blob: 50e0056f3b9f1ebca653cd7fedd65ded9ca85264 [file] [log] [blame]
use attr::HasAttrs;
use feature_gate::{
feature_err,
EXPLAIN_STMT_ATTR_SYNTAX,
Features,
get_features,
GateIssue,
};
use {fold, attr};
use ast;
use source_map::Spanned;
use edition::Edition;
use parse::{token, ParseSess};
use smallvec::SmallVec;
use errors::Applicability;
use ptr::P;
/// A folder that strips out items that do not belong in the current configuration.
pub struct StripUnconfigured<'a> {
pub sess: &'a ParseSess,
pub features: Option<&'a Features>,
}
// `cfg_attr`-process the crate's attributes and compute the crate's features.
pub fn features(mut krate: ast::Crate, sess: &ParseSess, edition: Edition)
-> (ast::Crate, Features) {
let features;
{
let mut strip_unconfigured = StripUnconfigured {
sess,
features: None,
};
let unconfigured_attrs = krate.attrs.clone();
let err_count = sess.span_diagnostic.err_count();
if let Some(attrs) = strip_unconfigured.configure(krate.attrs) {
krate.attrs = attrs;
} else { // the entire crate is unconfigured
krate.attrs = Vec::new();
krate.module.items = Vec::new();
return (krate, Features::new());
}
features = get_features(&sess.span_diagnostic, &krate.attrs, edition);
// Avoid reconfiguring malformed `cfg_attr`s
if err_count == sess.span_diagnostic.err_count() {
strip_unconfigured.features = Some(&features);
strip_unconfigured.configure(unconfigured_attrs);
}
}
(krate, features)
}
macro_rules! configure {
($this:ident, $node:ident) => {
match $this.configure($node) {
Some(node) => node,
None => return Default::default(),
}
}
}
impl<'a> StripUnconfigured<'a> {
pub fn configure<T: HasAttrs>(&mut self, node: T) -> Option<T> {
let node = self.process_cfg_attrs(node);
if self.in_cfg(node.attrs()) { Some(node) } else { None }
}
/// Parse and expand all `cfg_attr` attributes into a list of attributes
/// that are within each `cfg_attr` that has a true configuration predicate.
///
/// Gives compiler warnigns if any `cfg_attr` does not contain any
/// attributes and is in the original source code. Gives compiler errors if
/// the syntax of any `cfg_attr` is incorrect.
pub fn process_cfg_attrs<T: HasAttrs>(&mut self, node: T) -> T {
node.map_attrs(|attrs| {
attrs.into_iter().flat_map(|attr| self.process_cfg_attr(attr)).collect()
})
}
/// Parse and expand a single `cfg_attr` attribute into a list of attributes
/// when the configuration predicate is true, or otherwise expand into an
/// empty list of attributes.
///
/// Gives a compiler warning when the `cfg_attr` contains no attributes and
/// is in the original source file. Gives a compiler error if the syntax of
/// the attribute is incorrect
fn process_cfg_attr(&mut self, attr: ast::Attribute) -> Vec<ast::Attribute> {
if !attr.check_name("cfg_attr") {
return vec![attr];
}
let (cfg_predicate, expanded_attrs) = match attr.parse(self.sess, |parser| {
parser.expect(&token::OpenDelim(token::Paren))?;
let cfg_predicate = parser.parse_meta_item()?;
parser.expect(&token::Comma)?;
// Presumably, the majority of the time there will only be one attr.
let mut expanded_attrs = Vec::with_capacity(1);
while !parser.check(&token::CloseDelim(token::Paren)) {
let lo = parser.span.lo();
let (path, tokens) = parser.parse_meta_item_unrestricted()?;
expanded_attrs.push((path, tokens, parser.prev_span.with_lo(lo)));
parser.expect_one_of(&[token::Comma], &[token::CloseDelim(token::Paren)])?;
}
parser.expect(&token::CloseDelim(token::Paren))?;
Ok((cfg_predicate, expanded_attrs))
}) {
Ok(result) => result,
Err(mut e) => {
e.emit();
return Vec::new();
}
};
// Check feature gate and lint on zero attributes in source. Even if the feature is gated,
// we still compute as if it wasn't, since the emitted error will stop compilation further
// along the compilation.
if expanded_attrs.len() == 0 {
// FIXME: Emit unused attribute lint here.
}
if attr::cfg_matches(&cfg_predicate, self.sess, self.features) {
// We call `process_cfg_attr` recursively in case there's a
// `cfg_attr` inside of another `cfg_attr`. E.g.
// `#[cfg_attr(false, cfg_attr(true, some_attr))]`.
expanded_attrs.into_iter()
.flat_map(|(path, tokens, span)| self.process_cfg_attr(ast::Attribute {
id: attr::mk_attr_id(),
style: attr.style,
path,
tokens,
is_sugared_doc: false,
span,
}))
.collect()
} else {
Vec::new()
}
}
/// Determine if a node with the given attributes should be included in this configuration.
pub fn in_cfg(&mut self, attrs: &[ast::Attribute]) -> bool {
attrs.iter().all(|attr| {
if !is_cfg(attr) {
return true;
}
let error = |span, msg, suggestion: &str| {
let mut err = self.sess.span_diagnostic.struct_span_err(span, msg);
if !suggestion.is_empty() {
err.span_suggestion_with_applicability(
span,
"expected syntax is",
suggestion.into(),
Applicability::MaybeIncorrect,
);
}
err.emit();
true
};
let meta_item = match attr.parse_meta(self.sess) {
Ok(meta_item) => meta_item,
Err(mut err) => { err.emit(); return true; }
};
let nested_meta_items = if let Some(nested_meta_items) = meta_item.meta_item_list() {
nested_meta_items
} else {
return error(meta_item.span, "`cfg` is not followed by parentheses",
"cfg(/* predicate */)");
};
if nested_meta_items.is_empty() {
return error(meta_item.span, "`cfg` predicate is not specified", "");
} else if nested_meta_items.len() > 1 {
return error(nested_meta_items.last().unwrap().span,
"multiple `cfg` predicates are specified", "");
}
match nested_meta_items[0].meta_item() {
Some(meta_item) => attr::cfg_matches(meta_item, self.sess, self.features),
None => error(nested_meta_items[0].span,
"`cfg` predicate key cannot be a literal", ""),
}
})
}
/// Visit attributes on expression and statements (but not attributes on items in blocks).
fn visit_expr_attrs(&mut self, attrs: &[ast::Attribute]) {
// flag the offending attributes
for attr in attrs.iter() {
self.maybe_emit_expr_attr_err(attr);
}
}
/// If attributes are not allowed on expressions, emit an error for `attr`
pub fn maybe_emit_expr_attr_err(&self, attr: &ast::Attribute) {
if !self.features.map(|features| features.stmt_expr_attributes).unwrap_or(true) {
let mut err = feature_err(self.sess,
"stmt_expr_attributes",
attr.span,
GateIssue::Language,
EXPLAIN_STMT_ATTR_SYNTAX);
if attr.is_sugared_doc {
err.help("`///` is for documentation comments. For a plain comment, use `//`.");
}
err.emit();
}
}
pub fn configure_foreign_mod(&mut self, foreign_mod: ast::ForeignMod) -> ast::ForeignMod {
ast::ForeignMod {
abi: foreign_mod.abi,
items: foreign_mod.items.into_iter().filter_map(|item| self.configure(item)).collect(),
}
}
fn configure_variant_data(&mut self, vdata: ast::VariantData) -> ast::VariantData {
match vdata {
ast::VariantData::Struct(fields, id) => {
let fields = fields.into_iter().filter_map(|field| self.configure(field));
ast::VariantData::Struct(fields.collect(), id)
}
ast::VariantData::Tuple(fields, id) => {
let fields = fields.into_iter().filter_map(|field| self.configure(field));
ast::VariantData::Tuple(fields.collect(), id)
}
ast::VariantData::Unit(id) => ast::VariantData::Unit(id)
}
}
pub fn configure_item_kind(&mut self, item: ast::ItemKind) -> ast::ItemKind {
match item {
ast::ItemKind::Struct(def, generics) => {
ast::ItemKind::Struct(self.configure_variant_data(def), generics)
}
ast::ItemKind::Union(def, generics) => {
ast::ItemKind::Union(self.configure_variant_data(def), generics)
}
ast::ItemKind::Enum(def, generics) => {
let variants = def.variants.into_iter().filter_map(|v| {
self.configure(v).map(|v| {
Spanned {
node: ast::Variant_ {
ident: v.node.ident,
attrs: v.node.attrs,
data: self.configure_variant_data(v.node.data),
disr_expr: v.node.disr_expr,
},
span: v.span
}
})
});
ast::ItemKind::Enum(ast::EnumDef {
variants: variants.collect(),
}, generics)
}
item => item,
}
}
pub fn configure_expr_kind(&mut self, expr_kind: ast::ExprKind) -> ast::ExprKind {
match expr_kind {
ast::ExprKind::Match(m, arms) => {
let arms = arms.into_iter().filter_map(|a| self.configure(a)).collect();
ast::ExprKind::Match(m, arms)
}
ast::ExprKind::Struct(path, fields, base) => {
let fields = fields.into_iter()
.filter_map(|field| {
self.configure(field)
})
.collect();
ast::ExprKind::Struct(path, fields, base)
}
_ => expr_kind,
}
}
pub fn configure_expr(&mut self, expr: P<ast::Expr>) -> P<ast::Expr> {
self.visit_expr_attrs(expr.attrs());
// If an expr is valid to cfg away it will have been removed by the
// outer stmt or expression folder before descending in here.
// Anything else is always required, and thus has to error out
// in case of a cfg attr.
//
// N.B., this is intentionally not part of the fold_expr() function
// in order for fold_opt_expr() to be able to avoid this check
if let Some(attr) = expr.attrs().iter().find(|a| is_cfg(a)) {
let msg = "removing an expression is not supported in this position";
self.sess.span_diagnostic.span_err(attr.span, msg);
}
self.process_cfg_attrs(expr)
}
pub fn configure_stmt(&mut self, stmt: ast::Stmt) -> Option<ast::Stmt> {
self.configure(stmt)
}
pub fn configure_struct_expr_field(&mut self, field: ast::Field) -> Option<ast::Field> {
self.configure(field)
}
pub fn configure_pat(&mut self, pattern: P<ast::Pat>) -> P<ast::Pat> {
pattern.map(|mut pattern| {
if let ast::PatKind::Struct(path, fields, etc) = pattern.node {
let fields = fields.into_iter()
.filter_map(|field| {
self.configure(field)
})
.collect();
pattern.node = ast::PatKind::Struct(path, fields, etc);
}
pattern
})
}
// deny #[cfg] on generic parameters until we decide what to do with it.
// see issue #51279.
pub fn disallow_cfg_on_generic_param(&mut self, param: &ast::GenericParam) {
for attr in param.attrs() {
let offending_attr = if attr.check_name("cfg") {
"cfg"
} else if attr.check_name("cfg_attr") {
"cfg_attr"
} else {
continue;
};
let msg = format!("#[{}] cannot be applied on a generic parameter", offending_attr);
self.sess.span_diagnostic.span_err(attr.span, &msg);
}
}
}
impl<'a> fold::Folder for StripUnconfigured<'a> {
fn fold_foreign_mod(&mut self, foreign_mod: ast::ForeignMod) -> ast::ForeignMod {
let foreign_mod = self.configure_foreign_mod(foreign_mod);
fold::noop_fold_foreign_mod(foreign_mod, self)
}
fn fold_item_kind(&mut self, item: ast::ItemKind) -> ast::ItemKind {
let item = self.configure_item_kind(item);
fold::noop_fold_item_kind(item, self)
}
fn fold_expr(&mut self, expr: P<ast::Expr>) -> P<ast::Expr> {
let mut expr = self.configure_expr(expr).into_inner();
expr.node = self.configure_expr_kind(expr.node);
P(fold::noop_fold_expr(expr, self))
}
fn fold_opt_expr(&mut self, expr: P<ast::Expr>) -> Option<P<ast::Expr>> {
let mut expr = configure!(self, expr).into_inner();
expr.node = self.configure_expr_kind(expr.node);
Some(P(fold::noop_fold_expr(expr, self)))
}
fn fold_stmt(&mut self, stmt: ast::Stmt) -> SmallVec<[ast::Stmt; 1]> {
match self.configure_stmt(stmt) {
Some(stmt) => fold::noop_fold_stmt(stmt, self),
None => return SmallVec::new(),
}
}
fn fold_item(&mut self, item: P<ast::Item>) -> SmallVec<[P<ast::Item>; 1]> {
fold::noop_fold_item(configure!(self, item), self)
}
fn fold_impl_item(&mut self, item: ast::ImplItem) -> SmallVec<[ast::ImplItem; 1]>
{
fold::noop_fold_impl_item(configure!(self, item), self)
}
fn fold_trait_item(&mut self, item: ast::TraitItem) -> SmallVec<[ast::TraitItem; 1]> {
fold::noop_fold_trait_item(configure!(self, item), self)
}
fn fold_mac(&mut self, mac: ast::Mac) -> ast::Mac {
// Don't configure interpolated AST (cf. issue #34171).
// Interpolated AST will get configured once the surrounding tokens are parsed.
mac
}
fn fold_pat(&mut self, pattern: P<ast::Pat>) -> P<ast::Pat> {
fold::noop_fold_pat(self.configure_pat(pattern), self)
}
}
fn is_cfg(attr: &ast::Attribute) -> bool {
attr.check_name("cfg")
}