blob: fa97131f695f98e82285934ac683b9e703c0ea72 [file] [log] [blame]
from __future__ import division, print_function
import json
import argparse
import sys
import re
import textwrap
import itertools
SPEC = re.compile(
r'^(?:(?P<void>V)|(?P<id>[iusfIUSF])(?:\((?P<start>\d+)-(?P<end>\d+)\)|'
r'(?P<width>\d+)(:?/(?P<llvm_width>\d+))?)'
r'|(?P<reference>\d+))(?P<index>\.\d+)?(?P<modifiers>[vShdnwusfDMCNW]*)(?P<force_width>x\d+)?'
r'(?:(?P<pointer>Pm|Pc)(?P<llvm_pointer>/.*)?|(?P<bitcast>->.*))?$'
)
class PlatformInfo(object):
def __init__(self, json):
self._platform = json['platform']
def platform_prefix(self):
return self._platform
class IntrinsicSet(object):
def __init__(self, platform, json):
self._llvm_prefix = json['llvm_prefix']
self._type_info = json['number_info']
self._intrinsics = json['intrinsics']
self._widths = json['width_info']
self._platform = platform
self._intrinsic_prefix = json['intrinsic_prefix']
def intrinsics(self):
for raw in self._intrinsics:
yield GenericIntrinsic(self,
raw['intrinsic'], raw['width'], raw['llvm'],
raw['ret'], raw['args'])
def platform(self):
return self._platform
def intrinsic_prefix(self):
return self._intrinsic_prefix
def llvm_prefix(self):
return self._llvm_prefix
def width_info(self, bitwidth):
return self._widths[str(bitwidth)]
def number_type_info(self, value):
data = self._type_info[value.__class__.__name__.lower()]
bitwidth = value.bitwidth()
def lookup(raw):
if not isinstance(raw, dict):
return raw
try:
return raw[str(bitwidth)]
except KeyError:
return raw['pattern'].format(bitwidth = bitwidth)
return PlatformTypeInfo(value.llvm_name(),
{k: lookup(v) for k, v in data.items()})
class PlatformTypeInfo(object):
def __init__(self, llvm_name, properties, elems = None):
if elems is None:
self.properties = properties
self.llvm_name = llvm_name
else:
assert properties is None and llvm_name is None
self.properties = {}
self.elems = elems
def __repr__(self):
return '<PlatformTypeInfo {}, {}>'.format(self.llvm_name, self.properties)
def __getattr__(self, name):
return self.properties[name]
def __getitem__(self, idx):
return self.elems[idx]
def vectorize(self, length, width_info):
props = self.properties.copy()
props.update(width_info)
return PlatformTypeInfo('v{}{}'.format(length, self.llvm_name), props)
def pointer(self, llvm_elem):
name = self.llvm_name if llvm_elem is None else llvm_elem.llvm_name
return PlatformTypeInfo('p0{}'.format(name), self.properties)
BITWIDTH_POINTER = '<pointer>'
class Type(object):
def __init__(self, bitwidth):
self._bitwidth = bitwidth
def bitwidth(self):
return self._bitwidth
def modify(self, spec, width, previous):
raise NotImplementedError()
def __ne__(self, other):
return not (self == other)
class Void(Type):
def __init__(self):
Type.__init__(self, 0)
@staticmethod
def compiler_ctor():
return '::VOID'
def compiler_ctor_ref(self):
return '&' + self.compiler_ctor()
@staticmethod
def rust_name():
return '()'
@staticmethod
def type_info(platform_info):
return None
def __eq__(self, other):
return isinstance(other, Void)
class Number(Type):
def __init__(self, bitwidth):
Type.__init__(self, bitwidth)
def modify(self, spec, width, previous):
if spec == 'u':
return Unsigned(self.bitwidth())
elif spec == 's':
return Signed(self.bitwidth())
elif spec == 'f':
return Float(self.bitwidth())
elif spec == 'w':
return self.__class__(self.bitwidth() * 2)
elif spec == 'n':
return self.__class__(self.bitwidth() // 2)
elif spec == 'v':
return Vector(self, width // self.bitwidth())
else:
raise ValueError('unknown modification spec {}', spec)
def type_info(self, platform_info):
return platform_info.number_type_info(self)
def __eq__(self, other):
# print(self, other)
return self.__class__ == other.__class__ and self.bitwidth() == other.bitwidth()
class Signed(Number):
def __init__(self, bitwidth, llvm_bitwidth = None):
Number.__init__(self, bitwidth)
self._llvm_bitwidth = llvm_bitwidth
def compiler_ctor(self):
if self._llvm_bitwidth is None:
return '::I{}'.format(self.bitwidth())
else:
return '::I{}_{}'.format(self.bitwidth(), self._llvm_bitwidth)
def compiler_ctor_ref(self):
return '&' + self.compiler_ctor()
def llvm_name(self):
bw = self._llvm_bitwidth or self.bitwidth()
return 'i{}'.format(bw)
def rust_name(self):
return 'i{}'.format(self.bitwidth())
class Unsigned(Number):
def __init__(self, bitwidth, llvm_bitwidth = None):
Number.__init__(self, bitwidth)
self._llvm_bitwidth = llvm_bitwidth
def compiler_ctor(self):
if self._llvm_bitwidth is None:
return '::U{}'.format(self.bitwidth())
else:
return '::U{}_{}'.format(self.bitwidth(), self._llvm_bitwidth)
def compiler_ctor_ref(self):
return '&' + self.compiler_ctor()
def llvm_name(self):
bw = self._llvm_bitwidth or self.bitwidth()
return 'i{}'.format(bw)
def rust_name(self):
return 'u{}'.format(self.bitwidth())
class Float(Number):
def __init__(self, bitwidth):
assert bitwidth in (32, 64)
Number.__init__(self, bitwidth)
def compiler_ctor(self):
return '::F{}'.format(self.bitwidth())
def compiler_ctor_ref(self):
return '&' + self.compiler_ctor()
def llvm_name(self):
return 'f{}'.format(self.bitwidth())
def rust_name(self):
return 'f{}'.format(self.bitwidth())
class Vector(Type):
def __init__(self, elem, length, bitcast = None):
assert isinstance(elem, Type) and not isinstance(elem, Vector)
Type.__init__(self,
elem.bitwidth() * length)
self._length = length
self._elem = elem
assert bitcast is None or (isinstance(bitcast, Vector) and
bitcast._bitcast is None and
bitcast._elem.bitwidth() == elem.bitwidth())
if bitcast is not None and bitcast._elem != elem:
self._bitcast = bitcast._elem
else:
self._bitcast = None
def modify(self, spec, width, previous):
if spec == 'S':
return self._elem
elif spec == 'h':
return Vector(self._elem, self._length // 2)
elif spec == 'd':
return Vector(self._elem, self._length * 2)
elif spec == 'N':
elem = self._elem.__class__(self._elem.bitwidth() // 2)
return Vector(elem, self._length * 2)
elif spec == 'W':
elem = self._elem.__class__(self._elem.bitwidth() * 2)
return Vector(elem, self._length // 2)
elif spec.startswith('x'):
new_bitwidth = int(spec[1:])
return Vector(self._elem, new_bitwidth // self._elem.bitwidth())
elif spec.startswith('->'):
bitcast_to = TypeSpec(spec[2:])
choices = list(bitcast_to.enumerate(width, previous))
assert len(choices) == 1
bitcast_to = choices[0]
return Vector(self._elem, self._length, bitcast_to)
else:
return Vector(self._elem.modify(spec, width, previous), self._length)
def compiler_ctor(self):
if self._bitcast is None:
return '{}x{}'.format(self._elem.compiler_ctor(),
self._length)
else:
return '{}x{}_{}'.format(self._elem.compiler_ctor(),
self._length,
self._bitcast.compiler_ctor()
.replace('::', ''))
def compiler_ctor_ref(self):
return '&' + self.compiler_ctor()
def rust_name(self):
return '{}x{}'.format(self._elem.rust_name(), self._length)
def type_info(self, platform_info):
elem_info = self._elem.type_info(platform_info)
return elem_info.vectorize(self._length,
platform_info.width_info(self.bitwidth()))
def __eq__(self, other):
return isinstance(other, Vector) and self._length == other._length and \
self._elem == other._elem and self._bitcast == other._bitcast
class Pointer(Type):
def __init__(self, elem, llvm_elem, const):
self._elem = elem
self._llvm_elem = llvm_elem
self._const = const
Type.__init__(self, BITWIDTH_POINTER)
def modify(self, spec, width, previous):
if spec == 'D':
return self._elem
elif spec == 'M':
return Pointer(self._elem, self._llvm_elem, False)
elif spec == 'C':
return Pointer(self._elem, self._llvm_elem, True)
else:
return Pointer(self._elem.modify(spec, width, previous), self._llvm_elem, self._const)
def compiler_ctor(self):
if self._llvm_elem is None:
llvm_elem = 'None'
else:
llvm_elem = 'Some({})'.format(self._llvm_elem.compiler_ctor_ref())
return 'Type::Pointer({}, {}, {})'.format(self._elem.compiler_ctor_ref(),
llvm_elem,
'true' if self._const else 'false')
def compiler_ctor_ref(self):
return "{{ static PTR: Type = {}; &PTR }}".format(self.compiler_ctor())
def rust_name(self):
return '*{} {}'.format('const' if self._const else 'mut',
self._elem.rust_name())
def type_info(self, platform_info):
if self._llvm_elem is None:
llvm_elem = None
else:
llvm_elem = self._llvm_elem.type_info(platform_info)
return self._elem.type_info(platform_info).pointer(llvm_elem)
def __eq__(self, other):
return isinstance(other, Pointer) and self._const == other._const \
and self._elem == other._elem and self._llvm_elem == other._llvm_elem
class Aggregate(Type):
def __init__(self, flatten, elems):
self._flatten = flatten
self._elems = elems
Type.__init__(self, sum(elem.bitwidth() for elem in elems))
def __repr__(self):
return '<Aggregate {}>'.format(self._elems)
def modify(self, spec, width, previous):
if spec.startswith('.'):
num = int(spec[1:])
return self._elems[num]
else:
print(spec)
raise NotImplementedError()
def compiler_ctor(self):
parts = "{{ static PARTS: [&'static Type; {}] = [{}]; &PARTS }}"
elems = ', '.join(elem.compiler_ctor_ref() for elem in self._elems)
parts = parts.format(len(self._elems), elems)
return 'Type::Aggregate({}, {})'.format('true' if self._flatten else 'false',
parts)
def compiler_ctor_ref(self):
return "{{ static AGG: Type = {}; &AGG }}".format(self.compiler_ctor())
def rust_name(self):
return '({})'.format(', '.join(elem.rust_name() for elem in self._elems))
def type_info(self, platform_info):
return PlatformTypeInfo(None, None, [elem.type_info(platform_info) for elem in self._elems])
def __eq__(self, other):
return isinstance(other, Aggregate) and self._flatten == other._flatten and \
self._elems == other._elems
TYPE_ID_LOOKUP = {'i': [Signed, Unsigned],
's': [Signed],
'u': [Unsigned],
'f': [Float]}
def ptrify(match, elem, width, previous):
ptr = match.group('pointer')
if ptr is None:
return elem
else:
llvm_ptr = match.group('llvm_pointer')
if llvm_ptr is None:
llvm_elem = None
else:
assert llvm_ptr.startswith('/')
options = list(TypeSpec(llvm_ptr[1:]).enumerate(width, previous))
assert len(options) == 1
llvm_elem = options[0]
assert ptr in ('Pc', 'Pm')
return Pointer(elem, llvm_elem, ptr == 'Pc')
class TypeSpec(object):
def __init__(self, spec):
if not isinstance(spec, list):
spec = [spec]
self.spec = spec
def enumerate(self, width, previous):
for spec in self.spec:
match = SPEC.match(spec)
if match is not None:
id = match.group('id')
reference = match.group('reference')
modifiers = []
index = match.group('index')
if index is not None:
modifiers.append(index)
modifiers += list(match.group('modifiers') or '')
force = match.group('force_width')
if force is not None:
modifiers.append(force)
bitcast = match.group('bitcast')
if bitcast is not None:
modifiers.append(bitcast)
if match.group('void') is not None:
assert spec == 'V'
yield Void()
elif id is not None:
is_vector = id.islower()
type_ctors = TYPE_ID_LOOKUP[id.lower()]
start = match.group('start')
if start is not None:
end = match.group('end')
llvm_width = None
else:
start = end = match.group('width')
llvm_width = match.group('llvm_width')
start = int(start)
end = int(end)
bitwidth = start
while bitwidth <= end:
for ctor in type_ctors:
if llvm_width is not None:
assert not is_vector
llvm_width = int(llvm_width)
assert llvm_width < bitwidth
scalar = ctor(bitwidth, llvm_width)
else:
scalar = ctor(bitwidth)
if is_vector:
elem = Vector(scalar, width // bitwidth)
else:
assert bitcast is None
elem = scalar
for x in modifiers:
elem = elem.modify(x, width, previous)
yield ptrify(match, elem, width, previous)
bitwidth *= 2
elif reference is not None:
reference = int(reference)
assert reference < len(previous), \
'referring to argument {}, but only {} are known'.format(reference,
len(previous))
ret = previous[reference]
for x in modifiers:
ret = ret.modify(x, width, previous)
yield ptrify(match, ret, width, previous)
else:
assert False, 'matched `{}`, but didn\'t understand it?'.format(spec)
elif spec.startswith('('):
if spec.endswith(')'):
true_spec = spec[1:-1]
flatten = False
elif spec.endswith(')f'):
true_spec = spec[1:-2]
flatten = True
else:
assert False, 'found unclosed aggregate `{}`'.format(spec)
for elems in itertools.product(*(TypeSpec(subspec).enumerate(width, previous)
for subspec in true_spec.split(','))):
yield Aggregate(flatten, elems)
elif spec.startswith('['):
if spec.endswith(']'):
true_spec = spec[1:-1]
flatten = False
elif spec.endswith(']f'):
true_spec = spec[1:-2]
flatten = True
else:
assert False, 'found unclosed aggregate `{}`'.format(spec)
elem_spec, count = true_spec.split(';')
count = int(count)
for elem in TypeSpec(elem_spec).enumerate(width, previous):
yield Aggregate(flatten, [elem] * count)
else:
assert False, 'Failed to parse `{}`'.format(spec)
class GenericIntrinsic(object):
def __init__(self, platform, intrinsic, widths, llvm_name, ret, args):
self._platform = platform
self.intrinsic = intrinsic
self.widths = map(int, widths)
self.llvm_name = llvm_name
self.ret = TypeSpec(ret)
self.args = list(map(TypeSpec, args))
def monomorphise(self):
for width in self.widths:
# must be a power of two
assert width & (width - 1) == 0
def recur(processed, untouched):
if not untouched:
ret = processed[0]
args = processed[1:]
yield MonomorphicIntrinsic(self._platform, self.intrinsic, width,
self.llvm_name,
ret, args)
else:
raw_arg = untouched[0]
rest = untouched[1:]
for arg in raw_arg.enumerate(width, processed):
for intr in recur(processed + [arg], rest):
yield intr
for x in recur([], [self.ret] + self.args):
yield x
class MonomorphicIntrinsic(object):
def __init__(self, platform, intrinsic, width, llvm_name, ret, args):
self._platform = platform
self._intrinsic = intrinsic
self._width = '' if width == 64 else 'q'
self._llvm_name = llvm_name
self._ret_raw = ret
self._ret = ret.type_info(platform)
self._args_raw = args
self._args = [arg.type_info(platform) for arg in args]
def llvm_name(self):
if self._llvm_name.startswith('!'):
return self._llvm_name[1:].format(self._ret, *self._args)
else:
return self._platform.llvm_prefix() + self._llvm_name.format(self._ret, *self._args)
def intrinsic_suffix(self):
return self._intrinsic.format(self._ret,
*self._args,
width = self._width)
def platform_prefix(self):
return self._platform.platform().platform_prefix()
def intrinsic_set_name(self):
return self._platform.intrinsic_prefix()
def intrinsic_name(self):
return self._platform.intrinsic_prefix() + self.intrinsic_suffix()
def compiler_args(self):
return ', '.join(arg.compiler_ctor_ref() for arg in self._args_raw)
def compiler_ret(self):
return self._ret_raw.compiler_ctor_ref()
def compiler_signature(self):
return '({}) -> {}'.format(self.compiler_args(), self.compiler_ret())
def intrinsic_signature(self):
names = 'xyzwabcdef'
return '({}) -> {}'.format(', '.join('{}: {}'.format(name, arg.rust_name())
for name, arg in zip(names, self._args_raw)),
self._ret_raw.rust_name())
def parse_args():
parser = argparse.ArgumentParser(
formatter_class = argparse.RawDescriptionHelpFormatter,
description = 'Render an intrinsic definition JSON to various formats.',
epilog = textwrap.dedent('''\
Quick How-To:
There are two operating modes: single file and multiple files.
For example, ARM is specified as a single file. To generate the
compiler-definitions for ARM just pass the script the "arm.json" file:
python generator.py --format compiler-defs arm.json
The X86 architecture is specified as multiple files (for the different
instruction sets that x86 supports). To generate the compiler
definitions one needs to pass the script a "platform information file"
(with the -i flag) next to the files of the different instruction sets.
For example, to generate the X86 compiler-definitions for SSE4.2, just:
python generator.py --format compiler-defs -i x86/info.json sse42.json
And to generate the compiler-definitions for SSE4.1 and SSE4.2, just:
python generator.py --format compiler-defs -i x86/info.json sse41.json sse42.json
An intrinsic definition consists of a map with fields:
- intrinsic: pattern for the name(s) of the vendor's C intrinsic(s)
- llvm: pattern for the name(s) of the internal llvm intrinsic(s)
- width: a vector of vector bit-widths the pattern works with
- ret: type specifier for the return value
- arguments: vector of type specifiers for arguments
The width and types describe a range of possible intrinsics,
and these are fed back into the intrinsic and llvm patterns to
create the appropriate definitions.
## Type specifier grammar
```
type := core_type modifier* suffix?
core_type := void | vector | scalar | aggregate | reference
modifier := 'v' | 'h' | 'd' | 'n' | 'w' | 'u' | 's' |
'x' number | '.' number
suffix := pointer | bitcast
pointer := 'Pm' llvm_pointer? | 'Pc' llvm_pointer?
llvm_pointer := '/' type
bitcast := '->' type
void := 'V'
vector := vector_elem width |
vector_elem := 'i' | 'u' | 's' | 'f'
scalar := scalar_type number llvm_width?
scalar_type := 'U' | 'S' | 'F'
llvm_width := '/' number
aggregate := '(' (type),* ')' 'f'? | '[' type ';' number ']' 'f'?
reference := number
width = number | '(' number '-' number ')'
number = [0-9]+
```
## Void
The `V` type corresponds to `void` in LLVM (`()` in
Rust). It's likely to only work in return position.
## Vectors
The vector grammar is a pattern describing many possibilities
for arguments/return value. The `vector_elem` describes the
types of elements to use, and the `width` describes the (range
of) widths for those elements, which are then placed into a
vector with the `width` bitwidth. E.g. if an intrinsic has a
`width` that includes 128, and the return value is `i(8-32)`,
then some instantiation of that intrinsic will be `u8x16`,
`u32x4`, `i32x4`, etc.
### Elements
- i: integer, both signed and unsigned
- u: unsigned integer
- s: signed integer
- f: float
## Scalars
Similar to vectors, but these describe a single concrete type,
not a range. The number is the bitwidth. The optional
`llvm_width` is the bitwidth of the integer that should be
passed to LLVM (by truncating the Rust argument): this only
works with scalar integers and the LLVM width must be smaller
than the Rust width.
### Types
- U: unsigned integer
- S: signed integer
- F: float
## Aggregates
An aggregate is a collection of multiple types; a tuple in
Rust terms, or an unnamed struct in LLVM. The `f` modifiers
forces the tuple to be flattened in the LLVM
intrinsic. E.g. if `llvm.foo` takes `(F32,S32)`:
- no `f` corresponds to `declare ... @llvm.foo({float, i32})`.
- having an `f` corresponds to `declare ... @llvm.foo(float, i32)`.
The `[type;number]` form is a just shorter way to write
`(...)`, except avoids doing a cartesian product of generic
types, e.g. `[S32;2]` is the same as `(S32, S32)`, while
`[I32;2]` is describing just the two types `(S32,S32)` and
`(U32,U32)` (i.e. doesn't include `(S32,U32)`, `(U32,S32)` as
`(I32,I32)` would).
(Currently aggregates can not contain other aggregates.)
## References
A reference uses the type of another argument, with possible
modifications. The number refers to the type to use, starting
with 0 == return value, 1 == first argument, 2 == second
argument, etc.
## Affixes
The `modifier` and `suffix` adaptors change the precise
representation.
### Modifiers
- 'v': put a scalar into a vector of the current width (u32 -> u32x4, when width == 128)
- 'S': get the scalar element of a vector (u32x4 -> u32)
- 'h': half the length of the vector (u32x4 -> u32x2)
- 'd': double the length of the vector (u32x2 -> u32x4)
- 'n': narrow the element of the vector (u32x4 -> u16x4)
- 'w': widen the element of the vector (u16x4 -> u32x4)
- 'N': half the length of the vector element (u32x4 -> u16x8)
- 'W': double the length of the vector element (u16x8 -> u32x4)
- 'u': force a number (vector or scalar) to be unsigned int (f32x4 -> u32x4)
- 's': force a number (vector or scalar) to be signed int (u32x4 -> i32x4)
- 'f': force a number (vector or scalar) to be float (u32x4 -> f32x4)
- 'x' number: force the type to be a vector of bitwidth `number`.
- '.' number: get the `number`th element of an aggregate
- 'D': dereference a pointer (*mut u32 -> u32)
- 'C': make a pointer const (*mut u32 -> *const u32)
- 'M': make a pointer mut (*const u32 -> *mut u32)
### Pointers
Pointers can be created of any type by appending a `P*`
suffix. The `m` vs. `c` chooses mut vs. const. e.g. `S32Pm`
corresponds to `*mut i32`, and `i32Pc` corresponds (with width
128) to `*const i8x16`, `*const u32x4`, etc.
The type after the `/` (optional) represents the type used
internally to LLVM, e.g. `S32pm/S8` is exposed as `*mut i32`
in Rust, but is `i8*` in LLVM. (This defaults to the main
type).
### Bitcast
The `'->' type` bitcast suffix will cause the value to be
bitcast to the right-hand type when calling the intrinsic,
e.g. `s32->f32` will expose the intrinsic as `i32x4` at the
Rust level, but will cast that vector to `f32x4` when calling
the LLVM intrinsic.
'''))
parser.add_argument('--format', choices=FORMATS, required=True,
help = 'Output format.')
parser.add_argument('-o', '--out', type=argparse.FileType('w'), default=sys.stdout,
help = 'File to output to (default stdout).')
parser.add_argument('-i', '--info', type=argparse.FileType('r'),
help = 'File containing platform specific information to merge into '
'the input files\' header.')
parser.add_argument('in_', metavar="FILE", type=argparse.FileType('r'), nargs='+',
help = 'JSON files to load')
return parser.parse_args()
class ExternBlock(object):
def __init__(self):
pass
@staticmethod
def open(platform):
return 'extern "platform-intrinsic" {'
@staticmethod
def render(mono):
return ' fn {}{}{};'.format(mono.platform_prefix(),
mono.intrinsic_name(),
mono.intrinsic_signature())
@staticmethod
def close():
return '}'
class CompilerDefs(object):
def __init__(self):
pass
@staticmethod
def open(platform):
return '''\
// DO NOT EDIT: autogenerated by etc/platform-intrinsics/generator.py
// ignore-tidy-linelength
#![allow(unused_imports)]
use {{Intrinsic, Type}};
use IntrinsicDef::Named;
pub fn find(name: &str) -> Option<Intrinsic> {{
if !name.starts_with("{0}") {{ return None }}
Some(match &name["{0}".len()..] {{'''.format(platform.platform_prefix())
@staticmethod
def render(mono):
return '''\
"{}" => Intrinsic {{
inputs: {{ static INPUTS: [&'static Type; {}] = [{}]; &INPUTS }},
output: {},
definition: Named("{}")
}},'''.format(mono.intrinsic_set_name() + mono.intrinsic_suffix(),
len(mono._args_raw),
mono.compiler_args(),
mono.compiler_ret(),
mono.llvm_name())
@staticmethod
def close():
return '''\
_ => return None,
})
}'''
FORMATS = {
'extern-block': ExternBlock(),
'compiler-defs': CompilerDefs(),
}
def main():
args = parse_args()
ins = args.in_
out = args.out
out_format = FORMATS[args.format]
info = args.info
one_file_no_info = False
if len(ins) > 1 and info is None:
print('error: cannot have multiple inputs without an info header.', file=sys.stderr)
sys.exit(1)
elif info is None:
info = ins[0]
one_file_no_info = True
info_json = json.load(info)
platform = PlatformInfo(info_json)
print(out_format.open(platform), file=out)
for in_ in ins:
if one_file_no_info:
data = info_json
else:
data = json.load(in_)
data.update(info_json)
intrinsics = IntrinsicSet(platform, data)
for intr in intrinsics.intrinsics():
for mono in intr.monomorphise():
print(out_format.render(mono), file=out)
print(out_format.close(), file=out)
if __name__ == '__main__':
main()