("lamb"), iter.next()); | 
 |     /// | 
 |     /// assert_eq!(None, iter.next()); | 
 |     /// ``` | 
 |     /// | 
 |     /// If the string is empty or all whitespace, the iterator yields no string slices: | 
 |     /// ``` | 
 |     /// assert_eq!("".split_whitespace().next(), None); | 
 |     /// assert_eq!("   ".split_whitespace().next(), None); | 
 |     /// ``` | 
 |     #[must_use = "this returns the split string as an iterator, \ | 
 |                   without modifying the original"] | 
 |     #[stable(feature = "split_whitespace", since = "1.1.0")] | 
 |     #[rustc_diagnostic_item = "str_split_whitespace"] | 
 |     #[inline] | 
 |     pub fn split_whitespace(&self) -> SplitWhitespace<'_> { | 
 |         SplitWhitespace { inner: self.split(IsWhitespace).filter(IsNotEmpty) } | 
 |     } | 
 |  | 
 |     /// Splits a string slice by ASCII whitespace. | 
 |     /// | 
 |     /// The iterator returned will return string slices that are sub-slices of | 
 |     /// the original string slice, separated by any amount of ASCII whitespace. | 
 |     /// | 
 |     /// This uses the same definition as [`char::is_ascii_whitespace`]. | 
 |     /// To split by Unicode `Whitespace` instead, use [`split_whitespace`]. | 
 |     /// | 
 |     /// [`split_whitespace`]: str::split_whitespace | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// Basic usage: | 
 |     /// | 
 |     /// ``` | 
 |     /// let mut iter = "A few words".split_ascii_whitespace(); | 
 |     /// | 
 |     /// assert_eq!(Some("A"), iter.next()); | 
 |     /// assert_eq!(Some("few"), iter.next()); | 
 |     /// assert_eq!(Some("words"), iter.next()); | 
 |     /// | 
 |     /// assert_eq!(None, iter.next()); | 
 |     /// ``` | 
 |     /// | 
 |     /// Various kinds of ASCII whitespace are considered | 
 |     /// (see [`char::is_ascii_whitespace`]): | 
 |     /// | 
 |     /// ``` | 
 |     /// let mut iter = " Mary   had\ta little  \n\t lamb".split_ascii_whitespace(); | 
 |     /// assert_eq!(Some("Mary"), iter.next()); | 
 |     /// assert_eq!(Some("had"), iter.next()); | 
 |     /// assert_eq!(Some("a"), iter.next()); | 
 |     /// assert_eq!(Some("little"), iter.next()); | 
 |     /// assert_eq!(Some("lamb"), iter.next()); | 
 |     /// | 
 |     /// assert_eq!(None, iter.next()); | 
 |     /// ``` | 
 |     /// | 
 |     /// If the string is empty or all ASCII whitespace, the iterator yields no string slices: | 
 |     /// ``` | 
 |     /// assert_eq!("".split_ascii_whitespace().next(), None); | 
 |     /// assert_eq!("   ".split_ascii_whitespace().next(), None); | 
 |     /// ``` | 
 |     #[must_use = "this returns the split string as an iterator, \ | 
 |                   without modifying the original"] | 
 |     #[stable(feature = "split_ascii_whitespace", since = "1.34.0")] | 
 |     #[inline] | 
 |     pub fn split_ascii_whitespace(&self) -> SplitAsciiWhitespace<'_> { | 
 |         let inner = | 
 |             self.as_bytes().split(IsAsciiWhitespace).filter(BytesIsNotEmpty).map(UnsafeBytesToStr); | 
 |         SplitAsciiWhitespace { inner } | 
 |     } | 
 |  | 
 |     /// Returns an iterator over the lines of a string, as string slices. | 
 |     /// | 
 |     /// Lines are split at line endings that are either newlines (`\n`) or | 
 |     /// sequences of a carriage return followed by a line feed (`\r\n`). | 
 |     /// | 
 |     /// Line terminators are not included in the lines returned by the iterator. | 
 |     /// | 
 |     /// Note that any carriage return (`\r`) not immediately followed by a | 
 |     /// line feed (`\n`) does not split a line. These carriage returns are | 
 |     /// thereby included in the produced lines. | 
 |     /// | 
 |     /// The final line ending is optional. A string that ends with a final line | 
 |     /// ending will return the same lines as an otherwise identical string | 
 |     /// without a final line ending. | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// Basic usage: | 
 |     /// | 
 |     /// ``` | 
 |     /// let text = "foo\r\nbar\n\nbaz\r"; | 
 |     /// let mut lines = text.lines(); | 
 |     /// | 
 |     /// assert_eq!(Some("foo"), lines.next()); | 
 |     /// assert_eq!(Some("bar"), lines.next()); | 
 |     /// assert_eq!(Some(""), lines.next()); | 
 |     /// // Trailing carriage return is included in the last line | 
 |     /// assert_eq!(Some("baz\r"), lines.next()); | 
 |     /// | 
 |     /// assert_eq!(None, lines.next()); | 
 |     /// ``` | 
 |     /// | 
 |     /// The final line does not require any ending: | 
 |     /// | 
 |     /// ``` | 
 |     /// let text = "foo\nbar\n\r\nbaz"; | 
 |     /// let mut lines = text.lines(); | 
 |     /// | 
 |     /// assert_eq!(Some("foo"), lines.next()); | 
 |     /// assert_eq!(Some("bar"), lines.next()); | 
 |     /// assert_eq!(Some(""), lines.next()); | 
 |     /// assert_eq!(Some("baz"), lines.next()); | 
 |     /// | 
 |     /// assert_eq!(None, lines.next()); | 
 |     /// ``` | 
 |     #[stable(feature = "rust1", since = "1.0.0")] | 
 |     #[inline] | 
 |     pub fn lines(&self) -> Lines<'_> { | 
 |         Lines(self.split_inclusive('\n').map(LinesMap)) | 
 |     } | 
 |  | 
 |     /// Returns an iterator over the lines of a string. | 
 |     #[stable(feature = "rust1", since = "1.0.0")] | 
 |     #[deprecated(since = "1.4.0", note = "use lines() instead now", suggestion = "lines")] | 
 |     #[inline] | 
 |     #[allow(deprecated)] | 
 |     pub fn lines_any(&self) -> LinesAny<'_> { | 
 |         LinesAny(self.lines()) | 
 |     } | 
 |  | 
 |     /// Returns an iterator of `u16` over the string encoded | 
 |     /// as native endian UTF-16 (without byte-order mark). | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// ``` | 
 |     /// let text = "Zażółć gęślą jaźń"; | 
 |     /// | 
 |     /// let utf8_len = text.len(); | 
 |     /// let utf16_len = text.encode_utf16().count(); | 
 |     /// | 
 |     /// assert!(utf16_len <= utf8_len); | 
 |     /// ``` | 
 |     #[must_use = "this returns the encoded string as an iterator, \ | 
 |                   without modifying the original"] | 
 |     #[stable(feature = "encode_utf16", since = "1.8.0")] | 
 |     pub fn encode_utf16(&self) -> EncodeUtf16<'_> { | 
 |         EncodeUtf16 { chars: self.chars(), extra: 0 } | 
 |     } | 
 |  | 
 |     /// Returns `true` if the given pattern matches a sub-slice of | 
 |     /// this string slice. | 
 |     /// | 
 |     /// Returns `false` if it does not. | 
 |     /// | 
 |     /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a | 
 |     /// function or closure that determines if a character matches. | 
 |     /// | 
 |     /// [`char`]: prim@char | 
 |     /// [pattern]: self::pattern | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// ``` | 
 |     /// let bananas = "bananas"; | 
 |     /// | 
 |     /// assert!(bananas.contains("nana")); | 
 |     /// assert!(!bananas.contains("apples")); | 
 |     /// ``` | 
 |     #[stable(feature = "rust1", since = "1.0.0")] | 
 |     #[inline] | 
 |     pub fn contains<P: Pattern>(&self, pat: P) -> bool { | 
 |         pat.is_contained_in(self) | 
 |     } | 
 |  | 
 |     /// Returns `true` if the given pattern matches a prefix of this | 
 |     /// string slice. | 
 |     /// | 
 |     /// Returns `false` if it does not. | 
 |     /// | 
 |     /// The [pattern] can be a `&str`, in which case this function will return true if | 
 |     /// the `&str` is a prefix of this string slice. | 
 |     /// | 
 |     /// The [pattern] can also be a [`char`], a slice of [`char`]s, or a | 
 |     /// function or closure that determines if a character matches. | 
 |     /// These will only be checked against the first character of this string slice. | 
 |     /// Look at the second example below regarding behavior for slices of [`char`]s. | 
 |     /// | 
 |     /// [`char`]: prim@char | 
 |     /// [pattern]: self::pattern | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// ``` | 
 |     /// let bananas = "bananas"; | 
 |     /// | 
 |     /// assert!(bananas.starts_with("bana")); | 
 |     /// assert!(!bananas.starts_with("nana")); | 
 |     /// ``` | 
 |     /// | 
 |     /// ``` | 
 |     /// let bananas = "bananas"; | 
 |     /// | 
 |     /// // Note that both of these assert successfully. | 
 |     /// assert!(bananas.starts_with(&['b', 'a', 'n', 'a'])); | 
 |     /// assert!(bananas.starts_with(&['a', 'b', 'c', 'd'])); | 
 |     /// ``` | 
 |     #[stable(feature = "rust1", since = "1.0.0")] | 
 |     #[rustc_diagnostic_item = "str_starts_with"] | 
 |     pub fn starts_with<P: Pattern>(&self, pat: P) -> bool { | 
 |         pat.is_prefix_of(self) | 
 |     } | 
 |  | 
 |     /// Returns `true` if the given pattern matches a suffix of this | 
 |     /// string slice. | 
 |     /// | 
 |     /// Returns `false` if it does not. | 
 |     /// | 
 |     /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a | 
 |     /// function or closure that determines if a character matches. | 
 |     /// | 
 |     /// [`char`]: prim@char | 
 |     /// [pattern]: self::pattern | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// ``` | 
 |     /// let bananas = "bananas"; | 
 |     /// | 
 |     /// assert!(bananas.ends_with("anas")); | 
 |     /// assert!(!bananas.ends_with("nana")); | 
 |     /// ``` | 
 |     #[stable(feature = "rust1", since = "1.0.0")] | 
 |     #[rustc_diagnostic_item = "str_ends_with"] | 
 |     pub fn ends_with<P: Pattern>(&self, pat: P) -> bool | 
 |     where | 
 |         for<'a> P::Searcher<'a>: ReverseSearcher<'a>, | 
 |     { | 
 |         pat.is_suffix_of(self) | 
 |     } | 
 |  | 
 |     /// Returns the byte index of the first character of this string slice that | 
 |     /// matches the pattern. | 
 |     /// | 
 |     /// Returns [`None`] if the pattern doesn't match. | 
 |     /// | 
 |     /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a | 
 |     /// function or closure that determines if a character matches. | 
 |     /// | 
 |     /// [`char`]: prim@char | 
 |     /// [pattern]: self::pattern | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// Simple patterns: | 
 |     /// | 
 |     /// ``` | 
 |     /// let s = "Löwe 老虎 Léopard Gepardi"; | 
 |     /// | 
 |     /// assert_eq!(s.find('L'), Some(0)); | 
 |     /// assert_eq!(s.find('é'), Some(14)); | 
 |     /// assert_eq!(s.find("pard"), Some(17)); | 
 |     /// ``` | 
 |     /// | 
 |     /// More complex patterns using point-free style and closures: | 
 |     /// | 
 |     /// ``` | 
 |     /// let s = "Löwe 老虎 Léopard"; | 
 |     /// | 
 |     /// assert_eq!(s.find(char::is_whitespace), Some(5)); | 
 |     /// assert_eq!(s.find(char::is_lowercase), Some(1)); | 
 |     /// assert_eq!(s.find(|c: char| c.is_whitespace() || c.is_lowercase()), Some(1)); | 
 |     /// assert_eq!(s.find(|c: char| (c < 'o') && (c > 'a')), Some(4)); | 
 |     /// ``` | 
 |     /// | 
 |     /// Not finding the pattern: | 
 |     /// | 
 |     /// ``` | 
 |     /// let s = "Löwe 老虎 Léopard"; | 
 |     /// let x: &[_] = &['1', '2']; | 
 |     /// | 
 |     /// assert_eq!(s.find(x), None); | 
 |     /// ``` | 
 |     #[stable(feature = "rust1", since = "1.0.0")] | 
 |     #[inline] | 
 |     pub fn find<P: Pattern>(&self, pat: P) -> Option<usize> { | 
 |         pat.into_searcher(self).next_match().map(|(i, _)| i) | 
 |     } | 
 |  | 
 |     /// Returns the byte index for the first character of the last match of the pattern in | 
 |     /// this string slice. | 
 |     /// | 
 |     /// Returns [`None`] if the pattern doesn't match. | 
 |     /// | 
 |     /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a | 
 |     /// function or closure that determines if a character matches. | 
 |     /// | 
 |     /// [`char`]: prim@char | 
 |     /// [pattern]: self::pattern | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// Simple patterns: | 
 |     /// | 
 |     /// ``` | 
 |     /// let s = "Löwe 老虎 Léopard Gepardi"; | 
 |     /// | 
 |     /// assert_eq!(s.rfind('L'), Some(13)); | 
 |     /// assert_eq!(s.rfind('é'), Some(14)); | 
 |     /// assert_eq!(s.rfind("pard"), Some(24)); | 
 |     /// ``` | 
 |     /// | 
 |     /// More complex patterns with closures: | 
 |     /// | 
 |     /// ``` | 
 |     /// let s = "Löwe 老虎 Léopard"; | 
 |     /// | 
 |     /// assert_eq!(s.rfind(char::is_whitespace), Some(12)); | 
 |     /// assert_eq!(s.rfind(char::is_lowercase), Some(20)); | 
 |     /// ``` | 
 |     /// | 
 |     /// Not finding the pattern: | 
 |     /// | 
 |     /// ``` | 
 |     /// let s = "Löwe 老虎 Léopard"; | 
 |     /// let x: &[_] = &['1', '2']; | 
 |     /// | 
 |     /// assert_eq!(s.rfind(x), None); | 
 |     /// ``` | 
 |     #[stable(feature = "rust1", since = "1.0.0")] | 
 |     #[inline] | 
 |     pub fn rfind<P: Pattern>(&self, pat: P) -> Option<usize> | 
 |     where | 
 |         for<'a> P::Searcher<'a>: ReverseSearcher<'a>, | 
 |     { | 
 |         pat.into_searcher(self).next_match_back().map(|(i, _)| i) | 
 |     } | 
 |  | 
 |     /// Returns an iterator over substrings of this string slice, separated by | 
 |     /// characters matched by a pattern. | 
 |     /// | 
 |     /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a | 
 |     /// function or closure that determines if a character matches. | 
 |     /// | 
 |     /// If there are no matches the full string slice is returned as the only | 
 |     /// item in the iterator. | 
 |     /// | 
 |     /// [`char`]: prim@char | 
 |     /// [pattern]: self::pattern | 
 |     /// | 
 |     /// # Iterator behavior | 
 |     /// | 
 |     /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern | 
 |     /// allows a reverse search and forward/reverse search yields the same | 
 |     /// elements. This is true for, e.g., [`char`], but not for `&str`. | 
 |     /// | 
 |     /// If the pattern allows a reverse search but its results might differ | 
 |     /// from a forward search, the [`rsplit`] method can be used. | 
 |     /// | 
 |     /// [`rsplit`]: str::rsplit | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// Simple patterns: | 
 |     /// | 
 |     /// ``` | 
 |     /// let v: Vec<&str> = "Mary had a little lamb".split(' ').collect(); | 
 |     /// assert_eq!(v, ["Mary", "had", "a", "little", "lamb"]); | 
 |     /// | 
 |     /// let v: Vec<&str> = "".split('X').collect(); | 
 |     /// assert_eq!(v, [""]); | 
 |     /// | 
 |     /// let v: Vec<&str> = "lionXXtigerXleopard".split('X').collect(); | 
 |     /// assert_eq!(v, ["lion", "", "tiger", "leopard"]); | 
 |     /// | 
 |     /// let v: Vec<&str> = "lion::tiger::leopard".split("::").collect(); | 
 |     /// assert_eq!(v, ["lion", "tiger", "leopard"]); | 
 |     /// | 
 |     /// let v: Vec<&str> = "AABBCC".split("DD").collect(); | 
 |     /// assert_eq!(v, ["AABBCC"]); | 
 |     /// | 
 |     /// let v: Vec<&str> = "abc1def2ghi".split(char::is_numeric).collect(); | 
 |     /// assert_eq!(v, ["abc", "def", "ghi"]); | 
 |     /// | 
 |     /// let v: Vec<&str> = "lionXtigerXleopard".split(char::is_uppercase).collect(); | 
 |     /// assert_eq!(v, ["lion", "tiger", "leopard"]); | 
 |     /// ``` | 
 |     /// | 
 |     /// If the pattern is a slice of chars, split on each occurrence of any of the characters: | 
 |     /// | 
 |     /// ``` | 
 |     /// let v: Vec<&str> = "2020-11-03 23:59".split(&['-', ' ', ':', '@'][..]).collect(); | 
 |     /// assert_eq!(v, ["2020", "11", "03", "23", "59"]); | 
 |     /// ``` | 
 |     /// | 
 |     /// A more complex pattern, using a closure: | 
 |     /// | 
 |     /// ``` | 
 |     /// let v: Vec<&str> = "abc1defXghi".split(|c| c == '1' || c == 'X').collect(); | 
 |     /// assert_eq!(v, ["abc", "def", "ghi"]); | 
 |     /// ``` | 
 |     /// | 
 |     /// If a string contains multiple contiguous separators, you will end up | 
 |     /// with empty strings in the output: | 
 |     /// | 
 |     /// ``` | 
 |     /// let x = "||||a||b|c".to_string(); | 
 |     /// let d: Vec<_> = x.split('|').collect(); | 
 |     /// | 
 |     /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]); | 
 |     /// ``` | 
 |     /// | 
 |     /// Contiguous separators are separated by the empty string. | 
 |     /// | 
 |     /// ``` | 
 |     /// let x = "(///)".to_string(); | 
 |     /// let d: Vec<_> = x.split('/').collect(); | 
 |     /// | 
 |     /// assert_eq!(d, &["(", "", "", ")"]); | 
 |     /// ``` | 
 |     /// | 
 |     /// Separators at the start or end of a string are neighbored | 
 |     /// by empty strings. | 
 |     /// | 
 |     /// ``` | 
 |     /// let d: Vec<_> = "010".split("0").collect(); | 
 |     /// assert_eq!(d, &["", "1", ""]); | 
 |     /// ``` | 
 |     /// | 
 |     /// When the empty string is used as a separator, it separates | 
 |     /// every character in the string, along with the beginning | 
 |     /// and end of the string. | 
 |     /// | 
 |     /// ``` | 
 |     /// let f: Vec<_> = "rust".split("").collect(); | 
 |     /// assert_eq!(f, &["", "r", "u", "s", "t", ""]); | 
 |     /// ``` | 
 |     /// | 
 |     /// Contiguous separators can lead to possibly surprising behavior | 
 |     /// when whitespace is used as the separator. This code is correct: | 
 |     /// | 
 |     /// ``` | 
 |     /// let x = "    a  b c".to_string(); | 
 |     /// let d: Vec<_> = x.split(' ').collect(); | 
 |     /// | 
 |     /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]); | 
 |     /// ``` | 
 |     /// | 
 |     /// It does _not_ give you: | 
 |     /// | 
 |     /// ```,ignore | 
 |     /// assert_eq!(d, &["a", "b", "c"]); | 
 |     /// ``` | 
 |     /// | 
 |     /// Use [`split_whitespace`] for this behavior. | 
 |     /// | 
 |     /// [`split_whitespace`]: str::split_whitespace | 
 |     #[stable(feature = "rust1", since = "1.0.0")] | 
 |     #[inline] | 
 |     pub fn split<P: Pattern>(&self, pat: P) -> Split<'_, P> { | 
 |         Split(SplitInternal { | 
 |             start: 0, | 
 |             end: self.len(), | 
 |             matcher: pat.into_searcher(self), | 
 |             allow_trailing_empty: true, | 
 |             finished: false, | 
 |         }) | 
 |     } | 
 |  | 
 |     /// Returns an iterator over substrings of this string slice, separated by | 
 |     /// characters matched by a pattern. | 
 |     /// | 
 |     /// Differs from the iterator produced by `split` in that `split_inclusive` | 
 |     /// leaves the matched part as the terminator of the substring. | 
 |     /// | 
 |     /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a | 
 |     /// function or closure that determines if a character matches. | 
 |     /// | 
 |     /// [`char`]: prim@char | 
 |     /// [pattern]: self::pattern | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// ``` | 
 |     /// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb." | 
 |     ///     .split_inclusive('\n').collect(); | 
 |     /// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb."]); | 
 |     /// ``` | 
 |     /// | 
 |     /// If the last element of the string is matched, | 
 |     /// that element will be considered the terminator of the preceding substring. | 
 |     /// That substring will be the last item returned by the iterator. | 
 |     /// | 
 |     /// ``` | 
 |     /// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb.\n" | 
 |     ///     .split_inclusive('\n').collect(); | 
 |     /// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb.\n"]); | 
 |     /// ``` | 
 |     #[stable(feature = "split_inclusive", since = "1.51.0")] | 
 |     #[inline] | 
 |     pub fn split_inclusive<P: Pattern>(&self, pat: P) -> SplitInclusive<'_, P> { | 
 |         SplitInclusive(SplitInternal { | 
 |             start: 0, | 
 |             end: self.len(), | 
 |             matcher: pat.into_searcher(self), | 
 |             allow_trailing_empty: false, | 
 |             finished: false, | 
 |         }) | 
 |     } | 
 |  | 
 |     /// Returns an iterator over substrings of the given string slice, separated | 
 |     /// by characters matched by a pattern and yielded in reverse order. | 
 |     /// | 
 |     /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a | 
 |     /// function or closure that determines if a character matches. | 
 |     /// | 
 |     /// [`char`]: prim@char | 
 |     /// [pattern]: self::pattern | 
 |     /// | 
 |     /// # Iterator behavior | 
 |     /// | 
 |     /// The returned iterator requires that the pattern supports a reverse | 
 |     /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse | 
 |     /// search yields the same elements. | 
 |     /// | 
 |     /// For iterating from the front, the [`split`] method can be used. | 
 |     /// | 
 |     /// [`split`]: str::split | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// Simple patterns: | 
 |     /// | 
 |     /// ``` | 
 |     /// let v: Vec<&str> = "Mary had a little lamb".rsplit(' ').collect(); | 
 |     /// assert_eq!(v, ["lamb", "little", "a", "had", "Mary"]); | 
 |     /// | 
 |     /// let v: Vec<&str> = "".rsplit('X').collect(); | 
 |     /// assert_eq!(v, [""]); | 
 |     /// | 
 |     /// let v: Vec<&str> = "lionXXtigerXleopard".rsplit('X').collect(); | 
 |     /// assert_eq!(v, ["leopard", "tiger", "", "lion"]); | 
 |     /// | 
 |     /// let v: Vec<&str> = "lion::tiger::leopard".rsplit("::").collect(); | 
 |     /// assert_eq!(v, ["leopard", "tiger", "lion"]); | 
 |     /// ``` | 
 |     /// | 
 |     /// A more complex pattern, using a closure: | 
 |     /// | 
 |     /// ``` | 
 |     /// let v: Vec<&str> = "abc1defXghi".rsplit(|c| c == '1' || c == 'X').collect(); | 
 |     /// assert_eq!(v, ["ghi", "def", "abc"]); | 
 |     /// ``` | 
 |     #[stable(feature = "rust1", since = "1.0.0")] | 
 |     #[inline] | 
 |     pub fn rsplit<P: Pattern>(&self, pat: P) -> RSplit<'_, P> | 
 |     where | 
 |         for<'a> P::Searcher<'a>: ReverseSearcher<'a>, | 
 |     { | 
 |         RSplit(self.split(pat).0) | 
 |     } | 
 |  | 
 |     /// Returns an iterator over substrings of the given string slice, separated | 
 |     /// by characters matched by a pattern. | 
 |     /// | 
 |     /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a | 
 |     /// function or closure that determines if a character matches. | 
 |     /// | 
 |     /// [`char`]: prim@char | 
 |     /// [pattern]: self::pattern | 
 |     /// | 
 |     /// Equivalent to [`split`], except that the trailing substring | 
 |     /// is skipped if empty. | 
 |     /// | 
 |     /// [`split`]: str::split | 
 |     /// | 
 |     /// This method can be used for string data that is _terminated_, | 
 |     /// rather than _separated_ by a pattern. | 
 |     /// | 
 |     /// # Iterator behavior | 
 |     /// | 
 |     /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern | 
 |     /// allows a reverse search and forward/reverse search yields the same | 
 |     /// elements. This is true for, e.g., [`char`], but not for `&str`. | 
 |     /// | 
 |     /// If the pattern allows a reverse search but its results might differ | 
 |     /// from a forward search, the [`rsplit_terminator`] method can be used. | 
 |     /// | 
 |     /// [`rsplit_terminator`]: str::rsplit_terminator | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// ``` | 
 |     /// let v: Vec<&str> = "A.B.".split_terminator('.').collect(); | 
 |     /// assert_eq!(v, ["A", "B"]); | 
 |     /// | 
 |     /// let v: Vec<&str> = "A..B..".split_terminator(".").collect(); | 
 |     /// assert_eq!(v, ["A", "", "B", ""]); | 
 |     /// | 
 |     /// let v: Vec<&str> = "A.B:C.D".split_terminator(&['.', ':'][..]).collect(); | 
 |     /// assert_eq!(v, ["A", "B", "C", "D"]); | 
 |     /// ``` | 
 |     #[stable(feature = "rust1", since = "1.0.0")] | 
 |     #[inline] | 
 |     pub fn split_terminator<P: Pattern>(&self, pat: P) -> SplitTerminator<'_, P> { | 
 |         SplitTerminator(SplitInternal { allow_trailing_empty: false, ..self.split(pat).0 }) | 
 |     } | 
 |  | 
 |     /// Returns an iterator over substrings of `self`, separated by characters | 
 |     /// matched by a pattern and yielded in reverse order. | 
 |     /// | 
 |     /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a | 
 |     /// function or closure that determines if a character matches. | 
 |     /// | 
 |     /// [`char`]: prim@char | 
 |     /// [pattern]: self::pattern | 
 |     /// | 
 |     /// Equivalent to [`split`], except that the trailing substring is | 
 |     /// skipped if empty. | 
 |     /// | 
 |     /// [`split`]: str::split | 
 |     /// | 
 |     /// This method can be used for string data that is _terminated_, | 
 |     /// rather than _separated_ by a pattern. | 
 |     /// | 
 |     /// # Iterator behavior | 
 |     /// | 
 |     /// The returned iterator requires that the pattern supports a | 
 |     /// reverse search, and it will be double ended if a forward/reverse | 
 |     /// search yields the same elements. | 
 |     /// | 
 |     /// For iterating from the front, the [`split_terminator`] method can be | 
 |     /// used. | 
 |     /// | 
 |     /// [`split_terminator`]: str::split_terminator | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// ``` | 
 |     /// let v: Vec<&str> = "A.B.".rsplit_terminator('.').collect(); | 
 |     /// assert_eq!(v, ["B", "A"]); | 
 |     /// | 
 |     /// let v: Vec<&str> = "A..B..".rsplit_terminator(".").collect(); | 
 |     /// assert_eq!(v, ["", "B", "", "A"]); | 
 |     /// | 
 |     /// let v: Vec<&str> = "A.B:C.D".rsplit_terminator(&['.', ':'][..]).collect(); | 
 |     /// assert_eq!(v, ["D", "C", "B", "A"]); | 
 |     /// ``` | 
 |     #[stable(feature = "rust1", since = "1.0.0")] | 
 |     #[inline] | 
 |     pub fn rsplit_terminator<P: Pattern>(&self, pat: P) -> RSplitTerminator<'_, P> | 
 |     where | 
 |         for<'a> P::Searcher<'a>: ReverseSearcher<'a>, | 
 |     { | 
 |         RSplitTerminator(self.split_terminator(pat).0) | 
 |     } | 
 |  | 
 |     /// Returns an iterator over substrings of the given string slice, separated | 
 |     /// by a pattern, restricted to returning at most `n` items. | 
 |     /// | 
 |     /// If `n` substrings are returned, the last substring (the `n`th substring) | 
 |     /// will contain the remainder of the string. | 
 |     /// | 
 |     /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a | 
 |     /// function or closure that determines if a character matches. | 
 |     /// | 
 |     /// [`char`]: prim@char | 
 |     /// [pattern]: self::pattern | 
 |     /// | 
 |     /// # Iterator behavior | 
 |     /// | 
 |     /// The returned iterator will not be double ended, because it is | 
 |     /// not efficient to support. | 
 |     /// | 
 |     /// If the pattern allows a reverse search, the [`rsplitn`] method can be | 
 |     /// used. | 
 |     /// | 
 |     /// [`rsplitn`]: str::rsplitn | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// Simple patterns: | 
 |     /// | 
 |     /// ``` | 
 |     /// let v: Vec<&str> = "Mary had a little lambda".splitn(3, ' ').collect(); | 
 |     /// assert_eq!(v, ["Mary", "had", "a little lambda"]); | 
 |     /// | 
 |     /// let v: Vec<&str> = "lionXXtigerXleopard".splitn(3, "X").collect(); | 
 |     /// assert_eq!(v, ["lion", "", "tigerXleopard"]); | 
 |     /// | 
 |     /// let v: Vec<&str> = "abcXdef".splitn(1, 'X').collect(); | 
 |     /// assert_eq!(v, ["abcXdef"]); | 
 |     /// | 
 |     /// let v: Vec<&str> = "".splitn(1, 'X').collect(); | 
 |     /// assert_eq!(v, [""]); | 
 |     /// ``` | 
 |     /// | 
 |     /// A more complex pattern, using a closure: | 
 |     /// | 
 |     /// ``` | 
 |     /// let v: Vec<&str> = "abc1defXghi".splitn(2, |c| c == '1' || c == 'X').collect(); | 
 |     /// assert_eq!(v, ["abc", "defXghi"]); | 
 |     /// ``` | 
 |     #[stable(feature = "rust1", since = "1.0.0")] | 
 |     #[inline] | 
 |     pub fn splitn<P: Pattern>(&self, n: usize, pat: P) -> SplitN<'_, P> { | 
 |         SplitN(SplitNInternal { iter: self.split(pat).0, count: n }) | 
 |     } | 
 |  | 
 |     /// Returns an iterator over substrings of this string slice, separated by a | 
 |     /// pattern, starting from the end of the string, restricted to returning at | 
 |     /// most `n` items. | 
 |     /// | 
 |     /// If `n` substrings are returned, the last substring (the `n`th substring) | 
 |     /// will contain the remainder of the string. | 
 |     /// | 
 |     /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a | 
 |     /// function or closure that determines if a character matches. | 
 |     /// | 
 |     /// [`char`]: prim@char | 
 |     /// [pattern]: self::pattern | 
 |     /// | 
 |     /// # Iterator behavior | 
 |     /// | 
 |     /// The returned iterator will not be double ended, because it is not | 
 |     /// efficient to support. | 
 |     /// | 
 |     /// For splitting from the front, the [`splitn`] method can be used. | 
 |     /// | 
 |     /// [`splitn`]: str::splitn | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// Simple patterns: | 
 |     /// | 
 |     /// ``` | 
 |     /// let v: Vec<&str> = "Mary had a little lamb".rsplitn(3, ' ').collect(); | 
 |     /// assert_eq!(v, ["lamb", "little", "Mary had a"]); | 
 |     /// | 
 |     /// let v: Vec<&str> = "lionXXtigerXleopard".rsplitn(3, 'X').collect(); | 
 |     /// assert_eq!(v, ["leopard", "tiger", "lionX"]); | 
 |     /// | 
 |     /// let v: Vec<&str> = "lion::tiger::leopard".rsplitn(2, "::").collect(); | 
 |     /// assert_eq!(v, ["leopard", "lion::tiger"]); | 
 |     /// ``` | 
 |     /// | 
 |     /// A more complex pattern, using a closure: | 
 |     /// | 
 |     /// ``` | 
 |     /// let v: Vec<&str> = "abc1defXghi".rsplitn(2, |c| c == '1' || c == 'X').collect(); | 
 |     /// assert_eq!(v, ["ghi", "abc1def"]); | 
 |     /// ``` | 
 |     #[stable(feature = "rust1", since = "1.0.0")] | 
 |     #[inline] | 
 |     pub fn rsplitn<P: Pattern>(&self, n: usize, pat: P) -> RSplitN<'_, P> | 
 |     where | 
 |         for<'a> P::Searcher<'a>: ReverseSearcher<'a>, | 
 |     { | 
 |         RSplitN(self.splitn(n, pat).0) | 
 |     } | 
 |  | 
 |     /// Splits the string on the first occurrence of the specified delimiter and | 
 |     /// returns prefix before delimiter and suffix after delimiter. | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// ``` | 
 |     /// assert_eq!("cfg".split_once('='), None); | 
 |     /// assert_eq!("cfg=".split_once('='), Some(("cfg", ""))); | 
 |     /// assert_eq!("cfg=foo".split_once('='), Some(("cfg", "foo"))); | 
 |     /// assert_eq!("cfg=foo=bar".split_once('='), Some(("cfg", "foo=bar"))); | 
 |     /// ``` | 
 |     #[stable(feature = "str_split_once", since = "1.52.0")] | 
 |     #[inline] | 
 |     pub fn split_once<P: Pattern>(&self, delimiter: P) -> Option<(&'_ str, &'_ str)> { | 
 |         let (start, end) = delimiter.into_searcher(self).next_match()?; | 
 |         // SAFETY: `Searcher` is known to return valid indices. | 
 |         unsafe { Some((self.get_unchecked(..start), self.get_unchecked(end..))) } | 
 |     } | 
 |  | 
 |     /// Splits the string on the last occurrence of the specified delimiter and | 
 |     /// returns prefix before delimiter and suffix after delimiter. | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// ``` | 
 |     /// assert_eq!("cfg".rsplit_once('='), None); | 
 |     /// assert_eq!("cfg=foo".rsplit_once('='), Some(("cfg", "foo"))); | 
 |     /// assert_eq!("cfg=foo=bar".rsplit_once('='), Some(("cfg=foo", "bar"))); | 
 |     /// ``` | 
 |     #[stable(feature = "str_split_once", since = "1.52.0")] | 
 |     #[inline] | 
 |     pub fn rsplit_once<P: Pattern>(&self, delimiter: P) -> Option<(&'_ str, &'_ str)> | 
 |     where | 
 |         for<'a> P::Searcher<'a>: ReverseSearcher<'a>, | 
 |     { | 
 |         let (start, end) = delimiter.into_searcher(self).next_match_back()?; | 
 |         // SAFETY: `Searcher` is known to return valid indices. | 
 |         unsafe { Some((self.get_unchecked(..start), self.get_unchecked(end..))) } | 
 |     } | 
 |  | 
 |     /// Returns an iterator over the disjoint matches of a pattern within the | 
 |     /// given string slice. | 
 |     /// | 
 |     /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a | 
 |     /// function or closure that determines if a character matches. | 
 |     /// | 
 |     /// [`char`]: prim@char | 
 |     /// [pattern]: self::pattern | 
 |     /// | 
 |     /// # Iterator behavior | 
 |     /// | 
 |     /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern | 
 |     /// allows a reverse search and forward/reverse search yields the same | 
 |     /// elements. This is true for, e.g., [`char`], but not for `&str`. | 
 |     /// | 
 |     /// If the pattern allows a reverse search but its results might differ | 
 |     /// from a forward search, the [`rmatches`] method can be used. | 
 |     /// | 
 |     /// [`rmatches`]: str::rmatches | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// ``` | 
 |     /// let v: Vec<&str> = "abcXXXabcYYYabc".matches("abc").collect(); | 
 |     /// assert_eq!(v, ["abc", "abc", "abc"]); | 
 |     /// | 
 |     /// let v: Vec<&str> = "1abc2abc3".matches(char::is_numeric).collect(); | 
 |     /// assert_eq!(v, ["1", "2", "3"]); | 
 |     /// ``` | 
 |     #[stable(feature = "str_matches", since = "1.2.0")] | 
 |     #[inline] | 
 |     pub fn matches<P: Pattern>(&self, pat: P) -> Matches<'_, P> { | 
 |         Matches(MatchesInternal(pat.into_searcher(self))) | 
 |     } | 
 |  | 
 |     /// Returns an iterator over the disjoint matches of a pattern within this | 
 |     /// string slice, yielded in reverse order. | 
 |     /// | 
 |     /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a | 
 |     /// function or closure that determines if a character matches. | 
 |     /// | 
 |     /// [`char`]: prim@char | 
 |     /// [pattern]: self::pattern | 
 |     /// | 
 |     /// # Iterator behavior | 
 |     /// | 
 |     /// The returned iterator requires that the pattern supports a reverse | 
 |     /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse | 
 |     /// search yields the same elements. | 
 |     /// | 
 |     /// For iterating from the front, the [`matches`] method can be used. | 
 |     /// | 
 |     /// [`matches`]: str::matches | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// ``` | 
 |     /// let v: Vec<&str> = "abcXXXabcYYYabc".rmatches("abc").collect(); | 
 |     /// assert_eq!(v, ["abc", "abc", "abc"]); | 
 |     /// | 
 |     /// let v: Vec<&str> = "1abc2abc3".rmatches(char::is_numeric).collect(); | 
 |     /// assert_eq!(v, ["3", "2", "1"]); | 
 |     /// ``` | 
 |     #[stable(feature = "str_matches", since = "1.2.0")] | 
 |     #[inline] | 
 |     pub fn rmatches<P: Pattern>(&self, pat: P) -> RMatches<'_, P> | 
 |     where | 
 |         for<'a> P::Searcher<'a>: ReverseSearcher<'a>, | 
 |     { | 
 |         RMatches(self.matches(pat).0) | 
 |     } | 
 |  | 
 |     /// Returns an iterator over the disjoint matches of a pattern within this string | 
 |     /// slice as well as the index that the match starts at. | 
 |     /// | 
 |     /// For matches of `pat` within `self` that overlap, only the indices | 
 |     /// corresponding to the first match are returned. | 
 |     /// | 
 |     /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a | 
 |     /// function or closure that determines if a character matches. | 
 |     /// | 
 |     /// [`char`]: prim@char | 
 |     /// [pattern]: self::pattern | 
 |     /// | 
 |     /// # Iterator behavior | 
 |     /// | 
 |     /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern | 
 |     /// allows a reverse search and forward/reverse search yields the same | 
 |     /// elements. This is true for, e.g., [`char`], but not for `&str`. | 
 |     /// | 
 |     /// If the pattern allows a reverse search but its results might differ | 
 |     /// from a forward search, the [`rmatch_indices`] method can be used. | 
 |     /// | 
 |     /// [`rmatch_indices`]: str::rmatch_indices | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// ``` | 
 |     /// let v: Vec<_> = "abcXXXabcYYYabc".match_indices("abc").collect(); | 
 |     /// assert_eq!(v, [(0, "abc"), (6, "abc"), (12, "abc")]); | 
 |     /// | 
 |     /// let v: Vec<_> = "1abcabc2".match_indices("abc").collect(); | 
 |     /// assert_eq!(v, [(1, "abc"), (4, "abc")]); | 
 |     /// | 
 |     /// let v: Vec<_> = "ababa".match_indices("aba").collect(); | 
 |     /// assert_eq!(v, [(0, "aba")]); // only the first `aba` | 
 |     /// ``` | 
 |     #[stable(feature = "str_match_indices", since = "1.5.0")] | 
 |     #[inline] | 
 |     pub fn match_indices<P: Pattern>(&self, pat: P) -> MatchIndices<'_, P> { | 
 |         MatchIndices(MatchIndicesInternal(pat.into_searcher(self))) | 
 |     } | 
 |  | 
 |     /// Returns an iterator over the disjoint matches of a pattern within `self`, | 
 |     /// yielded in reverse order along with the index of the match. | 
 |     /// | 
 |     /// For matches of `pat` within `self` that overlap, only the indices | 
 |     /// corresponding to the last match are returned. | 
 |     /// | 
 |     /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a | 
 |     /// function or closure that determines if a character matches. | 
 |     /// | 
 |     /// [`char`]: prim@char | 
 |     /// [pattern]: self::pattern | 
 |     /// | 
 |     /// # Iterator behavior | 
 |     /// | 
 |     /// The returned iterator requires that the pattern supports a reverse | 
 |     /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse | 
 |     /// search yields the same elements. | 
 |     /// | 
 |     /// For iterating from the front, the [`match_indices`] method can be used. | 
 |     /// | 
 |     /// [`match_indices`]: str::match_indices | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// ``` | 
 |     /// let v: Vec<_> = "abcXXXabcYYYabc".rmatch_indices("abc").collect(); | 
 |     /// assert_eq!(v, [(12, "abc"), (6, "abc"), (0, "abc")]); | 
 |     /// | 
 |     /// let v: Vec<_> = "1abcabc2".rmatch_indices("abc").collect(); | 
 |     /// assert_eq!(v, [(4, "abc"), (1, "abc")]); | 
 |     /// | 
 |     /// let v: Vec<_> = "ababa".rmatch_indices("aba").collect(); | 
 |     /// assert_eq!(v, [(2, "aba")]); // only the last `aba` | 
 |     /// ``` | 
 |     #[stable(feature = "str_match_indices", since = "1.5.0")] | 
 |     #[inline] | 
 |     pub fn rmatch_indices<P: Pattern>(&self, pat: P) -> RMatchIndices<'_, P> | 
 |     where | 
 |         for<'a> P::Searcher<'a>: ReverseSearcher<'a>, | 
 |     { | 
 |         RMatchIndices(self.match_indices(pat).0) | 
 |     } | 
 |  | 
 |     /// Returns a string slice with leading and trailing whitespace removed. | 
 |     /// | 
 |     /// 'Whitespace' is defined according to the terms of the Unicode Derived | 
 |     /// Core Property `White_Space`, which includes newlines. | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// ``` | 
 |     /// let s = "\n Hello\tworld\t\n"; | 
 |     /// | 
 |     /// assert_eq!("Hello\tworld", s.trim()); | 
 |     /// ``` | 
 |     #[inline] | 
 |     #[must_use = "this returns the trimmed string as a slice, \ | 
 |                   without modifying the original"] | 
 |     #[stable(feature = "rust1", since = "1.0.0")] | 
 |     #[rustc_diagnostic_item = "str_trim"] | 
 |     pub fn trim(&self) -> &str { | 
 |         self.trim_matches(char::is_whitespace) | 
 |     } | 
 |  | 
 |     /// Returns a string slice with leading whitespace removed. | 
 |     /// | 
 |     /// 'Whitespace' is defined according to the terms of the Unicode Derived | 
 |     /// Core Property `White_Space`, which includes newlines. | 
 |     /// | 
 |     /// # Text directionality | 
 |     /// | 
 |     /// A string is a sequence of bytes. `start` in this context means the first | 
 |     /// position of that byte string; for a left-to-right language like English or | 
 |     /// Russian, this will be left side, and for right-to-left languages like | 
 |     /// Arabic or Hebrew, this will be the right side. | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// Basic usage: | 
 |     /// | 
 |     /// ``` | 
 |     /// let s = "\n Hello\tworld\t\n"; | 
 |     /// assert_eq!("Hello\tworld\t\n", s.trim_start()); | 
 |     /// ``` | 
 |     /// | 
 |     /// Directionality: | 
 |     /// | 
 |     /// ``` | 
 |     /// let s = "  English  "; | 
 |     /// assert!(Some('E') == s.trim_start().chars().next()); | 
 |     /// | 
 |     /// let s = "  עברית  "; | 
 |     /// assert!(Some('ע') == s.trim_start().chars().next()); | 
 |     /// ``` | 
 |     #[inline] | 
 |     #[must_use = "this returns the trimmed string as a new slice, \ | 
 |                   without modifying the original"] | 
 |     #[stable(feature = "trim_direction", since = "1.30.0")] | 
 |     #[rustc_diagnostic_item = "str_trim_start"] | 
 |     pub fn trim_start(&self) -> &str { | 
 |         self.trim_start_matches(char::is_whitespace) | 
 |     } | 
 |  | 
 |     /// Returns a string slice with trailing whitespace removed. | 
 |     /// | 
 |     /// 'Whitespace' is defined according to the terms of the Unicode Derived | 
 |     /// Core Property `White_Space`, which includes newlines. | 
 |     /// | 
 |     /// # Text directionality | 
 |     /// | 
 |     /// A string is a sequence of bytes. `end` in this context means the last | 
 |     /// position of that byte string; for a left-to-right language like English or | 
 |     /// Russian, this will be right side, and for right-to-left languages like | 
 |     /// Arabic or Hebrew, this will be the left side. | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// Basic usage: | 
 |     /// | 
 |     /// ``` | 
 |     /// let s = "\n Hello\tworld\t\n"; | 
 |     /// assert_eq!("\n Hello\tworld", s.trim_end()); | 
 |     /// ``` | 
 |     /// | 
 |     /// Directionality: | 
 |     /// | 
 |     /// ``` | 
 |     /// let s = "  English  "; | 
 |     /// assert!(Some('h') == s.trim_end().chars().rev().next()); | 
 |     /// | 
 |     /// let s = "  עברית  "; | 
 |     /// assert!(Some('ת') == s.trim_end().chars().rev().next()); | 
 |     /// ``` | 
 |     #[inline] | 
 |     #[must_use = "this returns the trimmed string as a new slice, \ | 
 |                   without modifying the original"] | 
 |     #[stable(feature = "trim_direction", since = "1.30.0")] | 
 |     #[rustc_diagnostic_item = "str_trim_end"] | 
 |     pub fn trim_end(&self) -> &str { | 
 |         self.trim_end_matches(char::is_whitespace) | 
 |     } | 
 |  | 
 |     /// Returns a string slice with leading whitespace removed. | 
 |     /// | 
 |     /// 'Whitespace' is defined according to the terms of the Unicode Derived | 
 |     /// Core Property `White_Space`. | 
 |     /// | 
 |     /// # Text directionality | 
 |     /// | 
 |     /// A string is a sequence of bytes. 'Left' in this context means the first | 
 |     /// position of that byte string; for a language like Arabic or Hebrew | 
 |     /// which are 'right to left' rather than 'left to right', this will be | 
 |     /// the _right_ side, not the left. | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// Basic usage: | 
 |     /// | 
 |     /// ``` | 
 |     /// let s = " Hello\tworld\t"; | 
 |     /// | 
 |     /// assert_eq!("Hello\tworld\t", s.trim_left()); | 
 |     /// ``` | 
 |     /// | 
 |     /// Directionality: | 
 |     /// | 
 |     /// ``` | 
 |     /// let s = "  English"; | 
 |     /// assert!(Some('E') == s.trim_left().chars().next()); | 
 |     /// | 
 |     /// let s = "  עברית"; | 
 |     /// assert!(Some('ע') == s.trim_left().chars().next()); | 
 |     /// ``` | 
 |     #[must_use = "this returns the trimmed string as a new slice, \ | 
 |                   without modifying the original"] | 
 |     #[inline] | 
 |     #[stable(feature = "rust1", since = "1.0.0")] | 
 |     #[deprecated(since = "1.33.0", note = "superseded by `trim_start`", suggestion = "trim_start")] | 
 |     pub fn trim_left(&self) -> &str { | 
 |         self.trim_start() | 
 |     } | 
 |  | 
 |     /// Returns a string slice with trailing whitespace removed. | 
 |     /// | 
 |     /// 'Whitespace' is defined according to the terms of the Unicode Derived | 
 |     /// Core Property `White_Space`. | 
 |     /// | 
 |     /// # Text directionality | 
 |     /// | 
 |     /// A string is a sequence of bytes. 'Right' in this context means the last | 
 |     /// position of that byte string; for a language like Arabic or Hebrew | 
 |     /// which are 'right to left' rather than 'left to right', this will be | 
 |     /// the _left_ side, not the right. | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// Basic usage: | 
 |     /// | 
 |     /// ``` | 
 |     /// let s = " Hello\tworld\t"; | 
 |     /// | 
 |     /// assert_eq!(" Hello\tworld", s.trim_right()); | 
 |     /// ``` | 
 |     /// | 
 |     /// Directionality: | 
 |     /// | 
 |     /// ``` | 
 |     /// let s = "English  "; | 
 |     /// assert!(Some('h') == s.trim_right().chars().rev().next()); | 
 |     /// | 
 |     /// let s = "עברית  "; | 
 |     /// assert!(Some('ת') == s.trim_right().chars().rev().next()); | 
 |     /// ``` | 
 |     #[must_use = "this returns the trimmed string as a new slice, \ | 
 |                   without modifying the original"] | 
 |     #[inline] | 
 |     #[stable(feature = "rust1", since = "1.0.0")] | 
 |     #[deprecated(since = "1.33.0", note = "superseded by `trim_end`", suggestion = "trim_end")] | 
 |     pub fn trim_right(&self) -> &str { | 
 |         self.trim_end() | 
 |     } | 
 |  | 
 |     /// Returns a string slice with all prefixes and suffixes that match a | 
 |     /// pattern repeatedly removed. | 
 |     /// | 
 |     /// The [pattern] can be a [`char`], a slice of [`char`]s, or a function | 
 |     /// or closure that determines if a character matches. | 
 |     /// | 
 |     /// [`char`]: prim@char | 
 |     /// [pattern]: self::pattern | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// Simple patterns: | 
 |     /// | 
 |     /// ``` | 
 |     /// assert_eq!("11foo1bar11".trim_matches('1'), "foo1bar"); | 
 |     /// assert_eq!("123foo1bar123".trim_matches(char::is_numeric), "foo1bar"); | 
 |     /// | 
 |     /// let x: &[_] = &['1', '2']; | 
 |     /// assert_eq!("12foo1bar12".trim_matches(x), "foo1bar"); | 
 |     /// ``` | 
 |     /// | 
 |     /// A more complex pattern, using a closure: | 
 |     /// | 
 |     /// ``` | 
 |     /// assert_eq!("1foo1barXX".trim_matches(|c| c == '1' || c == 'X'), "foo1bar"); | 
 |     /// ``` | 
 |     #[must_use = "this returns the trimmed string as a new slice, \ | 
 |                   without modifying the original"] | 
 |     #[stable(feature = "rust1", since = "1.0.0")] | 
 |     pub fn trim_matches<P: Pattern>(&self, pat: P) -> &str | 
 |     where | 
 |         for<'a> P::Searcher<'a>: DoubleEndedSearcher<'a>, | 
 |     { | 
 |         let mut i = 0; | 
 |         let mut j = 0; | 
 |         let mut matcher = pat.into_searcher(self); | 
 |         if let Some((a, b)) = matcher.next_reject() { | 
 |             i = a; | 
 |             j = b; // Remember earliest known match, correct it below if | 
 |             // last match is different | 
 |         } | 
 |         if let Some((_, b)) = matcher.next_reject_back() { | 
 |             j = b; | 
 |         } | 
 |         // SAFETY: `Searcher` is known to return valid indices. | 
 |         unsafe { self.get_unchecked(i..j) } | 
 |     } | 
 |  | 
 |     /// Returns a string slice with all prefixes that match a pattern | 
 |     /// repeatedly removed. | 
 |     /// | 
 |     /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a | 
 |     /// function or closure that determines if a character matches. | 
 |     /// | 
 |     /// [`char`]: prim@char | 
 |     /// [pattern]: self::pattern | 
 |     /// | 
 |     /// # Text directionality | 
 |     /// | 
 |     /// A string is a sequence of bytes. `start` in this context means the first | 
 |     /// position of that byte string; for a left-to-right language like English or | 
 |     /// Russian, this will be left side, and for right-to-left languages like | 
 |     /// Arabic or Hebrew, this will be the right side. | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// ``` | 
 |     /// assert_eq!("11foo1bar11".trim_start_matches('1'), "foo1bar11"); | 
 |     /// assert_eq!("123foo1bar123".trim_start_matches(char::is_numeric), "foo1bar123"); | 
 |     /// | 
 |     /// let x: &[_] = &['1', '2']; | 
 |     /// assert_eq!("12foo1bar12".trim_start_matches(x), "foo1bar12"); | 
 |     /// ``` | 
 |     #[must_use = "this returns the trimmed string as a new slice, \ | 
 |                   without modifying the original"] | 
 |     #[stable(feature = "trim_direction", since = "1.30.0")] | 
 |     pub fn trim_start_matches<P: Pattern>(&self, pat: P) -> &str { | 
 |         let mut i = self.len(); | 
 |         let mut matcher = pat.into_searcher(self); | 
 |         if let Some((a, _)) = matcher.next_reject() { | 
 |             i = a; | 
 |         } | 
 |         // SAFETY: `Searcher` is known to return valid indices. | 
 |         unsafe { self.get_unchecked(i..self.len()) } | 
 |     } | 
 |  | 
 |     /// Returns a string slice with the prefix removed. | 
 |     /// | 
 |     /// If the string starts with the pattern `prefix`, returns the substring after the prefix, | 
 |     /// wrapped in `Some`. Unlike [`trim_start_matches`], this method removes the prefix exactly once. | 
 |     /// | 
 |     /// If the string does not start with `prefix`, returns `None`. | 
 |     /// | 
 |     /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a | 
 |     /// function or closure that determines if a character matches. | 
 |     /// | 
 |     /// [`char`]: prim@char | 
 |     /// [pattern]: self::pattern | 
 |     /// [`trim_start_matches`]: Self::trim_start_matches | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// ``` | 
 |     /// assert_eq!("foo:bar".strip_prefix("foo:"), Some("bar")); | 
 |     /// assert_eq!("foo:bar".strip_prefix("bar"), None); | 
 |     /// assert_eq!("foofoo".strip_prefix("foo"), Some("foo")); | 
 |     /// ``` | 
 |     #[must_use = "this returns the remaining substring as a new slice, \ | 
 |                   without modifying the original"] | 
 |     #[stable(feature = "str_strip", since = "1.45.0")] | 
 |     pub fn strip_prefix<P: Pattern>(&self, prefix: P) -> Option<&str> { | 
 |         prefix.strip_prefix_of(self) | 
 |     } | 
 |  | 
 |     /// Returns a string slice with the suffix removed. | 
 |     /// | 
 |     /// If the string ends with the pattern `suffix`, returns the substring before the suffix, | 
 |     /// wrapped in `Some`.  Unlike [`trim_end_matches`], this method removes the suffix exactly once. | 
 |     /// | 
 |     /// If the string does not end with `suffix`, returns `None`. | 
 |     /// | 
 |     /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a | 
 |     /// function or closure that determines if a character matches. | 
 |     /// | 
 |     /// [`char`]: prim@char | 
 |     /// [pattern]: self::pattern | 
 |     /// [`trim_end_matches`]: Self::trim_end_matches | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// ``` | 
 |     /// assert_eq!("bar:foo".strip_suffix(":foo"), Some("bar")); | 
 |     /// assert_eq!("bar:foo".strip_suffix("bar"), None); | 
 |     /// assert_eq!("foofoo".strip_suffix("foo"), Some("foo")); | 
 |     /// ``` | 
 |     #[must_use = "this returns the remaining substring as a new slice, \ | 
 |                   without modifying the original"] | 
 |     #[stable(feature = "str_strip", since = "1.45.0")] | 
 |     pub fn strip_suffix<P: Pattern>(&self, suffix: P) -> Option<&str> | 
 |     where | 
 |         for<'a> P::Searcher<'a>: ReverseSearcher<'a>, | 
 |     { | 
 |         suffix.strip_suffix_of(self) | 
 |     } | 
 |  | 
 |     /// Returns a string slice with the optional prefix removed. | 
 |     /// | 
 |     /// If the string starts with the pattern `prefix`, returns the substring after the prefix. | 
 |     /// Unlike [`strip_prefix`], this method always returns `&str` for easy method chaining, | 
 |     /// instead of returning [`Option<&str>`]. | 
 |     /// | 
 |     /// If the string does not start with `prefix`, returns the original string unchanged. | 
 |     /// | 
 |     /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a | 
 |     /// function or closure that determines if a character matches. | 
 |     /// | 
 |     /// [`char`]: prim@char | 
 |     /// [pattern]: self::pattern | 
 |     /// [`strip_prefix`]: Self::strip_prefix | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// ``` | 
 |     /// #![feature(trim_prefix_suffix)] | 
 |     /// | 
 |     /// // Prefix present - removes it | 
 |     /// assert_eq!("foo:bar".trim_prefix("foo:"), "bar"); | 
 |     /// assert_eq!("foofoo".trim_prefix("foo"), "foo"); | 
 |     /// | 
 |     /// // Prefix absent - returns original string | 
 |     /// assert_eq!("foo:bar".trim_prefix("bar"), "foo:bar"); | 
 |     /// | 
 |     /// // Method chaining example | 
 |     /// assert_eq!("<https://example.com/>".trim_prefix('<').trim_suffix('>'), "https://example.com/"); | 
 |     /// ``` | 
 |     #[must_use = "this returns the remaining substring as a new slice, \ | 
 |                   without modifying the original"] | 
 |     #[unstable(feature = "trim_prefix_suffix", issue = "142312")] | 
 |     pub fn trim_prefix<P: Pattern>(&self, prefix: P) -> &str { | 
 |         prefix.strip_prefix_of(self).unwrap_or(self) | 
 |     } | 
 |  | 
 |     /// Returns a string slice with the optional suffix removed. | 
 |     /// | 
 |     /// If the string ends with the pattern `suffix`, returns the substring before the suffix. | 
 |     /// Unlike [`strip_suffix`], this method always returns `&str` for easy method chaining, | 
 |     /// instead of returning [`Option<&str>`]. | 
 |     /// | 
 |     /// If the string does not end with `suffix`, returns the original string unchanged. | 
 |     /// | 
 |     /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a | 
 |     /// function or closure that determines if a character matches. | 
 |     /// | 
 |     /// [`char`]: prim@char | 
 |     /// [pattern]: self::pattern | 
 |     /// [`strip_suffix`]: Self::strip_suffix | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// ``` | 
 |     /// #![feature(trim_prefix_suffix)] | 
 |     /// | 
 |     /// // Suffix present - removes it | 
 |     /// assert_eq!("bar:foo".trim_suffix(":foo"), "bar"); | 
 |     /// assert_eq!("foofoo".trim_suffix("foo"), "foo"); | 
 |     /// | 
 |     /// // Suffix absent - returns original string | 
 |     /// assert_eq!("bar:foo".trim_suffix("bar"), "bar:foo"); | 
 |     /// | 
 |     /// // Method chaining example | 
 |     /// assert_eq!("<https://example.com/>".trim_prefix('<').trim_suffix('>'), "https://example.com/"); | 
 |     /// ``` | 
 |     #[must_use = "this returns the remaining substring as a new slice, \ | 
 |                   without modifying the original"] | 
 |     #[unstable(feature = "trim_prefix_suffix", issue = "142312")] | 
 |     pub fn trim_suffix<P: Pattern>(&self, suffix: P) -> &str | 
 |     where | 
 |         for<'a> P::Searcher<'a>: ReverseSearcher<'a>, | 
 |     { | 
 |         suffix.strip_suffix_of(self).unwrap_or(self) | 
 |     } | 
 |  | 
 |     /// Returns a string slice with all suffixes that match a pattern | 
 |     /// repeatedly removed. | 
 |     /// | 
 |     /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a | 
 |     /// function or closure that determines if a character matches. | 
 |     /// | 
 |     /// [`char`]: prim@char | 
 |     /// [pattern]: self::pattern | 
 |     /// | 
 |     /// # Text directionality | 
 |     /// | 
 |     /// A string is a sequence of bytes. `end` in this context means the last | 
 |     /// position of that byte string; for a left-to-right language like English or | 
 |     /// Russian, this will be right side, and for right-to-left languages like | 
 |     /// Arabic or Hebrew, this will be the left side. | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// Simple patterns: | 
 |     /// | 
 |     /// ``` | 
 |     /// assert_eq!("11foo1bar11".trim_end_matches('1'), "11foo1bar"); | 
 |     /// assert_eq!("123foo1bar123".trim_end_matches(char::is_numeric), "123foo1bar"); | 
 |     /// | 
 |     /// let x: &[_] = &['1', '2']; | 
 |     /// assert_eq!("12foo1bar12".trim_end_matches(x), "12foo1bar"); | 
 |     /// ``` | 
 |     /// | 
 |     /// A more complex pattern, using a closure: | 
 |     /// | 
 |     /// ``` | 
 |     /// assert_eq!("1fooX".trim_end_matches(|c| c == '1' || c == 'X'), "1foo"); | 
 |     /// ``` | 
 |     #[must_use = "this returns the trimmed string as a new slice, \ | 
 |                   without modifying the original"] | 
 |     #[stable(feature = "trim_direction", since = "1.30.0")] | 
 |     pub fn trim_end_matches<P: Pattern>(&self, pat: P) -> &str | 
 |     where | 
 |         for<'a> P::Searcher<'a>: ReverseSearcher<'a>, | 
 |     { | 
 |         let mut j = 0; | 
 |         let mut matcher = pat.into_searcher(self); | 
 |         if let Some((_, b)) = matcher.next_reject_back() { | 
 |             j = b; | 
 |         } | 
 |         // SAFETY: `Searcher` is known to return valid indices. | 
 |         unsafe { self.get_unchecked(0..j) } | 
 |     } | 
 |  | 
 |     /// Returns a string slice with all prefixes that match a pattern | 
 |     /// repeatedly removed. | 
 |     /// | 
 |     /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a | 
 |     /// function or closure that determines if a character matches. | 
 |     /// | 
 |     /// [`char`]: prim@char | 
 |     /// [pattern]: self::pattern | 
 |     /// | 
 |     /// # Text directionality | 
 |     /// | 
 |     /// A string is a sequence of bytes. 'Left' in this context means the first | 
 |     /// position of that byte string; for a language like Arabic or Hebrew | 
 |     /// which are 'right to left' rather than 'left to right', this will be | 
 |     /// the _right_ side, not the left. | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// ``` | 
 |     /// assert_eq!("11foo1bar11".trim_left_matches('1'), "foo1bar11"); | 
 |     /// assert_eq!("123foo1bar123".trim_left_matches(char::is_numeric), "foo1bar123"); | 
 |     /// | 
 |     /// let x: &[_] = &['1', '2']; | 
 |     /// assert_eq!("12foo1bar12".trim_left_matches(x), "foo1bar12"); | 
 |     /// ``` | 
 |     #[stable(feature = "rust1", since = "1.0.0")] | 
 |     #[deprecated( | 
 |         since = "1.33.0", | 
 |         note = "superseded by `trim_start_matches`", | 
 |         suggestion = "trim_start_matches" | 
 |     )] | 
 |     pub fn trim_left_matches<P: Pattern>(&self, pat: P) -> &str { | 
 |         self.trim_start_matches(pat) | 
 |     } | 
 |  | 
 |     /// Returns a string slice with all suffixes that match a pattern | 
 |     /// repeatedly removed. | 
 |     /// | 
 |     /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a | 
 |     /// function or closure that determines if a character matches. | 
 |     /// | 
 |     /// [`char`]: prim@char | 
 |     /// [pattern]: self::pattern | 
 |     /// | 
 |     /// # Text directionality | 
 |     /// | 
 |     /// A string is a sequence of bytes. 'Right' in this context means the last | 
 |     /// position of that byte string; for a language like Arabic or Hebrew | 
 |     /// which are 'right to left' rather than 'left to right', this will be | 
 |     /// the _left_ side, not the right. | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// Simple patterns: | 
 |     /// | 
 |     /// ``` | 
 |     /// assert_eq!("11foo1bar11".trim_right_matches('1'), "11foo1bar"); | 
 |     /// assert_eq!("123foo1bar123".trim_right_matches(char::is_numeric), "123foo1bar"); | 
 |     /// | 
 |     /// let x: &[_] = &['1', '2']; | 
 |     /// assert_eq!("12foo1bar12".trim_right_matches(x), "12foo1bar"); | 
 |     /// ``` | 
 |     /// | 
 |     /// A more complex pattern, using a closure: | 
 |     /// | 
 |     /// ``` | 
 |     /// assert_eq!("1fooX".trim_right_matches(|c| c == '1' || c == 'X'), "1foo"); | 
 |     /// ``` | 
 |     #[stable(feature = "rust1", since = "1.0.0")] | 
 |     #[deprecated( | 
 |         since = "1.33.0", | 
 |         note = "superseded by `trim_end_matches`", | 
 |         suggestion = "trim_end_matches" | 
 |     )] | 
 |     pub fn trim_right_matches<P: Pattern>(&self, pat: P) -> &str | 
 |     where | 
 |         for<'a> P::Searcher<'a>: ReverseSearcher<'a>, | 
 |     { | 
 |         self.trim_end_matches(pat) | 
 |     } | 
 |  | 
 |     /// Parses this string slice into another type. | 
 |     /// | 
 |     /// Because `parse` is so general, it can cause problems with type | 
 |     /// inference. As such, `parse` is one of the few times you'll see | 
 |     /// the syntax affectionately known as the 'turbofish': `::<>`. This | 
 |     /// helps the inference algorithm understand specifically which type | 
 |     /// you're trying to parse into. | 
 |     /// | 
 |     /// `parse` can parse into any type that implements the [`FromStr`] trait. | 
 |     /// | 
 |     /// # Errors | 
 |     /// | 
 |     /// Will return [`Err`] if it's not possible to parse this string slice into | 
 |     /// the desired type. | 
 |     /// | 
 |     /// [`Err`]: FromStr::Err | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// Basic usage: | 
 |     /// | 
 |     /// ``` | 
 |     /// let four: u32 = "4".parse().unwrap(); | 
 |     /// | 
 |     /// assert_eq!(4, four); | 
 |     /// ``` | 
 |     /// | 
 |     /// Using the 'turbofish' instead of annotating `four`: | 
 |     /// | 
 |     /// ``` | 
 |     /// let four = "4".parse::<u32>(); | 
 |     /// | 
 |     /// assert_eq!(Ok(4), four); | 
 |     /// ``` | 
 |     /// | 
 |     /// Failing to parse: | 
 |     /// | 
 |     /// ``` | 
 |     /// let nope = "j".parse::<u32>(); | 
 |     /// | 
 |     /// assert!(nope.is_err()); | 
 |     /// ``` | 
 |     #[inline] | 
 |     #[stable(feature = "rust1", since = "1.0.0")] | 
 |     pub fn parse<F: FromStr>(&self) -> Result<F, F::Err> { | 
 |         FromStr::from_str(self) | 
 |     } | 
 |  | 
 |     /// Checks if all characters in this string are within the ASCII range. | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// ``` | 
 |     /// let ascii = "hello!\n"; | 
 |     /// let non_ascii = "Grüße, Jürgen ❤"; | 
 |     /// | 
 |     /// assert!(ascii.is_ascii()); | 
 |     /// assert!(!non_ascii.is_ascii()); | 
 |     /// ``` | 
 |     #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] | 
 |     #[rustc_const_stable(feature = "const_slice_is_ascii", since = "1.74.0")] | 
 |     #[must_use] | 
 |     #[inline] | 
 |     pub const fn is_ascii(&self) -> bool { | 
 |         // We can treat each byte as character here: all multibyte characters | 
 |         // start with a byte that is not in the ASCII range, so we will stop | 
 |         // there already. | 
 |         self.as_bytes().is_ascii() | 
 |     } | 
 |  | 
 |     /// If this string slice [`is_ascii`](Self::is_ascii), returns it as a slice | 
 |     /// of [ASCII characters](`ascii::Char`), otherwise returns `None`. | 
 |     #[unstable(feature = "ascii_char", issue = "110998")] | 
 |     #[must_use] | 
 |     #[inline] | 
 |     pub const fn as_ascii(&self) -> Option<&[ascii::Char]> { | 
 |         // Like in `is_ascii`, we can work on the bytes directly. | 
 |         self.as_bytes().as_ascii() | 
 |     } | 
 |  | 
 |     /// Converts this string slice into a slice of [ASCII characters](ascii::Char), | 
 |     /// without checking whether they are valid. | 
 |     /// | 
 |     /// # Safety | 
 |     /// | 
 |     /// Every character in this string must be ASCII, or else this is UB. | 
 |     #[unstable(feature = "ascii_char", issue = "110998")] | 
 |     #[must_use] | 
 |     #[inline] | 
 |     pub const unsafe fn as_ascii_unchecked(&self) -> &[ascii::Char] { | 
 |         assert_unsafe_precondition!( | 
 |             check_library_ub, | 
 |             "as_ascii_unchecked requires that the string is valid ASCII", | 
 |             (it: &str = self) => it.is_ascii() | 
 |         ); | 
 |  | 
 |         // SAFETY: the caller promised that every byte of this string slice | 
 |         // is ASCII. | 
 |         unsafe { self.as_bytes().as_ascii_unchecked() } | 
 |     } | 
 |  | 
 |     /// Checks that two strings are an ASCII case-insensitive match. | 
 |     /// | 
 |     /// Same as `to_ascii_lowercase(a) == to_ascii_lowercase(b)`, | 
 |     /// but without allocating and copying temporaries. | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// ``` | 
 |     /// assert!("Ferris".eq_ignore_ascii_case("FERRIS")); | 
 |     /// assert!("Ferrös".eq_ignore_ascii_case("FERRöS")); | 
 |     /// assert!(!"Ferrös".eq_ignore_ascii_case("FERRÖS")); | 
 |     /// ``` | 
 |     #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] | 
 |     #[rustc_const_stable(feature = "const_eq_ignore_ascii_case", since = "1.89.0")] | 
 |     #[must_use] | 
 |     #[inline] | 
 |     pub const fn eq_ignore_ascii_case(&self, other: &str) -> bool { | 
 |         self.as_bytes().eq_ignore_ascii_case(other.as_bytes()) | 
 |     } | 
 |  | 
 |     /// Converts this string to its ASCII upper case equivalent in-place. | 
 |     /// | 
 |     /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', | 
 |     /// but non-ASCII letters are unchanged. | 
 |     /// | 
 |     /// To return a new uppercased value without modifying the existing one, use | 
 |     /// [`to_ascii_uppercase()`]. | 
 |     /// | 
 |     /// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// ``` | 
 |     /// let mut s = String::from("Grüße, Jürgen ❤"); | 
 |     /// | 
 |     /// s.make_ascii_uppercase(); | 
 |     /// | 
 |     /// assert_eq!("GRüßE, JüRGEN ❤", s); | 
 |     /// ``` | 
 |     #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] | 
 |     #[rustc_const_stable(feature = "const_make_ascii", since = "1.84.0")] | 
 |     #[inline] | 
 |     pub const fn make_ascii_uppercase(&mut self) { | 
 |         // SAFETY: changing ASCII letters only does not invalidate UTF-8. | 
 |         let me = unsafe { self.as_bytes_mut() }; | 
 |         me.make_ascii_uppercase() | 
 |     } | 
 |  | 
 |     /// Converts this string to its ASCII lower case equivalent in-place. | 
 |     /// | 
 |     /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', | 
 |     /// but non-ASCII letters are unchanged. | 
 |     /// | 
 |     /// To return a new lowercased value without modifying the existing one, use | 
 |     /// [`to_ascii_lowercase()`]. | 
 |     /// | 
 |     /// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// ``` | 
 |     /// let mut s = String::from("GRÜßE, JÜRGEN ❤"); | 
 |     /// | 
 |     /// s.make_ascii_lowercase(); | 
 |     /// | 
 |     /// assert_eq!("grÜße, jÜrgen ❤", s); | 
 |     /// ``` | 
 |     #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] | 
 |     #[rustc_const_stable(feature = "const_make_ascii", since = "1.84.0")] | 
 |     #[inline] | 
 |     pub const fn make_ascii_lowercase(&mut self) { | 
 |         // SAFETY: changing ASCII letters only does not invalidate UTF-8. | 
 |         let me = unsafe { self.as_bytes_mut() }; | 
 |         me.make_ascii_lowercase() | 
 |     } | 
 |  | 
 |     /// Returns a string slice with leading ASCII whitespace removed. | 
 |     /// | 
 |     /// 'Whitespace' refers to the definition used by | 
 |     /// [`u8::is_ascii_whitespace`]. | 
 |     /// | 
 |     /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// ``` | 
 |     /// assert_eq!(" \t \u{3000}hello world\n".trim_ascii_start(), "\u{3000}hello world\n"); | 
 |     /// assert_eq!("  ".trim_ascii_start(), ""); | 
 |     /// assert_eq!("".trim_ascii_start(), ""); | 
 |     /// ``` | 
 |     #[must_use = "this returns the trimmed string as a new slice, \ | 
 |                   without modifying the original"] | 
 |     #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")] | 
 |     #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")] | 
 |     #[inline] | 
 |     pub const fn trim_ascii_start(&self) -> &str { | 
 |         // SAFETY: Removing ASCII characters from a `&str` does not invalidate | 
 |         // UTF-8. | 
 |         unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii_start()) } | 
 |     } | 
 |  | 
 |     /// Returns a string slice with trailing ASCII whitespace removed. | 
 |     /// | 
 |     /// 'Whitespace' refers to the definition used by | 
 |     /// [`u8::is_ascii_whitespace`]. | 
 |     /// | 
 |     /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// ``` | 
 |     /// assert_eq!("\r hello world\u{3000}\n ".trim_ascii_end(), "\r hello world\u{3000}"); | 
 |     /// assert_eq!("  ".trim_ascii_end(), ""); | 
 |     /// assert_eq!("".trim_ascii_end(), ""); | 
 |     /// ``` | 
 |     #[must_use = "this returns the trimmed string as a new slice, \ | 
 |                   without modifying the original"] | 
 |     #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")] | 
 |     #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")] | 
 |     #[inline] | 
 |     pub const fn trim_ascii_end(&self) -> &str { | 
 |         // SAFETY: Removing ASCII characters from a `&str` does not invalidate | 
 |         // UTF-8. | 
 |         unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii_end()) } | 
 |     } | 
 |  | 
 |     /// Returns a string slice with leading and trailing ASCII whitespace | 
 |     /// removed. | 
 |     /// | 
 |     /// 'Whitespace' refers to the definition used by | 
 |     /// [`u8::is_ascii_whitespace`]. | 
 |     /// | 
 |     /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// ``` | 
 |     /// assert_eq!("\r hello world\n ".trim_ascii(), "hello world"); | 
 |     /// assert_eq!("  ".trim_ascii(), ""); | 
 |     /// assert_eq!("".trim_ascii(), ""); | 
 |     /// ``` | 
 |     #[must_use = "this returns the trimmed string as a new slice, \ | 
 |                   without modifying the original"] | 
 |     #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")] | 
 |     #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")] | 
 |     #[inline] | 
 |     pub const fn trim_ascii(&self) -> &str { | 
 |         // SAFETY: Removing ASCII characters from a `&str` does not invalidate | 
 |         // UTF-8. | 
 |         unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii()) } | 
 |     } | 
 |  | 
 |     /// Returns an iterator that escapes each char in `self` with [`char::escape_debug`]. | 
 |     /// | 
 |     /// Note: only extended grapheme codepoints that begin the string will be | 
 |     /// escaped. | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// As an iterator: | 
 |     /// | 
 |     /// ``` | 
 |     /// for c in "❤\n!".escape_debug() { | 
 |     ///     print!("{c}"); | 
 |     /// } | 
 |     /// println!(); | 
 |     /// ``` | 
 |     /// | 
 |     /// Using `println!` directly: | 
 |     /// | 
 |     /// ``` | 
 |     /// println!("{}", "❤\n!".escape_debug()); | 
 |     /// ``` | 
 |     /// | 
 |     /// | 
 |     /// Both are equivalent to: | 
 |     /// | 
 |     /// ``` | 
 |     /// println!("❤\\n!"); | 
 |     /// ``` | 
 |     /// | 
 |     /// Using `to_string`: | 
 |     /// | 
 |     /// ``` | 
 |     /// assert_eq!("❤\n!".escape_debug().to_string(), "❤\\n!"); | 
 |     /// ``` | 
 |     #[must_use = "this returns the escaped string as an iterator, \ | 
 |                   without modifying the original"] | 
 |     #[stable(feature = "str_escape", since = "1.34.0")] | 
 |     pub fn escape_debug(&self) -> EscapeDebug<'_> { | 
 |         let mut chars = self.chars(); | 
 |         EscapeDebug { | 
 |             inner: chars | 
 |                 .next() | 
 |                 .map(|first| first.escape_debug_ext(EscapeDebugExtArgs::ESCAPE_ALL)) | 
 |                 .into_iter() | 
 |                 .flatten() | 
 |                 .chain(chars.flat_map(CharEscapeDebugContinue)), | 
 |         } | 
 |     } | 
 |  | 
 |     /// Returns an iterator that escapes each char in `self` with [`char::escape_default`]. | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// As an iterator: | 
 |     /// | 
 |     /// ``` | 
 |     /// for c in "❤\n!".escape_default() { | 
 |     ///     print!("{c}"); | 
 |     /// } | 
 |     /// println!(); | 
 |     /// ``` | 
 |     /// | 
 |     /// Using `println!` directly: | 
 |     /// | 
 |     /// ``` | 
 |     /// println!("{}", "❤\n!".escape_default()); | 
 |     /// ``` | 
 |     /// | 
 |     /// | 
 |     /// Both are equivalent to: | 
 |     /// | 
 |     /// ``` | 
 |     /// println!("\\u{{2764}}\\n!"); | 
 |     /// ``` | 
 |     /// | 
 |     /// Using `to_string`: | 
 |     /// | 
 |     /// ``` | 
 |     /// assert_eq!("❤\n!".escape_default().to_string(), "\\u{2764}\\n!"); | 
 |     /// ``` | 
 |     #[must_use = "this returns the escaped string as an iterator, \ | 
 |                   without modifying the original"] | 
 |     #[stable(feature = "str_escape", since = "1.34.0")] | 
 |     pub fn escape_default(&self) -> EscapeDefault<'_> { | 
 |         EscapeDefault { inner: self.chars().flat_map(CharEscapeDefault) } | 
 |     } | 
 |  | 
 |     /// Returns an iterator that escapes each char in `self` with [`char::escape_unicode`]. | 
 |     /// | 
 |     /// # Examples | 
 |     /// | 
 |     /// As an iterator: | 
 |     /// | 
 |     /// ``` | 
 |     /// for c in "❤\n!".escape_unicode() { | 
 |     ///     print!("{c}"); | 
 |     /// } | 
 |     /// println!(); | 
 |     /// ``` | 
 |     /// | 
 |     /// Using `println!` directly: | 
 |     /// | 
 |     /// ``` | 
 |     /// println!("{}", "❤\n!".escape_unicode()); | 
 |     /// ``` | 
 |     /// | 
 |     /// | 
 |     /// Both are equivalent to: | 
 |     /// | 
 |     /// ``` | 
 |     /// println!("\\u{{2764}}\\u{{a}}\\u{{21}}"); | 
 |     /// ``` | 
 |     /// | 
 |     /// Using `to_string`: | 
 |     /// | 
 |     /// ``` | 
 |     /// assert_eq!("❤\n!".escape_unicode().to_string(), "\\u{2764}\\u{a}\\u{21}"); | 
 |     /// ``` | 
 |     #[must_use = "this returns the escaped string as an iterator, \ | 
 |                   without modifying the original"] | 
 |     #[stable(feature = "str_escape", since = "1.34.0")] | 
 |     pub fn escape_unicode(&self) -> EscapeUnicode<'_> { | 
 |         EscapeUnicode { inner: self.chars().flat_map(CharEscapeUnicode) } | 
 |     } | 
 |  | 
 |     /// Returns the range that a substring points to. | 
 |     /// | 
 |     /// Returns `None` if `substr` does not point within `self`. | 
 |     /// | 
 |     /// Unlike [`str::find`], **this does not search through the string**. | 
 |     /// Instead, it uses pointer arithmetic to find where in the string | 
 |     /// `substr` is derived from. | 
 |     /// | 
 |     /// This is useful for extending [`str::split`] and similar methods. | 
 |     /// | 
 |     /// Note that this method may return false positives (typically either | 
 |     /// `Some(0..0)` or `Some(self.len()..self.len())`) if `substr` is a | 
 |     /// zero-length `str` that points at the beginning or end of another, | 
 |     /// independent, `str`. | 
 |     /// | 
 |     /// # Examples | 
 |     /// ``` | 
 |     /// #![feature(substr_range)] | 
 |     /// | 
 |     /// let data = "a, b, b, a"; | 
 |     /// let mut iter = data.split(", ").map(|s| data.substr_range(s).unwrap()); | 
 |     /// | 
 |     /// assert_eq!(iter.next(), Some(0..1)); | 
 |     /// assert_eq!(iter.next(), Some(3..4)); | 
 |     /// assert_eq!(iter.next(), Some(6..7)); | 
 |     /// assert_eq!(iter.next(), Some(9..10)); | 
 |     /// ``` | 
 |     #[must_use] | 
 |     #[unstable(feature = "substr_range", issue = "126769")] | 
 |     pub fn substr_range(&self, substr: &str) -> Option<Range<usize>> { | 
 |         self.as_bytes().subslice_range(substr.as_bytes()) | 
 |     } | 
 |  | 
 |     /// Returns the same string as a string slice `&str`. | 
 |     /// | 
 |     /// This method is redundant when used directly on `&str`, but | 
 |     /// it helps dereferencing other string-like types to string slices, | 
 |     /// for example references to `Box<str>` or `Arc<str>`. | 
 |     #[inline] | 
 |     #[unstable(feature = "str_as_str", issue = "130366")] | 
 |     pub fn as_str(&self) -> &str { | 
 |         self | 
 |     } | 
 | } | 
 |  | 
 | #[stable(feature = "rust1", since = "1.0.0")] | 
 | impl AsRef<[u8]> for str { | 
 |     #[inline] | 
 |     fn as_ref(&self) -> &[u8] { | 
 |         self.as_bytes() | 
 |     } | 
 | } | 
 |  | 
 | #[stable(feature = "rust1", since = "1.0.0")] | 
 | #[rustc_const_unstable(feature = "const_default", issue = "143894")] | 
 | impl const Default for &str { | 
 |     /// Creates an empty str | 
 |     #[inline] | 
 |     fn default() -> Self { | 
 |         "" | 
 |     } | 
 | } | 
 |  | 
 | #[stable(feature = "default_mut_str", since = "1.28.0")] | 
 | #[rustc_const_unstable(feature = "const_default", issue = "143894")] | 
 | impl const Default for &mut str { | 
 |     /// Creates an empty mutable str | 
 |     #[inline] | 
 |     fn default() -> Self { | 
 |         // SAFETY: The empty string is valid UTF-8. | 
 |         unsafe { from_utf8_unchecked_mut(&mut []) } | 
 |     } | 
 | } | 
 |  | 
 | impl_fn_for_zst! { | 
 |     /// A nameable, cloneable fn type | 
 |     #[derive(Clone)] | 
 |     struct LinesMap impl<'a> Fn = |line: &'a str| -> &'a str { | 
 |         let Some(line) = line.strip_suffix('\n') else { return line }; | 
 |         let Some(line) = line.strip_suffix('\r') else { return line }; | 
 |         line | 
 |     }; | 
 |  | 
 |     #[derive(Clone)] | 
 |     struct CharEscapeDebugContinue impl Fn = |c: char| -> char::EscapeDebug { | 
 |         c.escape_debug_ext(EscapeDebugExtArgs { | 
 |             escape_grapheme_extended: false, | 
 |             escape_single_quote: true, | 
 |             escape_double_quote: true | 
 |         }) | 
 |     }; | 
 |  | 
 |     #[derive(Clone)] | 
 |     struct CharEscapeUnicode impl Fn = |c: char| -> char::EscapeUnicode { | 
 |         c.escape_unicode() | 
 |     }; | 
 |     #[derive(Clone)] | 
 |     struct CharEscapeDefault impl Fn = |c: char| -> char::EscapeDefault { | 
 |         c.escape_default() | 
 |     }; | 
 |  | 
 |     #[derive(Clone)] | 
 |     struct IsWhitespace impl Fn = |c: char| -> bool { | 
 |         c.is_whitespace() | 
 |     }; | 
 |  | 
 |     #[derive(Clone)] | 
 |     struct IsAsciiWhitespace impl Fn = |byte: &u8| -> bool { | 
 |         byte.is_ascii_whitespace() | 
 |     }; | 
 |  | 
 |     #[derive(Clone)] | 
 |     struct IsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b str| -> bool { | 
 |         !s.is_empty() | 
 |     }; | 
 |  | 
 |     #[derive(Clone)] | 
 |     struct BytesIsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b [u8]| -> bool { | 
 |         !s.is_empty() | 
 |     }; | 
 |  | 
 |     #[derive(Clone)] | 
 |     struct UnsafeBytesToStr impl<'a> Fn = |bytes: &'a [u8]| -> &'a str { | 
 |         // SAFETY: not safe | 
 |         unsafe { from_utf8_unchecked(bytes) } | 
 |     }; | 
 | } | 
 |  | 
 | // This is required to make `impl From<&str> for Box<dyn Error>` and `impl<E> From<E> for Box<dyn Error>` not overlap. | 
 | #[stable(feature = "error_in_core_neg_impl", since = "1.65.0")] | 
 | impl !crate::error::Error for &str {} |