blob: 8a68f1bb9d085e8512ee9a38708ba1da70457376 [file] [log] [blame]
use rustc::hir::def::Def;
use rustc::hir::def_id::DefId;
use rustc::ty;
use rustc::ty::adjustment;
use lint::{LateContext, EarlyContext, LintContext, LintArray};
use lint::{LintPass, EarlyLintPass, LateLintPass};
use syntax::ast;
use syntax::attr;
use syntax::errors::Applicability;
use syntax::feature_gate::{BUILTIN_ATTRIBUTES, AttributeType};
use syntax::print::pprust;
use syntax::symbol::keywords;
use syntax::util::parser;
use syntax_pos::Span;
use rustc::hir;
declare_lint! {
pub UNUSED_MUST_USE,
Warn,
"unused result of a type flagged as #[must_use]",
report_in_external_macro: true
}
declare_lint! {
pub UNUSED_RESULTS,
Allow,
"unused result of an expression in a statement"
}
#[derive(Copy, Clone)]
pub struct UnusedResults;
impl LintPass for UnusedResults {
fn get_lints(&self) -> LintArray {
lint_array!(UNUSED_MUST_USE, UNUSED_RESULTS)
}
}
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for UnusedResults {
fn check_stmt(&mut self, cx: &LateContext, s: &hir::Stmt) {
let expr = match s.node {
hir::StmtKind::Semi(ref expr) => &**expr,
_ => return,
};
if let hir::ExprKind::Ret(..) = expr.node {
return;
}
let t = cx.tables.expr_ty(&expr);
let type_permits_lack_of_use = if t.is_unit()
|| cx.tcx.is_ty_uninhabited_from(cx.tcx.hir().get_module_parent(expr.id), t) {
true
} else {
match t.sty {
ty::Adt(def, _) => check_must_use(cx, def.did, s.span, "", ""),
ty::Opaque(def, _) => {
let mut must_use = false;
for (predicate, _) in &cx.tcx.predicates_of(def).predicates {
if let ty::Predicate::Trait(ref poly_trait_predicate) = predicate {
let trait_ref = poly_trait_predicate.skip_binder().trait_ref;
if check_must_use(cx, trait_ref.def_id, s.span, "implementer of ", "") {
must_use = true;
break;
}
}
}
must_use
}
ty::Dynamic(binder, _) => {
let mut must_use = false;
for predicate in binder.skip_binder().iter() {
if let ty::ExistentialPredicate::Trait(ref trait_ref) = predicate {
if check_must_use(cx, trait_ref.def_id, s.span, "", " trait object") {
must_use = true;
break;
}
}
}
must_use
}
_ => false,
}
};
let mut fn_warned = false;
let mut op_warned = false;
let maybe_def = match expr.node {
hir::ExprKind::Call(ref callee, _) => {
match callee.node {
hir::ExprKind::Path(ref qpath) => {
let def = cx.tables.qpath_def(qpath, callee.hir_id);
match def {
Def::Fn(_) | Def::Method(_) => Some(def),
// `Def::Local` if it was a closure, for which we
// do not currently support must-use linting
_ => None
}
},
_ => None
}
},
hir::ExprKind::MethodCall(..) => {
cx.tables.type_dependent_defs().get(expr.hir_id).cloned()
},
_ => None
};
if let Some(def) = maybe_def {
let def_id = def.def_id();
fn_warned = check_must_use(cx, def_id, s.span, "return value of ", "");
} else if type_permits_lack_of_use {
// We don't warn about unused unit or uninhabited types.
// (See https://github.com/rust-lang/rust/issues/43806 for details.)
return;
}
let must_use_op = match expr.node {
// Hardcoding operators here seemed more expedient than the
// refactoring that would be needed to look up the `#[must_use]`
// attribute which does exist on the comparison trait methods
hir::ExprKind::Binary(bin_op, ..) => {
match bin_op.node {
hir::BinOpKind::Eq |
hir::BinOpKind::Lt |
hir::BinOpKind::Le |
hir::BinOpKind::Ne |
hir::BinOpKind::Ge |
hir::BinOpKind::Gt => {
Some("comparison")
},
hir::BinOpKind::Add |
hir::BinOpKind::Sub |
hir::BinOpKind::Div |
hir::BinOpKind::Mul |
hir::BinOpKind::Rem => {
Some("arithmetic operation")
},
hir::BinOpKind::And | hir::BinOpKind::Or => {
Some("logical operation")
},
hir::BinOpKind::BitXor |
hir::BinOpKind::BitAnd |
hir::BinOpKind::BitOr |
hir::BinOpKind::Shl |
hir::BinOpKind::Shr => {
Some("bitwise operation")
},
}
},
hir::ExprKind::Unary(..) => Some("unary operation"),
_ => None
};
if let Some(must_use_op) = must_use_op {
cx.span_lint(UNUSED_MUST_USE, expr.span,
&format!("unused {} that must be used", must_use_op));
op_warned = true;
}
if !(type_permits_lack_of_use || fn_warned || op_warned) {
cx.span_lint(UNUSED_RESULTS, s.span, "unused result");
}
fn check_must_use(
cx: &LateContext,
def_id: DefId,
sp: Span,
descr_pre_path: &str,
descr_post_path: &str,
) -> bool {
for attr in cx.tcx.get_attrs(def_id).iter() {
if attr.check_name("must_use") {
let msg = format!("unused {}`{}`{} that must be used",
descr_pre_path, cx.tcx.item_path_str(def_id), descr_post_path);
let mut err = cx.struct_span_lint(UNUSED_MUST_USE, sp, &msg);
// check for #[must_use = "..."]
if let Some(note) = attr.value_str() {
err.note(&note.as_str());
}
err.emit();
return true;
}
}
false
}
}
}
declare_lint! {
pub PATH_STATEMENTS,
Warn,
"path statements with no effect"
}
#[derive(Copy, Clone)]
pub struct PathStatements;
impl LintPass for PathStatements {
fn get_lints(&self) -> LintArray {
lint_array!(PATH_STATEMENTS)
}
}
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for PathStatements {
fn check_stmt(&mut self, cx: &LateContext, s: &hir::Stmt) {
if let hir::StmtKind::Semi(ref expr) = s.node {
if let hir::ExprKind::Path(_) = expr.node {
cx.span_lint(PATH_STATEMENTS, s.span, "path statement with no effect");
}
}
}
}
declare_lint! {
pub UNUSED_ATTRIBUTES,
Warn,
"detects attributes that were not used by the compiler"
}
#[derive(Copy, Clone)]
pub struct UnusedAttributes;
impl LintPass for UnusedAttributes {
fn get_lints(&self) -> LintArray {
lint_array!(UNUSED_ATTRIBUTES)
}
}
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for UnusedAttributes {
fn check_attribute(&mut self, cx: &LateContext, attr: &ast::Attribute) {
debug!("checking attribute: {:?}", attr);
// Note that check_name() marks the attribute as used if it matches.
for &(name, ty, ..) in BUILTIN_ATTRIBUTES {
match ty {
AttributeType::Whitelisted if attr.check_name(name) => {
debug!("{:?} is Whitelisted", name);
break;
}
_ => (),
}
}
let plugin_attributes = cx.sess().plugin_attributes.borrow_mut();
for &(ref name, ty) in plugin_attributes.iter() {
if ty == AttributeType::Whitelisted && attr.check_name(&name) {
debug!("{:?} (plugin attr) is whitelisted with ty {:?}", name, ty);
break;
}
}
let name = attr.name();
if !attr::is_used(attr) {
debug!("Emitting warning for: {:?}", attr);
cx.span_lint(UNUSED_ATTRIBUTES, attr.span, "unused attribute");
// Is it a builtin attribute that must be used at the crate level?
let known_crate = BUILTIN_ATTRIBUTES.iter()
.find(|&&(builtin, ty, ..)| name == builtin && ty == AttributeType::CrateLevel)
.is_some();
// Has a plugin registered this attribute as one that must be used at
// the crate level?
let plugin_crate = plugin_attributes.iter()
.find(|&&(ref x, t)| name == &**x && AttributeType::CrateLevel == t)
.is_some();
if known_crate || plugin_crate {
let msg = match attr.style {
ast::AttrStyle::Outer => {
"crate-level attribute should be an inner attribute: add an exclamation \
mark: #![foo]"
}
ast::AttrStyle::Inner => "crate-level attribute should be in the root module",
};
cx.span_lint(UNUSED_ATTRIBUTES, attr.span, msg);
}
} else {
debug!("Attr was used: {:?}", attr);
}
}
}
declare_lint! {
pub(super) UNUSED_PARENS,
Warn,
"`if`, `match`, `while` and `return` do not need parentheses"
}
#[derive(Copy, Clone)]
pub struct UnusedParens;
impl UnusedParens {
fn check_unused_parens_expr(&self,
cx: &EarlyContext,
value: &ast::Expr,
msg: &str,
followed_by_block: bool) {
if let ast::ExprKind::Paren(ref inner) = value.node {
let necessary = followed_by_block && match inner.node {
ast::ExprKind::Ret(_) | ast::ExprKind::Break(..) => true,
_ => parser::contains_exterior_struct_lit(&inner),
};
if !necessary {
let expr_text = if let Ok(snippet) = cx.sess().source_map()
.span_to_snippet(value.span) {
snippet
} else {
pprust::expr_to_string(value)
};
Self::remove_outer_parens(cx, value.span, &expr_text, msg);
}
}
}
fn check_unused_parens_pat(&self,
cx: &EarlyContext,
value: &ast::Pat,
msg: &str) {
if let ast::PatKind::Paren(_) = value.node {
let pattern_text = if let Ok(snippet) = cx.sess().source_map()
.span_to_snippet(value.span) {
snippet
} else {
pprust::pat_to_string(value)
};
Self::remove_outer_parens(cx, value.span, &pattern_text, msg);
}
}
fn remove_outer_parens(cx: &EarlyContext, span: Span, pattern: &str, msg: &str) {
let span_msg = format!("unnecessary parentheses around {}", msg);
let mut err = cx.struct_span_lint(UNUSED_PARENS, span, &span_msg);
let mut ate_left_paren = false;
let mut ate_right_paren = false;
let parens_removed = pattern
.trim_matches(|c| {
match c {
'(' => {
if ate_left_paren {
false
} else {
ate_left_paren = true;
true
}
},
')' => {
if ate_right_paren {
false
} else {
ate_right_paren = true;
true
}
},
_ => false,
}
}).to_owned();
err.span_suggestion_short_with_applicability(
span,
"remove these parentheses",
parens_removed,
Applicability::MachineApplicable
);
err.emit();
}
}
impl LintPass for UnusedParens {
fn get_lints(&self) -> LintArray {
lint_array!(UNUSED_PARENS)
}
}
impl EarlyLintPass for UnusedParens {
fn check_expr(&mut self, cx: &EarlyContext, e: &ast::Expr) {
use syntax::ast::ExprKind::*;
let (value, msg, followed_by_block) = match e.node {
If(ref cond, ..) => (cond, "`if` condition", true),
While(ref cond, ..) => (cond, "`while` condition", true),
IfLet(_, ref cond, ..) => (cond, "`if let` head expression", true),
WhileLet(_, ref cond, ..) => (cond, "`while let` head expression", true),
ForLoop(_, ref cond, ..) => (cond, "`for` head expression", true),
Match(ref head, _) => (head, "`match` head expression", true),
Ret(Some(ref value)) => (value, "`return` value", false),
Assign(_, ref value) => (value, "assigned value", false),
AssignOp(.., ref value) => (value, "assigned value", false),
// either function/method call, or something this lint doesn't care about
ref call_or_other => {
let (args_to_check, call_kind) = match *call_or_other {
Call(_, ref args) => (&args[..], "function"),
// first "argument" is self (which sometimes needs parens)
MethodCall(_, ref args) => (&args[1..], "method"),
// actual catch-all arm
_ => {
return;
}
};
// Don't lint if this is a nested macro expansion: otherwise, the lint could
// trigger in situations that macro authors shouldn't have to care about, e.g.,
// when a parenthesized token tree matched in one macro expansion is matched as
// an expression in another and used as a fn/method argument (Issue #47775)
if e.span.ctxt().outer().expn_info()
.map_or(false, |info| info.call_site.ctxt().outer()
.expn_info().is_some()) {
return;
}
let msg = format!("{} argument", call_kind);
for arg in args_to_check {
self.check_unused_parens_expr(cx, arg, &msg, false);
}
return;
}
};
self.check_unused_parens_expr(cx, &value, msg, followed_by_block);
}
fn check_pat(&mut self, cx: &EarlyContext, p: &ast::Pat, _: &mut bool) {
use ast::PatKind::{Paren, Range};
// The lint visitor will visit each subpattern of `p`. We do not want to lint any range
// pattern no matter where it occurs in the pattern. For something like `&(a..=b)`, there
// is a recursive `check_pat` on `a` and `b`, but we will assume that if there are
// unnecessary parens they serve a purpose of readability.
if let Paren(ref pat) = p.node {
match pat.node {
Range(..) => {}
_ => self.check_unused_parens_pat(cx, &p, "pattern")
}
}
}
fn check_stmt(&mut self, cx: &EarlyContext, s: &ast::Stmt) {
if let ast::StmtKind::Local(ref local) = s.node {
if let Some(ref value) = local.init {
self.check_unused_parens_expr(cx, &value, "assigned value", false);
}
}
}
}
declare_lint! {
UNUSED_IMPORT_BRACES,
Allow,
"unnecessary braces around an imported item"
}
#[derive(Copy, Clone)]
pub struct UnusedImportBraces;
impl UnusedImportBraces {
fn check_use_tree(&self, cx: &EarlyContext, use_tree: &ast::UseTree, item: &ast::Item) {
if let ast::UseTreeKind::Nested(ref items) = use_tree.kind {
// Recursively check nested UseTrees
for &(ref tree, _) in items {
self.check_use_tree(cx, tree, item);
}
// Trigger the lint only if there is one nested item
if items.len() != 1 {
return;
}
// Trigger the lint if the nested item is a non-self single item
let node_ident;
match items[0].0.kind {
ast::UseTreeKind::Simple(rename, ..) => {
let orig_ident = items[0].0.prefix.segments.last().unwrap().ident;
if orig_ident.name == keywords::SelfLower.name() {
return;
}
node_ident = rename.unwrap_or(orig_ident);
}
ast::UseTreeKind::Glob => {
node_ident = ast::Ident::from_str("*");
}
ast::UseTreeKind::Nested(_) => {
return;
}
}
let msg = format!("braces around {} is unnecessary", node_ident.name);
cx.span_lint(UNUSED_IMPORT_BRACES, item.span, &msg);
}
}
}
impl LintPass for UnusedImportBraces {
fn get_lints(&self) -> LintArray {
lint_array!(UNUSED_IMPORT_BRACES)
}
}
impl EarlyLintPass for UnusedImportBraces {
fn check_item(&mut self, cx: &EarlyContext, item: &ast::Item) {
if let ast::ItemKind::Use(ref use_tree) = item.node {
self.check_use_tree(cx, use_tree, item);
}
}
}
declare_lint! {
pub(super) UNUSED_ALLOCATION,
Warn,
"detects unnecessary allocations that can be eliminated"
}
#[derive(Copy, Clone)]
pub struct UnusedAllocation;
impl LintPass for UnusedAllocation {
fn get_lints(&self) -> LintArray {
lint_array!(UNUSED_ALLOCATION)
}
}
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for UnusedAllocation {
fn check_expr(&mut self, cx: &LateContext, e: &hir::Expr) {
match e.node {
hir::ExprKind::Box(_) => {}
_ => return,
}
for adj in cx.tables.expr_adjustments(e) {
if let adjustment::Adjust::Borrow(adjustment::AutoBorrow::Ref(_, m)) = adj.kind {
let msg = match m {
adjustment::AutoBorrowMutability::Immutable =>
"unnecessary allocation, use & instead",
adjustment::AutoBorrowMutability::Mutable { .. }=>
"unnecessary allocation, use &mut instead"
};
cx.span_lint(UNUSED_ALLOCATION, e.span, msg);
}
}
}
}